
Chapter 6 Applications of the Integral

6.1 Area Between Graphs

Concepts and Vocabulary

1. The two graphs meet at x = 0 and at x = 1, and in the interval [0, 1], we have
√
x ≥ x2,

so the integral is
∫ 1

0

(√
x− x2

)

dx. See the figure below:
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2. Partitioning the y-axis, the two graphs meet at y = −1 and again at y = 1; when −1 ≤
y ≤ 1, we have y2 ≤ 1, so the integral is

∫ 1

−1
(1 − y2) dy.

Skill Building

3. The region is shown below:
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Partitioning along the x-axis, we have x ≤ 2x, so the area is

∫ 1

0

(2x− x) dx =

∫ 1

0

x dx =

[

1

2
x2

]1

0

=
1

2
− 0 =

1

2
.
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4. The region is shown below:
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Partitioning along the x-axis, we have x ≤ 3x, so the area is

∫ 3

0

(3x− x) dx =

∫ 3

0

2x dx =
[

x2
]3

0
= 9− 0 = 9 .

5. The region is shown below:
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The two curves intersect when x2 = x, so when x = 0 and x = 1. Partitioning along the
x-axis, we have x2 ≤ x, so the area is

∫ 1

0

(x− x2) dx =

[

1

2
x2 − 1

3
x3

]1

0

=

(

1

2
− 1

3

)

− (0− 0) =
1

6
.

6. The region is shown below:
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The two curves intersect when x2 = 4x, so when x = 0 and x = 4. Partitioning along the
x-axis, we have x2 ≤ 4x, so the area is

∫ 4

0

(4x− x2) dx =

[

2x2 − 1

3
x3

]4

0

=

(

32− 64

3

)

− (0− 0) =
32

3
.

7. The region is shown below:
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Partitioning along the x-axis, we have e−x ≤ ex, so the area is

∫ ln 2

0

(

ex − e−x
)

dx =
[

ex + e−x
]ln 2

0
=
(

eln 2 + e− ln 2
)

−(e0+e0) =

(

2 +
1

2

)

−(1+1) =
1

2
.

8. The region is shown below:
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Partitioning along the x-axis, we have −x+ 1 ≤ ex, so the area is

∫ 1

0

(ex − (−x+ 1)) dx =

∫ 1

0

(ex + x− 1) dx =

[

ex +
1

2
x2 − x

]1

0

=

(

e1 +
1

2
− 1

)

− (e0 + 0− 0) = e− 3

2
.
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9. The region is shown below:
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The two curves intersect when x2 = x4, so when x = −1, x = 0, and x = 1. Partitioning
along the x-axis, we have x4 ≤ x2, so the area is

∫ 1

−1

(

x2 − x4
)

dx =

[

1

3
x3 − 1

5
x5

]1

−1

=

(

1

3
− 1

5

)

−
(

−1

3
+

1

5

)

=
4

15
.

10. The region is shown below:
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The two curves intersect when x = x3, so when x = −1, x = 0, and x = 1. Since the
region between x = −1 and x = 0 is below the x-axis, we compute the area from x = 0 to
x = 1 and double it so that we count that area as positive. Partitioning along the x-axis,
we have x3 ≤ x, so the area is

2

∫ 1

0

(

x− x3
)

dx = 2

[

1

2
x2 − 1

4
x4

]1

0

= 2

((

1

2
− 1

4

)

− (0− 0)

)

=
1

2
.

11. The region is shown below:
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Partitioning along the x-axis, we have 1
2 ≤ cosx, so the area is

∫ π/3

0

(

cosx− 1

2

)

dx =

[

sinx− 1

2
x

]π/3

0

=

(

sin
π

3
− 1

2
· π
3

)

− (sin 0− 0) =

√
3

2
− π

6
.

12. The region is shown below:
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The two curves intersect when sinx = 1
2 , so at

(

π
6 ,

1
2

)

and
(

5π
6 , 1

2

)

. Partitioning along the

x-axis, we have 1
2 ≤ sinx, so the area is

∫ 5π/6

π/6

(

sinx− 1

2

)

dx =

[

− cosx− 1

2
x

]5π/6

π/6

=

(

− cos
5π

6
− 1

2
· 5π
6

)

−
(

− cos
π

6
− 1

2
· π
6

)

=

(√
3

2
− 5π

12

)

−
(

−
√
3

2
− π

12

)

=
√
3− π

3
.

13. The region is shown below:
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The two curves intersect when 2 − y = y2, so when y2 + y − 2 = (y + 2)(y − 1) = 0; this
happens at the points (1, 1) and (4,−2). Partitioning along the y-axis, we have y2 ≤ 2− y,
so the area is
∫ 1

−2

(

2− y − y2
)

dy =

[

2y − 1

2
y2 − 1

3
y3
]1

−2

=

(

2− 1

2
− 1

3

)

−
(

−4− 2 +
8

3

)

=
9

2
.
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14. The region is shown below:
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The two curves intersect when y + 2 = y2, so when y2 − y − 2 = (y − 2)(y + 1) = 0; this
happens at the points (4, 2) and (1,−1). Partitioning along the y-axis, we have y2 ≤ y+2,
so the area is

∫ 2

−1

(

y + 2− y2
)

dy =

[

1

2
y2 + 2y − 1

3
y3
]2

−1

=

(

2 + 4− 8

3

)

−
(

1

2
− 2 +

1

3

)

=
9

2
.

15. The region is shown below:

x
5

x 9 y2
5, 2

5, 2

2 4 6 8

2

1

1

2

The two curves intersect where 9− y2 = 5, so when y = −2 and y = 2. Partitioning along
the y-axis, we have 5 ≤ 9− y2, so the area is

∫ 2

−2

(9− y2 − 5) dy =

∫ 2

−2

(4− y2) dy =

[

4y − 1

3
y3
]2

−2

=

(

8− 8

3

)

−
(

−8 +
8

3

)

=
32

3
.
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16. The region is shown below:

x
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The two curves intersect where 16− y2 = 7, so when y = −3 and y = 3. Partitioning along
the y-axis, we have 7 ≤ 16− y2, so the area is

∫ 3

−3

(16− y2 − 7) dy =

∫ 3

−3

(9− y2) dy =

[

9y − 1

3
y3
]3

−3

= (27− 9)− (−27 + 9) = 36 .

17. The region is shown below:
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Solve the second equation for x to get x = y+ 6. The two curves intersect where y2 + 4 =
y+ 6, so when y2 − y− 2 = (y − 2)(y+ 1) = 0. Therefore the intersection points are (8, 2)
and (5,−1). Partitioning along the y-axis, we see that y2 + 4 ≤ y + 6, so the area is

∫ 2

−1

(

y + 6− (y2 + 4)
)

dy =

∫ 2

−1

(

−y2 + y + 2
)

dy =

[

−1

3
y3 +

1

2
y2 + 2y

]2

−1

=

(

−8

3
+ 2 + 4

)

−
(

1

3
+

1

2
− 2

)

=
9

2
.
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18. The region is shown below:
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Solve the second equation for x to get x = 8− y. The two curves intersect where y2 + 6 =
8− y, so when y2 + y− 2 = (y+ 2)(y− 1) = 0. Therefore the intersection points are (7, 1)
and (10,−2). Partitioning along the y-axis, we see that y2 + 6 ≤ 8− y, so the area is

∫ 1

−2

(

8− y − (y2 + 6)
)

dy =

∫ 1

−2

(−y2 − y + 2) dy =

[

−1

3
y3 − 1

2
y2 + 2y

]1

−2

=

(

−1

3
− 1

2
+ 2

)

−
(

8

3
− 2− 4

)

=
9

2
.

19. The region is shown below:
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Solving y = ln x for x gives x = ey. Then partitioning along the y-axis, we see that 1 ≤ ey,
so the area is

∫ 2

0

(ey − 1) dy = [ey − y]
2
0 = (e2 − 2)− (e0 − 0) = e2 − 3 .
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20. The region is shown below:

y ln x
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x
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Solving y = lnx for x gives x = ey. Then partitioning along the y-axis, we see that ey ≤ e,
so the area is

∫ 1

0

(e − ey) dy = [ey − ey]10 = (e − e)− (0− 1) = 1 .

21. This region is bounded above by y = cosx and below by y = − sinx, and it extends from
x = −π

4 to x = 3π
4 . So we integrate by subdividing along the x axis, and we get

∫ 3π/4

−π/4

(cos x− (− sinx)) dx =

∫ 3π/4

−π/4

(cos x+ sinx) dx = [sinx− cosx]
3π/4
−π/4

=

(√
2

2
−
(

−
√
2

2

))

−
(

−
√
2

2
−

√
2

2

)

= 2
√
2 .

22. This region consists of two areas, one below the x axis and one above. For x < 0, we have
3
√
x < x3, while for x > 0 we have 3

√
x > x3. So the total area is

∫ 0

−1

(

x3 − 3
√
x
)

dx+

∫ 1

0

(

3
√
x− x3

)

dx =

[

1

4
x4 − 3

4
x4/3

]0

−1

+

[

3

4
x4/3 − 1

4
x4

]1

0

=

(

(0− 0)−
(

1

4
− 3

4

))

+

((

3

4
− 1

4

)

− (0 − 0)

)

= 1 .

23. If we try to partition along the x-axis, we will require two integrals, one for −5 ≤ x ≤ 3
and the other for 3 ≤ x ≤ 4, since the upper boundof the area changes equations at x = 3.
So we partition along the y-axis. The equation of the parabola is x = −y2 +4; solving the
linear equation for x gives x = 2y + 1. Since −y2 + 4 ≥ 2y + 1 throughout the region of
integration, the area is

∫ 1

−3

(−y2 + 4− (2y + 1)) dy =

∫ 1

−3

(−y2 − 2y + 3) dy =

[

−1

3
y3 − y2 + 3y

]1

−3

=

(

−1

3
− 1 + 3

)

− (9− 9− 9) =
32

3
.
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24. Integrate by subdividing along the x-axis. The upper bound is −x + 3, while the lower
bound is 4

x+2 . So the area is

∫ 2

−1

(

−x+ 3− 4

x+ 2

)

dx =

[

−1

2
x2 + 3x− 4 ln |x+ 2|

]2

−1

= (−2 + 6− 4 ln 4)−
(

−1

2
− 3− 4 ln 1

)

=
15

2
− 4 ln 4 .

25. The region is shown below:
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The two curves intersect when
√
x = x3, which is at the points (0, 0) and (1, 1). So:

(a) Partitioning the x-axis, the area is

∫ 1

0

(
√
x− x3) dx =

[

2

3
x3/2 − 1

4
x4

]1

0

=

(

2

3
− 1

4

)

− (0− 0) =
5

12
.

(b) Partitioning the y-axis, we must first solve the two equations for x. This gives x = y2

and x = 3
√
y. Then the area between the curves is

∫ 1

0

( 3
√
y − y2) dy =

[

3

4
y4/3 − 1

3
y3
]1

0

=

(

3

4
− 1

3

)

− (0− 0) =
5

12
.

26. The region is shown below:
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The two curves intersect when
√
x = x2, which is at the points (0, 0) and (1, 1). So:

(a) Partitioning the x-axis, the area is

∫ 1

0

(
√
x− x2) dx =

[

2

3
x3/2 − 1

3
x3

]1

0

=

(

2

3
− 1

3

)

− (0 − 0) =
1

3
.
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(b) Partitioning the y-axis, we must first solve the two equations for x. This gives x = y2

and x =
√
y. Then the area between the curves is

∫ 1

0

(
√
y − y2) dy =

[

2

3
y3/2 − 1

3
y3
]1

0

=

(

2

3
− 1

3

)

− (0− 0) =
1

3
.

27. The region is shown below:
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The curves y = x2 + 1 and y = x+ 1 intersect when x2 +1 = x+ 1, so when x2 = x. As a
result, the intersection points are (0, 1) and (1, 2). So:

(a) Partitioning the x-axis, the area is

∫ 1

0

((x+1)−(x2+1)) dx =

∫ 1

0

(x−x2) dx =

[

1

2
x2 − 1

3
x3

]1

0

=

(

1

2
− 1

3

)

−(0−0) =
1

6
.

(b) Partitioning the y-axis, we must first solve the two equations for x. This gives x =√
y − 1 and x = y − 1. Then the area between the curves is

∫ 2

1

(
√

y − 1− (y − 1)) dy =

∫ 2

1

(1− y +
√

y − 1) dy =

[

y − 1

2
y2 +

2

3
(y − 1)3/2

]2

1

=

(

2− 2 +
2

3

)

−
(

1− 1

2
+ 0

)

=
1

6
.

28. The region is shown below:
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The curves y = x2 + 1 and y = 4x + 1 intersect when x2 + 1 = 4x + 1, so when x2 = 4x,
or at the points (0, 1) and (4, 17). So:
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(a) Partitioning the x-axis, the area is

∫ 4

0

((4x+1)−(x2+1)) dx =

∫ 4

0

(4x−x2) dx =

[

2x2 − 1

3
x3

]4

0

=

(

32− 64

3

)

−(0−0) =
32

3
.

(b) Partitioning the y-axis, we must first solve the two equations for x. This gives x =√
y − 1 and x = y−1

4 . Then the area between the curves is

∫ 17

1

(

√

y − 1− y − 1

4

)

dy =

∫ 17

1

(

√

y − 1− 1

4
y +

1

4

)

dy

=

[

2

3
(y − 1)3/2 − 1

8
y2 +

1

4
y

]17

1

=

(

128

3
− 289

8
+

17

4

)

−
(

0− 1

8
+

1

4

)

=
32

3
.

29. The region is shown below:

y 9 x

y 9 3 x

y 0

0, 3

3, 0 9, 0

1 2 3 4 5 6 7 8 9
x

0.5

1.

1.5

2.

2.5

3.

3.5

y

These curves intersect where 9− x = 9− 3x, so at (0, 3). So:

(a) From x = 0 to x = 3, the upper bound is
√
9− x and the lower bound is

√
9− 3x,

but from x = 3 to x = 9 the lower bound is 0. Therefore the area is

∫ 3

0

(
√
9− x−

√
9− 3x) dx +

∫ 9

3

√
9− x dx

=

[

−2

3
(9− x)3/2 +

2

9
(9− 3x)3/2

]3

0

+

[

−2

3
(9 − x)3/2

]9

3

=
(

(−4
√
6 + 0)− (−18 + 6))

)

+
(

0− (−4
√
6)
)

= 12 .

(b) Solving both equations for x gives x = 9 − y2 and x = 3 − 1
3y

2, and the first curve
forms the upper bound for integration when subdividing along the y-axis. Then the
area is

∫ 3

0

(

(9− y2)−
(

3− 1

3
y2
))

dy =

∫ 3

0

(

6− 2

3
y2
)

dy

=

[

6y − 2

9
y3
]3

0

= (18− 6)− (0− 0) = 12 .
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30. The region is shown below:
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These curves intersect where 16− 2x = 16− 4x, so at (0, 4).

(a) From x = 0 to x = 4, the upper bound is
√
16− 2x and the lower bound is

√
16− 4x,

but from x = 4 to x = 8 the lower bound is 0. Therefore the area is
∫ 4

0

(√
16− 2x−

√
16− 4x

)

dx +

∫ 8

4

√
16− 2x dx

=

[

−1

3
(16− 2x)3/2 +

1

6
(16− 4x)3/2

]4

0

+

[

−1

3
(16− 2x)3/2

]8

4

=

((

−16

3

√
2 + 0

)

−
(

−64

3
+

32

3

))

+ 0−
(

−16

3

√
2

)

=
32

3
.

(b) Solving both equations for x gives x = 8 − 1
2y

2 and x = 4 − 1
4y

2, and the first curve
forms the upper bound for integration when subdividing along the y-axis. Then the
area is

∫ 4

0

((

8− 1

2
y2
)

−
(

4− 1

4
y2
))

dy =

∫ 4

0

(

4− 1

4
y2
)

dy

=

[

4y − 1

12
y3
]4

0

= 16− 16

3
+ (0 − 0) =

32

3
.

31. The region is shown below:

y 2 x 6

y x 2
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y

These curves intersect when
√
x− 2 =

√
2x− 6, so at x = 4, which is the point (4,

√
2).

Therefore:
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(a) From x = 2 to x = 3, the lower bound is zero and the upper bound is
√
x− 2; from

x = 3 to x = 4 the lower bound is
√
2x− 6. Therefore the area is

∫ 3

2

√
x− 2 dx+

∫ 4

3

(√
x− 2−

√
2x− 6

)

dy =

[

2

3
(x− 2)3/2

]3

2

+

[

2

3
(x− 2)3/2 − 1

3
(2x− 6)3/2

]4

3

=

(

2

3
− 0

)

+

((

4

3

√
2− 2

3

√
2

)

−
(

2

3
− 0

))

=
2

3

√
2 .

(b) Solving both equations for x gives x = 3 + 1
2y

2 and x = 2 + y2; the first curve is the
upper bound for integration when subdividing along the y-axis. Then the area is

∫

√
2

0

((

3 +
1

2
y2
)

− (2 + y2)

)

dy =

∫

√
2

0

(

1− 1

2
y2
)

dy

=

[

y − 1

6
y3
]

√
2

0

=

(

√
2−

√
2

3

)

− (0 − 0)

=
2

3

√
2 .

32. The region is shown below:

y 2 x 5

y 4 x 17

y 0

5

2
, 0

17

4
, 0

6, 7

1 2 3 4 5 6
x

0.5

1.

1.5

2.

2.5

3.

y

These curves intersect when 2x − 5 = 4x − 17, so when x = 6, at the point (6,
√
7).

Therefore:

(a) From x = 5
2 to x = 17

4 , the upper bound is
√
2x− 5 and the lower bound is 0. From

x = 17
4 to x = 6 the lower bound is

√
4x− 17. So the area is

∫ 17/4

5/2

√
2x− 5 dx+

∫ 6

17/4

(√
2x− 5−

√
4x− 17

)

dx

=

[

1

3
(2x− 5)3/2

]17/4

5/2

+

[

1

3
(2x− 5)3/2 − 1

6
(4x− 17)3/2

]6

17/4

=
7

12

√
14 +

(

7

6

√
7− 7

12

√
14

)

=
7

6

√
7 .
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(b) Solving both equations for x gives x = y2+5
2 and x = y2+17

4 ; the second equation
forms the upper bound for the integrand. So the area is

∫

√
7

0

(

y2 + 17

4
− y2 + 5

2

)

dy =

∫

√
7

0

(

7

4
− y2

4

)

dy

=

[

7

4
y − y3

12

]

√
7

0

=

(

7

4

√
7− 7

12

√
7

)

− (0− 0)

=
7

6

√
7 .

33. The region is shown below:

y x2

y 4 x2

2 , 2 2 , 2

1.5 1. 0.5 0.5 1. 1.5
x

1

2

3

4

y

The two graphs intersect when 4−x2 = x2, so when x = ±
√
2. Therefore the area between

the curves is

∫

√
2

−
√
2

(4 − x2 − x2) dx =

∫

√
2

−
√
2

(4− 2x2) dx =

[

4x− 2

3
x3

]

√
2

−
√
2

=
16

3

√
2 .

34. The region is shown below:

y x2

y 9 x2

3

2

,
9

2

3

2

,
9

2

2. 1.5 1. 0.5 0.5 1. 1.5 2.
x

1

2

3

4

5

6

7

8

9

y

The graphs intersect when 9 − x2 = x2, so when x = ± 3
√
2

2 . Therefore the area between
the curves is

∫ 3
√
2/2

−3
√
2/2

(9− x2 − x2) dx =

∫ 3
√
2/2

−3
√
2/2

(9− 2x2) dx =

[

9x− 2

3
x3

]3
√
2/2

−3
√
2/2

= 18
√
2 .
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35. The region is shown below:

x 4 y2x y2 4

0, 2

0, 2

4 2 2 4

2

1

1

2

For these curves, we partition along the y-axis. The graphs intersect when y2− 4 = 4− y2,
which is when y = −2 and y = 2. So the area between the curves is

∫ 2

−2

((4 − y2)− (y2 − 4)) dy =

∫ 2

−2

(8− 2y2) dy =

[

8y − 2

3
y3
]2

−2

=
64

3
.

36. The region is shown below:

x 16 y2x y2

8, 2 2

8, 2 2

5 10 15

3

2

1

1

2

3

For these curves, we partition along the y-axis. The graphs intersect when y2 = 16 − y2,
so for y = ±

√
8 = ±2

√
2. Therefore the area between the curves is

∫ 2
√
2

−2
√
2

(16− y2 − y2) dy =

∫ 2
√
2

−2
√
2

(16− 2y2) dy =

[

16y − 2

3
y3
]2

√
2

−2
√
2

=
128

3

√
2 .
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37. The region is shown below:

y ln x2

y 0

x

1, 0 , 0

, 2

1 2 3
x0

1

2

y

Note that lnx2 = 2 lnx. This area can be computed more easily by subdividing along the
y-axis. Solving y = 2 lnx for x gives x = ey/2. The line x = e meets this curve at y = 2,
so the region extends from y = 0 to y = 2 and is bounded on the left by ey/2 and on the
right by e. Therefore the area of the region is

∫ 2

0

(

e− ey/2
)

dy =
[

ey − 2ey/2
]2

0
= (2e− 2e)− (0− 2) = 2 .

38. The region is shown below:

y ln x

y 1

y 1 x

1 2
x

0.5

1.

y

We partition along the y-axis so that we do not have to split the computation into two
integrals. y = 1− x becomes x = 1− y, and y = lnx becomes x = ey. The region extends
from y = 0 to y = 1, so the area of the region is

∫ 1

0

(ey − (1− y)) dy =

∫ 1

0

(y − 1 + ey) dy =

[

1

2
y2 − y + ey

]1

0

= e− 3

2
.

39. The region is shown below:

y cos x

x
π 3y 1

3 x

π

0
π

6

π

3

x

0.2

0.4

0.6

0.8

1.

y
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The area of the region is

∫ π/3

0

(

cosx−
(

1− 3

π
x

))

dx =

∫ π/3

0

(

3

π
x− 1 + cosx

)

dx =

[

3

2π
x2 − x+ sinx

]π/3

0

=

√
3

2
− π

6
.

40. The region is shown below:

y 1

y sin x

x
0

0, 0

π

2
, 1

0, 1

π

6

π

3

π

2

x

0.2

0.4

0.6

0.8

1.

y

The region extends from x = 0 to x = π
2 , so the area is

∫ π/2

0

(1− sinx) dx = [x+ cosx]
π/2
0 =

π

2
− 1 .

41. The region is shown below:

y 1

y 2 x

x
1

1, 1

1, 2

0, 1

0.2 0.4 0.6 0.8 1.
x

1

2

3

4

5

6

7

y

The area of the region is

∫ 1

0

(e2x − 1) dx =

[

1

2
e2x − x

]1

0

=
1

2
e2 − 3

2
.
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42. The region is shown below:

y x

y 3 x

x
2

0, 1

2, 6

2, 2

0.5 1. 1.5 2.
x

100

200

300

400

y

The area of the region is

∫ 2

0

(e3x − ex) dx =

[

1

3
e3x − ex

]2

0

=
1

3
e6 − e2 +

2

3
.

43. The region is shown below:

y2 4 x

4 x 3 y 4 0

1

4
, 1

4, 4

1 2 3 4

1

1

2

3

4

We partition along the y-axis. Solving these equations for x gives x = y2

4 and x = 1+ 3
4y.

The curves intersect where y2−3y−4 = 0 (since y2 = 4x); this factors as (y−4)(y+1), so
the y-coordinates of the intersection points are −1 and 4. Therefore the area of the region
is

∫ 4

−1

(

1 +
3

4
y − y2

4

)

dy =

[

y +
3

8
y2 − 1

12
y3
]4

−1

=
125

24
.
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44. The region is shown below:

y2 4 x 1

x y 1

0, 1

6, 5

1 2 3 4 5 6

1

1

2

3

4

5

Partition along the y-axis. The two curves have equations x = 1
4 (y

2 − 1) and x = y + 1;

these intersect where y + 1 = 1
4 (y

2 − 1), so when y2 − 4y − 5 = 0. This happens for y = 5
and y = −1. Therefore the area of the region is

∫ 5

−1

(

y + 1− 1

4
(y2 − 1)

)

dy =

∫ 5

−1

(

−1

4
y2 + y +

5

4

)

dy =

[

− 1

12
y3 +

1

2
y2 +

5

4
y

]5

−1

= 9 .

45. The region is shown below:

y sin x

y
2 x

π

0, 0

π

2
, 1

0
π

4

π

2

x

0.2

0.4

0.6

0.8

1.

y

The graphs intersect at x = 0 and again at x = π
2 , where sin π

2 = 1 and 2
πx = 2

π · π
2 = 1.

So the area of the region is

∫ π/2

0

(

sinx− 2

π
x

)

dx =

[

− cosx− 1

π
x2

]π/2

0

= −π

4
+ 1 .
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46. The region is shown below:

y cos x

y
3 x

π

x
0

0, 0

0, 1

0.759, 0.726

0.1 0.2 0.3 0.4 0.5 0.6 0.7
x

0.2

0.4

0.6

0.8

1.

y

The intersection point of these graphs has no simple exact form, but is approximately equal
to 0.759. So the area of the region is approximately

∫ 0.759

0

(

cosx− 3

π
x

)

dx =

[

sinx− 3

2π
x2

]0.759

0

≈ 0.413 .

Applications and Extensions

47. The slope of BC is 4−1
−2−1 = −1, so the point of tangency of AD with the parabola is a

point where the slope of the tangent to the parabola is −1. With y = x2, we have y′ = 2x,
so the slope is −1 at x = − 1

2 . Therefore the point of tangency is
(

− 1
2 ,

1
4

)

, so the line AD
has equation

y − 1

4
= −1

(

x−
(

−1

2

))

, or y = −x− 1

4
.

Line BC has equation
y − 1 = −1(x− 1), or y = −x+ 2.

So the area of the parallelogram is

∫ 1

−2

(

(−x+ 2)−
(

−x− 1

4

))

dx =

∫ 1

−2

(

9

4

)

dx =
27

4
.

The shaded area, on the other hand, has area

∫ 1

−2

(

(−x+ 2)− x2
)

dx =

∫ 1

−2

(−x2 − x+ 2) dx =

[

−1

3
x3 − 1

2
x2 + 2x

]1

−2

=
9

2
.

Finally, 27
4 · 2

3 = 9
2 , and Archimedes’ result follows.

48. Subdividing along the x-axis, we get for the area of the region

∫ 1/2

0

(8x− x) dx +

∫ 1

1/2

(

1

x2
− x

)

dx =

[

7

2
x2

]1/2

0

+

[

− 1

x
− 1

2
x2

]1

1/2

=
7

8
+

5

8
=

3

2
.

A triangle with base 1 and height h has area 1
2 · 1 · h = h

2 ; since we want h
2 = 3

2 , we have

h = 3 .
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49. (a) The points of intersection occur where the values of the two functions are equal:

cos2 x = sin2 x

1− sin2 x = sin2 x

2 sin2 x = 1

sin2 x =
1

2

sinx = ±
√

1

2
= ± 1√

2

x = ±π

4
+ 2nπ or ±3π

4
+ 2nπ, n any integer

For the region shown, this is x = −π
4 and x = π

4 .

The points of intersection are
(

−π
4 , sin

2
(

−π
4

))

=

(

−π
4 ,
(

− 1√
2

)2
)

=
(

−π
4 ,

1
2

)

and

(

π
4 , sin

2
(

π
4

))

=

(

π
4 ,
(

− 1√
2

)2
)

=
(

π
4 ,

1
2

)

(b) The lower limit of integration is x = 0, the y-axis, and the upper limit is x = π
4 , from

Part (a).
The area is the integral of the difference between the two functions over this interval:

A =

∫ π/4

0

(

cos2 x− sin2 x
)

dx

=

∫ π/4

0

cos 2x dx

Let
u = 2x

Then

du = 2 dx

dx =
1

2
du

x = 0 → u = 2 (0) = 0

x =
π

4
→ u = 2

(π

4

)

=
π

2
∫ π/4

0

cos 2x dx =
1

2

∫ π/2

0

cosu du

=
1

2
[sinu]

π/2

0

=
1

2

[

sin
π

2
− (−sin 0)

]

=
1

2
(1− 0)

=
1

2
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50. The region is shown below:

y cos 2 x

y sin 2 x

x
0

0, 0

0, 1

π

8
,

1

2

0
π

16

π

8

x

0.2

0.4

0.6

0.8

1.

y

The region extends from x = 0 to x = π
8 , so the area is

∫ π/8

0

(cos 2x− sin 2x) dx =

[

1

2
sin 2x+

1

2
cos 2x

]π/8

0

=

√
2

2
− 1

2
.

51. The region is shown below:

y xy sin 1 x

0, 0

0.1 0.2 0.3 0.4 0.5
x

0.1

0.2

0.3

0.4

0.5

y

Since it is easier to integrate sin y than it is to integrate sin−1 x, we choose to partition
along the y-axis. The two equations are then x = sin y and x = y. The graph of x = sin y
intersects the line x = 1

2 at y = π
6 , while the graph of x = y intersects that line at y = 1

2 .

So for 0 ≤ y ≤ 1
2 , the region is bounded to the right by x = y and to the left by x = sin y,

while for 1
2 ≤ y ≤ π

6 , it is bounded to the right by x = 1
2 and to the left by x = sin y. As

a result, the total area is

∫ 1/2

0

(y − sin y) dy +

∫ π/6

1/2

(

1

2
− sin y

)

dy =

[

1

2
y2 + cos y

]1/2

0

+

[

1

2
y + cos y

]π/6

1/2

=

(

−7

8
+ cos

1

2

)

+

(

π

12
+

√
3

2
− 1

4
− cos

1

2

)

= −9

8
+

√
3

2
+

π

12
.
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52. (a) The two curves are shown below:

y x2

y sin x

0.877, 0.769

0, 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

(b) The curves intersect when x2 = sinx. Now, x = 0 is such a value of x; using technology
we find the other value to be x ≈ 0.877. The corresponding y values are y = 0 and

y = 0.8772 ≈ 0.769, so the intersection points are (0, 0) and ≈ (0.877, 0.769) .

(c) The area is

∫ 0.877

0

(sinx− x2) dx =

[

− cosx− 1

3
x3

]0.877

0

≈ 0.136 .

(d) Solving the two equations for x gives x =
√
y and x = sin−1 y. So the area between

the curves is
∫ 0.769

0

(
√
y − sin−1 y) dy ≈ 0.136 .

53. (a) The three curves are shown below:

y sin 1 x x y 1

0.489, 0.511

1, 00, 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) The graphs of sin−1 x and y = 0 intersect at the point (0, 0) , and x + y = 1 and

y = 0 intersect at the point (1, 0) . The third point of intersection is where y =

sin−1 x = 1 − x; solving sin−1 x = 1 − x using technology gives x ≈ 0.489, so that

y = 1− 0.489 = 0.511, and the intersection point is ≈ (0.489, 0.511) .
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(c) Partitioning along the y-axis allows us to use just one integral, bounded above by
x = 1− y and below by x = sin y, so its area is

∫ 0.511

0

(1− y − sin y) dy =

[

y − 1

2
y2 + cos y

]0.511

0

≈ 0.253 .

54. (a) The three curves are shown below:

y cos 1 x

y x3 1

y 0

0.457, 1.095

1, 01, 0

1. 0.5 0.5 1.

0.2

0.4

0.6

0.8

1.

1.2

1.4

1.6

1.8

(b) The graphs of cos−1 x and y = 0 intersect on the x-axis, at (1, 0) , and y = x3 + 1

and y = 0 intersect on the x-axis, at (−1, 0) . The third point of intersection is

determined by solving cos−1 x = x3 + 1; using technology we get x ≈ 0.457, so that

y ≈ 0.4573 + 1 ≈ 1.095, and the third point of intersection is ≈ (0.457, 1.095) .

(c) Partitioning along the y-axis allows us to use just one integral, bounded above by
x = cos y and below by x = 3

√
y − 1, so its area is

∫ 1.095

0

(

cos y − 3

√

y − 1
)

dy =

[

sin y − 3

4
(y − 1)4/3

]1.095

0

≈ 1.606 .

55. (a) The three curves are shown below:

2 x y 3

y
1

1 x2

y 1

1.317, 0.366

0, 1 1, 1

0.2 0.2 0.4 0.6 0.8 1. 1.2 1.4

0.2

0.4

0.6

0.8

1.

1.2
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(b) 2x+ y = 3 and y = 1 intersect at x = 1, which is the point (1, 1) . y = 1 intersects

y = 1
x2+1 when 1

x2+1 = 1, so when x = 0; this point is (0, 1) . Finally, 2x + y = 3

intersects y = 1
x2+1 when 3 − 2x = 1

x2+1 . Clearing fractions and simplifying gives

2x3 − 3x2 + 2x − 2 = 0. The only real root of this cubic is, using technology, x ≈
1.317. At that value, y = 3 − 2 · 1.317 ≈ 0.366, so the third point of intersection is

≈ (1.317, 0.366) .

(c) Partitioning along the y-axis allows us to use just one integral, bounded above by

x = 1
2 (3 − y) and below by x =

√

1
y − 1, so its area is

∫ 1

0.366

(

1

2
(3− y)−

√

1

y
− 1

)

dy ≈ 0.295 .

56. (a) The three curves are shown below:

x y 2

y
5

1 x2

x
0

1.787, 1.193

0, 2

0, 5

0.2 0.4 0.6 0.8 1. 1.2 1.4 1.6 1.8
x

2

1

1

2

3

4

5

y

(b) x = 0 and y = 5
1+x2 intersect at (0, 5) , while x = 0 and x =

√
y + 2 intersect at

(0,−2) . To find the third intersection point, we must solve the system y = 5
1+x2 ,

x =
√
y + 2; using technology, we get (x, y) ≈ (1.787, 1.193) .

(c) Partition along the x-axis; then the second equation becomes y = x2− 2 and the area
of the region is

∫ 1.787

0

(

5

1 + x2
− (x2 − 2)

)

dx ≈ 6.975 .

57. (a) The three curves are shown below:

y sin 1 x y 1 x2

y 0

0.599, 0.641

0, 0 1, 0

0.2 0.2 0.4 0.6 0.8 1.

0.2

0.4

0.6

0.8

1.

1.2
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(b) y = 1 − x2 and y = 0 intersect at (−1, 0) and at (1, 0) ; the point we are concerned

with here is (1, 0). The graph shows that y = sin−1 x and y = 0 intersect at (0, 0) .

The third point of intersection is found by solving 1− x2 = sin−1 x; using technology
we get x ≈ 0.599, so that y = 1 − 0.5992 ≈ 0.641 and the third intersection point is

≈ (0.599, 0.641) .

(c) Partitioning along the y-axis allows us to use a single integral, bounded above by
x =

√
1− y and below by x = sin y; the area of the region is then

∫ 0.641

0

(

√

1− y − sin y
)

dy ≈ 0.325 .

Challenge Problems

58. The two cost curves, with A(x) the upper curve, are shown below:

A x 8020.66 1.0855x

C x 4944.64 1.0711x

2 4 6 8 10
x

2000

4000

6000

8000

10000

12000

14000

16000

18000

y

(a) The area between the curves is

∫ 10

0

(8020.6596 · 1.0855x − 4944.6424 · 1.0711x) dx

=

[

8020.6596

ln 1.0855
1.0855x − 4944.6424

ln 1.0711
1.0711x

]10

0

≈ $53,213 .

(b) The total average additional amount of money spent by a family of four in the U.S.
for health care exceeded by about $53,213 the amount spent by a family of four in
Canada. Answers may vary.

59. The region (for k = 1) is shown below:

y tan x

y k

x
0

π

4
, 1

0, 0

0, 1

0
π

8

π

4

x

0.2

0.4

0.6

0.8

1.

y
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(a) Partitioning along the x-axis, the upper edge of the region is y = k and the lower
edge is y = tanx. The bounds of integration range from x = 0 to x = tan−1 k, so the
area is

A =

∫ tan−1 k

0

(k − tanx) dx = [kx+ ln cosx]
tan−1 k
0 = k tan−1 k + ln cos tan−1 k.

Now, since x is positive, tan−1 k is in the first quadrant, so cos tan−1 k = 1√
1+k2

, as

can be seen by drawing a right triangle in the first quadrant whose tangent function
is equal to k. Therefore we get for the area

A = k tan−1 k + ln
1√

1 + k2
= k tan−1 k − 1

2
ln(1 + k2) .

(b) When k = 1,

A = 1 · tan−1 1− 1

2
ln(1 + 12) =

π

4
− 1

2
ln 2 .

(c) Using the Chain Rule,

dA

dt
=

dA

dk
· dk
dt

=

(

tan−1 k +
k

1 + k2
− 1

2(1 + k2)
· 2k
)

· dk
dt

=

(

tan−1 k +
k

1 + k2
− k

1 + k2

)

· dk
dt

= tan−1 k · dk
dt

.

When dk
dt = 1

10 and k = 1, we get

dA

dt
= tan−1 1 · 1

10
=

π

40
square units per second.

60. (a) If you reflect the first-quadrant shaded region across the x-axis, you get another
region that is the same size as the first; the union of these two regions is a region
whose area is A∗ in the problem statement. The point where the line y = −x meets
the hyperbola in the fourth quadrant is the corner of this region; its coordinates
are (cosh t,− sinh t). So we get a triangle with vertices (0, 0), (cosh t, sinh t), and
(cosh t,− sinh t). This triangle has base (the vertical) 2 sinh t and height cosh t, so
that its area is 1

2 · 2 sinh t · cosh t = sinh t cosh t. Since cosh2 t − sinh2 t = 1, we

can rewrite this as cosh t
√

cosh2 t− 1; since x = cosh t, this becomes x
√
x2 − 1. To

compute the area of A∗, we must subtract from the area of the triangle the area under
the hyperbola between x = 1 and x = cosh t. We can compute this area by computing
the area under the hyperbola in the first quadrant and doubling it, so (using u as a
dummy variable), we get

2

∫ x

1

sinhu du = 2

∫ x

1

√

cosh2 u− 1 du = 2

∫ x

1

√

u2 − 1 du.

Therefore

A∗ = x
√

x2 − 1− 2

∫ x

1

√

u2 − 1 du.
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(b) Using the Fundamental Theorem of Calculus, we have

dA∗

dx
=
√

x2 − 1 + x · 1
2
(x2 − 1)−1/2 · 2x− 2

√

x2 − 1

= −
√

x2 − 1 +
x2

√
x2 − 1

=
1√

x2 − 1
.

(c) Since d
dx cosh−1 x = 1√

x2−1
, we see from part (b) that A∗ = cosh−1 x + C for some

constant C. When x = 1, the area is empty, so that A∗ = 0. Therefore we get
0 = cosh−1 1 + C = 0 + C, so that C = 0. Substituting gives A∗ = cosh−1 x.

(d) Finally, since x = cosh t and t ≥ 0, we get t = cosh−1 x = A∗.

61. The region is shown below:

1.0 0.5 0.5 1.0

0.6

0.4

0.2

0.2

0.4

0.6

Since (−y)2 = y2 and (−x)2 − (−x)4 = x2 − x4, the graph is symmetric about both the
x and y-axes. So we can compute its area by computing the portion of the area in the
first quadrant and multiplying by 4. In the first quadrant, the equation of the curve is
y =

√
x2 − x4 = x

√
1− x2. Note also that if x > 1, then x2 − x4 < 0, so there are no

points of the curve to the right of x = 1; therefore, the integral to compute the area will
go from x = 0 to x = 1. Using the substitution u = 1 − x2, du = −2x dx, then x = 0
corresponds to u = 1 and x = 1 to u = 0, so the total area is

4

∫ 1

0

x
√

1− x2 dx = −4 · 1
2

∫ 0

1

u1/2 du = −2

[

2

3
u3/2

]0

1

=
4

3
.
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AP
R©

Practice Problems

1. Determine the point(s) of intersection of f(x) = x2 and g(x) = 3x as upper and lower
limits of integration.

3x = x2

x2 − 3x = 0

x(x − 3) = 0

x = 0 x = 3

A =

∫ 3

0

(

3x− x2
)

dx

=

[

3x2

2
− x3

3

]3

0

=
27

2
− 27

3
=

9

2

CHOICE C

2. Determine the point of intersection of y = ex/3 and y = 1 as the lower limit of integration,
x = 3 being the upper limit of integration.

ex/3 = 1

x = 0

A =

∫ 3

0

(

ex/3 − 1
)

dx

=
[

3ex/3 − x
]3

0

=
(

3e1 − 3
)

−
(

3e0 − 0
)

= 3e− 3− 3

= 3e− 6

CHOICE D

3.

∫ 5

−2

[f(x) + ex] dx =

∫ 5

−2

f(x) dx +

∫ 5

−2

ex dx

= 4− 4 + 4 + [ex]
5
−2

= 4 + e5 − e−2

= e5 − e−2 + 4

CHOICE B
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4. Determine the point(s) of intersection of y = x2 − 4x + 2 and y = 7 as upper and lower
limits of integration.

x2 − 4x+ 2 = 7

x2 − 4x− 5 = 0

(x− 5) (x+ 1) = 0

x = 5 x = −1

A =

∫ 5

−1

[

7−
(

x2 − 4x+ 2
)]

dx

=

∫ 5

−1

(

−x2 + 4x+ 5
)

dx

=

[−x3

3
+ 2x2 + 5x

]5

−1

=

[−125

3
+ 50 + 25−

(

1

3
+ 2− 5

)]

= 36

CHOICE B

5. A =

∫ 1

b

[f(x) − g(x)] dx

CHOICE B

6. Determine the point of intersection of y = sinx and y =
x

π
+ 1 as the lower limit of

integration, x = 0 being the upper limit of integration. Using a graphing calculator
suggests that the only intersection is x = −π.

Check: sin (−π)
?
=

(−π)

π
+ 1

0
!
=0

So the intersection is at x = −π.

A =

∫ 0

−π

(x

π
+ 1− sinx

)

dx

=

[

x2

2π
+ x+ cosx

]0

−π

=

(

(0)
2

2π
+ (0) + cos (0)

)

−
(

(−π)
2

2π
+ (−π) + cos (−π)

)

= 1−
(

π2

2π
− π − 1

)

= 1− π

2
+ π + 1

= 2 +
π

2

CHOICE C
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7. Determine the point of intersection of f(x) = ex+2 and g(x) = −2x+3 as the lower limit
of integration, x = 4 being the upper limit of integration. Using a graphing calculator
suggests that the only intersection is x = 0.

Check: e(0) + 2
?
=−2 (0) + 3

3
!
=3

So the intersection is at x = 0.

A =

∫ 4

0

[ex + 2− (−2x+ 3)] dx

=

∫ 4

0

[ex + 2x− 1] dx

=
[

ex + x2 − x
]4

0

=
[

e4 + 16− 4−
(

e0
)]

= e4 + 12− 1

= e4 + 11

CHOICE B

8. (a) Determine the point(s) of intersection of f(x) = x3−8x2+15x+2 and g(x) = 3x+2.

x3 − 8x2 + 15x+ 2 = 3x+ 2

x3 − 8x2 + 15x+ 2− 3x− 2 = 0

x3 − 8x2 + 12x = 0

x
(

x2 − 8x+ 12
)

= 0

x(x − 6)(x− 2) = 0

x = 0 x = 6 x = 2

Points of intersection at (0, g(0)) = (0, 2) (6, g(6)) = (6, 20) (2, g(2)) = (2, 8)

(b) Use the x-values of the intersection points as the limits of integration, checking which
function is higher on each region (see graph).

A =

∫ 2

0

(f(x) − g(x)) dx+

∫ 6

2

(g(x)− f(x)) dx

=

∫ 2

0

(

(x3 − 8x2 + 15x+ 2)− (3x+ 2)
)

dx+

∫ 6

2

(3x+ 2)−
(

x3 − 8x2 + 15x+ 2
)

dx

=

∫ 2

0

(x3 − 8x2 + 12x) dx+

∫ 6

2

(

−x3 + 8x2 − 12x
)

dx

(c) A =

∫ 2

0

(x3 − 8x2 + 12x) dx+

∫ 6

2

(

−x3 + 8x2 − 12x
)

dx

=

[

x4

4
− 8x3

3
+ 6x2

]2

0

+

[−x4

4
+

8x3

3
− 6x2

]6

2

=

[

16

4
− 64

3
+ 24− 0

]

+

[−1296

4
+

1728

3
− 216−

(−16

4
+

64

3
− 24

)]

=
148

3
≈ 49.333
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6.2 Volume of a Solid of Revolution: Disks and Washers

Concepts and Vocabulary

1. From the boxed formula in subsection 3 preceding Example 4, the formula is V = π
∫ b

a
f(x)2 dx.

2. False. The cross section is indeed the region contained between two concentric circles. The
radii of those circles are f(ui) and g(ui), so the area between them is the difference of their
areas, or πf(ui)

2 − πg(ui)
2 = π[f(ui)

2 − g(ui)
2], not π[f(ui)− g(ui)]

2.

3. False. From Problem 1, or the boxed formula in subsection 3 preceding Example 4, the

volume is V = π
∫ b

a [f(x)
2 − g(x)2] dx.

4. False. First of all, the two curves intersect at x = 0 and x = 2, so the integral must go
from 0 to 2. See the diagram:

y 2 x

y x2

y 6

0, 0

2, 4

1 2
x

2

4

6

y
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Second, for a given value of x, the outer radius is 6− x2 and the inner radius is 6− 2x, so
the formula is

V = π

∫ 2

0

[(6− x2)2 − (6− 2x)2] dx.

Skill Building

5. Using the disk method, the radius of each disk is 2
√
x, so the volume is

V = π

∫ 4

1

(

2
√
x
)2

dx = 4π

∫ 4

1

x dx = 4π

[

1

2
x2

]4

1

= 30π .

6. Since we are revolving around the y-axis with the disk method, first solve the equation for
x to get x = y1/4. Then the radius of each disk is y1/4, so the volume is

V = π

∫ 1

0

(

y1/4
)2

dy = π

∫ 1

0

y1/2 dy = π

[

2

3
y3/2

]1

0

=
2

3
π .

7. Since we are revolving around the y-axis with the disk method, first solve the equation for
x to get x = 1

y . Then the radius of each disk is 1
y , so the volume is

V = π

∫ 4

1

(

1

y

)2

dy = π

∫ 4

1

1

y2
dy = π

[

−1

y

]4

1

= π

(

1− 1

4

)

=
3

4
π .

8. Since we are revolving around the y-axis with the disk method, first solve the equation for
x to get x = y3/2. Then the radius of each disk is y3/2, so the volume is

V = π

∫ 4

1

(

y3/2
)2

dy = π

∫ 4

1

y3 dy = π

[

1

4
y4
]4

1

=
255

4
π .

9. Using the washer method along the x-axis, each outer radius is secx and the inner radius
is 1, so that the volume is

V = π

∫ 1

−1

(

sec2 x− 12
)

dx = π

∫ 1

−1

(

sec2 x− 1
)

dx = π [tanx− x]
1
−1 = 2π(tan 1− 1) .

10. Since we are revolving around the y-axis, we solve y = x2 for x, giving x =
√
y (since

x ≥ 0). Then using the washer method, the volume is

V = π

∫ 4

0

(

22 − (
√
y)

2
)

dy = π

∫ 4

0

(4− y) dy = π

[

4y − 1

2
y2
]4

0

= 8π .

11. The region is shown below:

x
1

y 2 x2

0, 0 1, 0

1, 2

0.2 0.4 0.6 0.8 1.
x

0.5

1.

1.5

2.

y
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The radius of each disk is 2x2, so the volume is

V = π

∫ 1

0

(

2x2
)2

dx = π

∫ 1

0

4x4 dx = π

[

4

5
x5

]1

0

=
4

5
π .

12. The region is shown below:

x
4

x
9

y x

4, 0 9, 0

4, 2

9, 3

1 2 3 4 5 6 7 8 9
x

0.5

1.

1.5

2.

2.5

3.

y

The radius of each disk is
√
x, so the volume is

V = π

∫ 9

4

(√
x
)2

dx = π

∫ 9

4

x dx = π

[

1

2
x2

]9

4

=
65

2
π .

13. The region is shown below:

x
0

x
2

y x

0, 0 2, 0

0, 1

2,
1

2

0.5 1. 1.5 2.
x

0.5

1.

y

The radius of each disk is e−x, so the volume is

V = π

∫ 2

0

(

e−x
)2

dx = π

∫ 2

0

e−2x dx = π

[

−1

2
e−2x

]2

0

=
1

2
π

(

1− 1

e4

)

.
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14. The region is shown below:

x
1

x
1

y x

1, 0 1, 0

1,
1

1,

1. 0.5 0.5 1.
x

0.5

1.

1.5

2.

2.5

y

The radius of each disk is ex, so the volume is

V = π

∫ 1

−1

(ex)
2
dx = π

∫ 1

−1

e2x dx = π

[

1

2
e2x
]1

−1

=
1

2
π

(

e2 − 1

e2

)

.

15. The region is shown below:

y 4

y 1

y x2

0, 1 1, 1

0, 4 2, 4

0.5 1. 1.5 2.
x

1

2

3

4

y

Solving for x gives x =
√
y (since x ≥ 0), so the radius of each disk is

√
y and the volume

is

V = π

∫ 4

1

(
√
y)

2
dy = π

∫ 4

1

y dy = π

[

1

2
y2
]4

1

=
15

2
π .

16. The region is shown below:

y 4

y 1

y 2 x

0, 1

0, 4
4, 4

0.5 1. 1.5 2. 2.5 3. 3.5 4.
x

1

2

3

4

y
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Solving for x gives x = y2

4 , so the radius of each disk is y2

4 and the volume is

V = π

∫ 4

0

(

y2

4

)2

dy = π

∫ 4

0

1

16
y4 dy = π

[

1

80
y5
]4

0

=
64

5
π .

17. The region is shown below:

y 4

y x2

0, 0

0, 4 2, 4

0.5 1. 1.5 2.
x

1

2

3

4

y

The outer radius of each washer is 4 and the inner radius is x2, so the volume of the solid
is

V = π

∫ 2

0

(

42 −
(

x2
)2
)

dx = π

∫ 2

0

(

16− x4
)

dx = π

[

16x− 1

5
x5

]2

0

=
128

5
π .

18. The region is shown below:

y 2

y 2 x2

0, 0

0, 2 1, 2

0.5 1.
x

1

2

y

The outer radius of each washer is 2 and the inner radius is 2x2, so the volume of the solid
is

V = π

∫ 1

0

(

22 −
(

2x2
)2
)

dx = π

∫ 1

0

(

4− 4x4
)

dx = π

[

4x− 4

5
x5

]1

0

=
16

5
π .
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19. The region is shown below:

y 4

y 2 x

0, 0

0, 4
4, 4

0.5 1. 1.5 2. 2.5 3. 3.5 4.
x

1

2

3

4

y

The outer radius of each washer is 4 and the inner radius is 2
√
x, so the volume of the

solid is

V = π

∫ 4

0

(

42 −
(

2
√
x
)2
)

dx = π

∫ 4

0

(16− 4x) dx = π
[

16x− 2x2
]4

0
= 32π .

20. The region is shown below:

x
8

y x2 3

0, 0 8, 0

8, 4

1 2 3 4 5 6 7 8
x

1

2

3

4

y

Solving y = x2/3 for x gives x = y3/2, so the outer radius of each washer when revolved
around the y-axis is 8 and the inner radius is y3/2. Therefore the volume is

V = π

∫ 4

0

(

82 −
(

y3/2
)2
)

dy = π

∫ 4

0

(

64− y3
)

dy = π

[

64y − 1

4
y4
]4

0

= 192π .
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21. The region is shown below:

Solving y = x3 for x gives x = y1/3, so the outer radius of each washer when revolved
around the y-axis is 1 and the inner radius is y1/3. Therefore the volume is

V = π

∫ 1

0

[

12 −
(

y1/3
)2
]

dy = π

∫ 1

0

(

1− y2/3
)

dy = π

[

y − 3

5
y5/3

]1

0

= π

{[

(1)− 3

5
(1)

5/3

]

− 0

}

=
2

5
π

22. The region is shown below:

x
1

y 2 x4

0, 0 1, 0

1, 2

0.25 0.5 0.75 1.
x

0.5

1.

1.5

2.

y

Solving y = 2x4 for x gives x =
(

y
2

)1/4
(since x ≥ 0), so the outer radius of each washer

when revolved around the y-axis is 1 and the inner radius is
(

y
2

)1/4
. Therefore the volume

is

V = π

∫ 2

0

(

12 −
(

(y

2

)1/4
)2
)

dy = π

∫ 2

0

(

1− 1√
2
y1/2

)

dy = π

[

y −
√
2

3
y3/2

]2

0

=
2

3
π .
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23. The region is shown below:

x
1

x
2

y
1

x

1, 0 2, 0

1, 1

2,
1

2

0.5 1. 1.5 2.
x

0.5

1.

y

Using the disk method, the radius of each disk around the x-axis is 1
x , so the volume is

V = π

∫ 2

1

(

1

x

)2

dx = π

∫ 2

1

1

x2
dx = π

[

− 1

x

]2

1

=
π

2
.

24. This is the same region from Problem 23; it is pictured there. To rotate around the y-axis,
we use the washer method. Solving y = 1

x for x gives x = 1
y . Now, x = 1

y and x = 2

intersect when y = 1
2 . So from y = 0 to y = 1

2 , the outer radius is 2 while the inner radius

is 1. From y = 1
2 to y = 1 the outer radius is 1

y and the inner radius is 1. Therefore the

volume is

V = π

∫ 1/2

0

(22 − 12) dy + π

∫ 1

1/2

(

(

1

y

)2

− 12

)

dy

= π

∫ 1/2

0

3 dy + π

∫ 1

1/2

(

1

y2
− 1

)

dy

= π [3y]
1/2
0 + π

[

−1

y
− y

]1

1/2

= 2π .

25. The region is shown below:

y 9

y x

0, 0

0, 9
81, 9

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
x

1

2

3

4

5

6

7

8

9

y

Using the disk method to revolve about the y-axis, first solve y =
√
x for x to get x = y2.

Then the radius of each disk is y2, so the volume is

V = π

∫ 9

0

(

y2
)2

dy = π

∫ 9

0

y4 dy = π

[

1

5
y5
]9

0

=
59049

5
π .
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26. This is the same region from Problem 25; it is pictured there. To rotate around the x-axis,
we use the disk method. The outer radius of each disk is 9, while the inner radius is

√
x.

Therefore the volume is

V = π

∫ 81

0

(

92 −
(√

x
)2
)

dx = π

∫ 81

0

(81− x) dx = π

[

81x− 1

2
x2

]81

0

=
6561

2
π .

27. The region is shown below:

y x 2 3

0, 0 2, 0

3, 0

3, 1

0, 8

0.5 1. 1.5 2. 2.5 3.
x

8

7

6

5

4

3

2

1

1

y

When revolving about the x-axis, we use the disk method. Note that the region lies both
above and below the x-axis, so from x = 0 to x = 2, the radius will be −(x − 2)3, while
from x = 2 to x = 3 it will be (x − 2)3. However, since we square the radius, the minus
sign will disappear in the computation — that is, ((x − 2)3)2 = (−(x − 2)3)2. Therefore
the volume is

V = π

∫ 3

0

(

(x − 2)3
)2

dx = π

∫ 3

0

(x − 2)6 dx = π

[

1

7
(x− 2)7

]3

0

=
129

7
π .

28. This is the same region from Problem 27; it is pictured there. To rotate around the y-axis,
first solve y = (x− 2)3 for x to get x = 2+ y1/3. We use the disk method from y = −8 to
y = 0, where the radius is 2 + y1/3. From y = 0 to y = 1 we use the washer method; the
outer radius is 3 while the inner radius is 2 + y1/3. Therefore the volume is

V = π

∫ 0

−8

(

2 + y1/3
)2

dy + π

∫ 1

0

(

32 −
(

2 + y1/3
)2
)

dy

= π

∫ 0

−8

(

y2/3 + 4y1/3 + 4
)

dy + π

∫ 1

0

(

5− 4y1/3 − y2/3
)

dy

= π

[

3

5
y5/3 + 3y4/3 + 4y

]0

−8

+ π

[

5y − 3y4/3 − 3

5
y5/3

]1

0

=
23

5
π .
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29. The region is shown below:

y x 1 2

y 16

0, 1

0, 16

3, 16

0.5 1. 1.5 2. 2.5 3.
x

2

4

6

8

10

12

14

16

y

When revolving about the y-axis, we first solve y = (x+1)2 for x to get x =
√
y −1. Using

the disk method, the radius of each disk is
√
y − 1, so the volume is

V = π

∫ 16

1

(
√
y − 1)2 dy = π

∫ 16

1

(

y − 2y1/2 + 1
)

dy = π

[

1

2
y2 − 4

3
y3/2 + y

]16

1

=
117

2
π .

30. The region is shown below:

y x 1 2

y 16

0, 1

0, 165, 16

5 4 3 2 1
x

2

4

6

8

10

12

14

16

y

To revolve around the x-axis, we use the washer method; each outer radius is 16 while the
inner radius is (x+ 1)2. Therefore the volume is

V = π

∫ 0

−5

(

162 −
(

(x+ 1)2
)2
)

dx = π

∫ 0

−5

(

256− (x+ 1)4
)

dx = π

[

256x− 1

5
(x+ 1)5

]0

−5

= 1075π .
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31. The region is shown below:

x y4 1

0, 1

0, 1

1, 0

1. 0.5

1.

0.5

0.5

1.

We use the disk method to revolve about the y-axis; the radius is 1 − y4. Therefore the
volume is

V = π

∫ 1

−1

(

1− y4
)2

dy = π

∫ 1

−1

(

y8 − 2y4 + 1
)

dy = π

[

1

9
y9 − 2

5
y5 + y

]1

−1

=
64

45
π .

32. The region is shown below:

y x4 1

1, 0 1, 01. 0.5 0.5 1.
x

1.

0.5

y

We use the disk method to revolve about the x-axis; the radius is 1−x4 (since x4−1 < 0).
Therefore the volume is

V = π

∫ 1

−1

(

1− x4
)2

dx = π

∫ 1

−1

(

1− 2x4 + x8
)

dx = π

[

x− 2

5
x5 +

1

9
x9

]1

−1

=
64

45
π .

(Note that this is the same region as in Problem 31, rotated 90◦, so we would expect to
get the same answer.)
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33. The region is shown below:

y 4 x

y x3

0, 0

2, 8

0.5 1. 1.5 2.
x

1

2

3

4

5

6

7

8

y

We use the washer method to revolve about the x-axis. Each outer radius is 4x, and each
inner radius is x3, so the volume is

V = π

∫ 2

0

(

(4x)2 −
(

x3
)2
)

dx = π

∫ 2

0

(

16x2 − x6
)

dx = π

[

16

3
x3 − 1

7
x7

]2

0

=
512

21
π .

34. The region is shown below:

x
0

x
3

y 2 x 1

y x

0, 0

0, 1

3, 3

3, 7

0.5 1. 1.5 2. 2.5 3.
x

1

2

3

4

5

6

7

y

We use the washer method to revolve about the x-axis. Each outer radius is 2x+ 1, and
each inner radius is x, so the volume is

V = π

∫ 3

0

(

(2x+ 1)2 − x2
)

dx = π

∫ 3

0

(3x2 + 4x+ 1) dx = π
[

x3 + 2x2 + x
]3

0
= 48π .

35. The region is shown below:

x
1

y x

y 1 x

0, 1

1, 0

1,

0.5 1.
x

0.5

1.

1.5

2.

2.5

y
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We use the washer method to revolve about the x-axis. Each outer radius is ex, and each
inner radius is 1− x, so the volume is

V = π

∫ 1

0

(

(ex)
2 − (1− x)2

)

dx

= π

∫ 1

0

(

e2x − 1 + 2x− x2
)

dx

= π

[

1

2
e2x − x+ x2 − 1

3
x3

]1

0

=

(

1

2
e2 − 5

6

)

π .

36. The region is shown below:

x
0

y cos x

y sin x

0, 1

0, 0

π

4
,

1

2

0
π

8

π

4

x

0.25

0.5

0.75

1.

y

We use the washer method to revolve about the x-axis. Each outer radius is cosx and each
inner radius is sinx, so the volume is

V = π

∫ π/4

0

(

(cosx)
2 − (sinx)

2
)

dx

= π

∫ π/4

0

(

cos2 x− sin2 x
)

dx

= π

∫ π/4

0

cos 2x dx

= π

[

1

2
sin 2x

]π/4

0

=
π

2
.
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37. The region is shown below:

x
π 2 x

3
π 4

y csc x

π

2
, 0

π

2
, 1

3 π

4
, 0

3 π

4
, 2

0
π

8

π

4

3 π

8

π

2

5 π

8

3 π

4

x

0.25

0.5

0.75

1.

1.25

y

We use the disk method to revolve about the x-axis. Each radius is cscx, so the volume is

V = π

∫ 3π/4

π/2

(cscx)
2
dx = π

∫ 3π/4

π/2

csc2 x dx = π [− cotx]
3π/4
π/2 = π .

38. The region is shown below:

x
0

x
π 3

y sec x

0, 0

0, 1

π

3
, 0

π

3
, 2

0
π

6

π

3

x

0.25

0.5

0.75

1.

1.25

1.5

1.75

2.

y

We use the disk method to revolve about the x-axis. Each radius is secx, so the volume is

V = π

∫ π/3

0

(secx)
2
dx = π

∫ π/3

0

sec2 x dx = π [tanx]
π/3
0 = π

√
3 .

39. The region is shown below, with the line of revolution shown as a dashed line:

x
0

x
2

y 0

y 1

y x

0, 0

0, 1

2, 0

2, 2

0.25 0.5 0.75 1. 1.25 1.5 1.75 2.
x

1

1

2

3

4

5

6

7

y
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To revolve about y = −1, we use the washer method. Each outer radius is ex−(−1) = ex+1,
and each inner radius is 0− (−1) = 1. Therefore the volume is

V = π

∫ 2

0

(

(ex + 1)
2 − 12

)

dx = π

∫ 2

0

(

e2x + 2ex
)

dx = π

[

1

2
e2x + 2ex

]2

0

= π

(

1

2
e4 + 2e2 − 5

2

)

.

40. The region is shown below, with the line of revolution shown as a dashed line:

x
1

x
4

y 0

y 4

y
1

x
1, 0

1, 1

4, 0

4,
1

4

1 2 3 4
x

1

2

3

4

y

To revolve about y = 4, we use the washer method. Each outer radius is 4 − 0 = 4, and
each inner radius is 4− 1

x . Therefore the volume is

V = π

∫ 4

1

(

42 −
(

4− 1

x

)2
)

dx = π

∫ 4

1

(

8

x
− 1

x2

)

dx = π

[

8 lnx+
1

x

]4

1

=

(

16 ln 2− 3

4

)

π .

41. The region is shown below, with the line of revolution shown as a dashed line:

x
1

y x2

0, 0 1, 0

1, 1

0.5 1.
x

0.5

1.

y

To revolve about x = 1, we first solve y = x2 for x to get x =
√
y. Using the disk method,

each radius is 1−√
y. Therefore the volume is

V = π

∫ 1

0

(1−√
y)

2
dy = π

∫ 1

0

(

1− 2y1/2 + y
)

dy = π

[

y − 4

3
y3/2 +

1

2
y2
]1

0

=
π

6
.
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42. The region is shown below, with the line of revolution shown as a dashed line:

x
1

x
0

y x3

y 1

0, 0

1, 10, 1

0.5 1.
x

0.5

1.

y

To revolve about x = −1, we first solve y = x3 for x to get x = y1/3. Using the washer
method, the outer radius is y1/3 − (−1) = y1/3 +1, while the inner radius is 0− (−1) = 1.
Therefore the volume is

V = π

∫ 1

0

(

(

y1/3 + 1
)2

− 12
)

dy = π

∫ 1

0

(

y2/3 + 2y1/3
)

dy = π

[

3

5
y5/3 +

3

2
y4/3

]1

0

=
21

10
π .

43. The region is shown below, with the line of revolution shown as a dashed line:

x
4

x
4

y x

0, 0 4, 0

4, 2

4 3 2 1 1 2 3 4
x

0.5

1.

1.5

2.

y

To revolve about x = −4, we first solve y =
√
x for x to get x = y2. Using the washer

method, the outer radius is 4 − (−4) = 8 and the inner radius is y2 − (−4) = y2 + 4.
Therefore the volume is

V = π

∫ 2

0

(

82 − (y2 + 4)2
)

dy = π

∫ 2

0

(

48− 8y2 − y4
)

dy = π

[

48y − 8

3
y3 − 1

5
y5
]2

0

=
1024

15
π .

44. The region is shown below, with the line of revolution shown as a dashed line:

x
1

x
4

y
1

x

0, 0 4, 0

1, 1

4,
1

2

1 2 3 4
x

0.5

1.

y
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To revolve about x = 4, we first solve y = 1√
x
for x to get x = 1

y2 . For 0 ≤ y ≤ 1
2 , we can

use the disk method with radius 4 − 1 = 3. For 1
2 ≤ y ≤ 1, we use the washer method,

with outer radius 4− 1 = 3 and inner radius 4− 1
y2 . Therefore the volume is

V = π

∫ 1/2

0

32 dy + π

∫ 1

1/2

(

32 −
(

4− 1

y2

)2
)

dy

= π

∫ 1/2

0

9 dy + π

∫ 1

1/2

(

−7 +
8

y2
− 1

y4

)

dy

= π [9y]
1/2
0 + π

[

−7y − 8

y
+

1

3y3

]1

1/2

=
20

3
π .

45. The region is shown below, with the line of revolution shown as a dashed line:

x
1

x
4

y 0

y 4

y
1

x2

1, 0

1, 1

4, 0

4,
1

16

1 2 3 4
x

1

2

3

4

y

To revolve about y = 4, we use the washer method. The outer radius is 4 − 0 = 4, while
the inner radius is 4− 1

x2 . Therefore the volume is

V = π

∫ 4

1

(

42 −
(

4− 1

x2

)2
)

dx = π

∫ 4

1

(

8

x2
− 1

x4

)

dx = π

[

− 8

x
+

1

3x3

]4

1

=
363

64
π .

46. The region is shown below, with the line of revolution shown as a dashed line:

x
1

x
4

y 0

y 4

y x

0, 0 4, 0

4, 2

1 2 3 4
x

4

3

2

1

1

2

y

To revolve about y = −4, we use the washer method. The outer radius is
√
x − (−4) =√

x + 4, while the inner radius is 0− (−4) = 4. Therefore the volume is

V = π

∫ 4

0

(

(√
x + 4

)2 − 42
)

dx = π

∫ 4

0

(

8
√
x+ x

)

dx = π

[

16

3
x3/2 +

1

2
x2

]4

0

=
152

3
π .
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47. The region is shown below:

(a) The radius of each disk when revolved around the x–axis is y = x2. Therefore the
volume is

V = π

∫ 3

0

y2 dx = π

∫ 3

0

(

x2
)2

dx = π

∫ 3

0

x4 dx = π

[

1

5
x5

]3

0

= π

[

1

5
(3)

5 − 0

]

=
243

5
π

(b) The outer radius of each washer when revolved around the line y = −1 is y− (−1) =
x2 + 1, and the inner radius is 0− (−1) = 1. Therefore the volume is

V = π

∫ 3

0

[

(

x2 + 1
)2 − 12

]

dx = π

∫ 3

0

[(

x4 + 2x2 + 1
)

− 1
]

dx = π

∫ 3

0

(

x4 + 2x2
)

dx

= π

[

1

5
x5 +

2

3
x3

]3

0

= π

{[

1

5
(3)5 +

2

3
(3)3

]

− 0

}

=
333

5
π

(c) The outer radius of each washer when revolved around the line y = 10 is 10− 0 = 10
and the inner radius is 10− y = 10− x2. Therefore the volume is

V = π

∫ 3

0

[

102 −
(

10− x2
)2
]

dx = π

∫ 3

0

[

100−
(

100− 20x2 + x4
)]

dx = π

∫ 3

0

(

20x2 − x4
)

dx

= π

[

20

3
x3 − 1

5
x5

]3

0

= π

{[

20

3
(3)3 − 1

5
(3)5

]

− 0

}

=
657

5
π
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(d) The outer radius of each washer when revolved around the line y = a ≥ 9 is a− 0 = a
and the inner radius is a− y = a− x2. Therefore the volume is

V = π

∫ 3

0

[

a2 −
(

a− x2
)2
]

dx = π

∫ 3

0

[

a2 −
(

a2 − 2ax2 + x4
)]

dx = π

∫ 3

0

(

2ax2 − x4
)

dx

= π

[

2a

3
x3 − 1

5
x5

]3

0

= π

{[

2a

3
(3)

3 − 1

5
(3)

5

]

− 0

}

=

(

18a− 243

5

)

π =
90a− 243

5
π

48. (a) V = π

∫ 9

0

(3− 0)
2
dy − π

∫ 9

0

(x− 0)
2
dy

= π

∫ 9

0

9 dy − π

∫ 9

0

x2 dy

= π

∫ 9

0

9 dy −
∫ 9

0

y dy

= π[9y]
9
0 − π

[

y2

2

]9

0

= π(81− 0)− π

(

81

2
− 0

)

= 81π − 81π

2

=
81

2
π

(b) V = π

∫ 9

0

[3− (−5)]2 dy −π

∫ 9

0

[x− (−5)]2 dy

= π

∫ 9

0

64dy − π

∫ 9

0

(x+ 5)
2
dy

= π[64y]
9
0 − π

∫ 9

0

(

x2 + 10x+ 25
)

dy

= π[64(9)]− π

∫ 9

0

(

y + 10
√
x+ 25

)

dy

= 576π − π

∫ 9

0

y dy − 10π

∫ 9

0

√
y dy − 25π

∫ 9

0

dy

= 576π −
[

πy2

2

]9

0

−
[

10π

(

2

3

)

y3/2
]9

0

− [25πy]
9
0

= 576π − 81π

2
− 10π

(

2

3

)

(9)
3/2 − 25π(9)

= 576π − 81π

2
− 10π

(

2

3

)

(27)− 225π

= 576π − 81π

2
− 180π − 225π

=
261

2
π
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(c) V = π

∫ 9

0

(5− x)
2
dy − π

∫ 9

0

(5− 3)
2
dy

= π

∫ 9

0

(

25− 10x+ x2
)

dy − 4π

∫ 9

0

dy

= π

∫ 9

0

(25− 10
√
y + y) dy − 4π

∫ 9

0

dy

= 25π

∫ 9

0

dy − 10π

∫ 9

0

y1/2 dy + π

∫ 9

0

y dy − 4π

∫ 9

0

dy

= [25π]
9
0 −

20π

3

[

y3/2
]9

0
+

π

2

[

y2
]9

0
− 4π(9− 0)

= 225π − 20π

3
(27) +

81π

2
− 36π

= 225π − 180π +
81π

2
− 36π

=
99

2
π

(d) V = π

∫ 9

0

(b− x)
2
dy − π

∫ 9

0

(b− 3)
2
dy

= π

∫ 9

0

(b−√
y)

2
dy − π

∫ 9

0

(b − 3)
2
dy

= π

∫ 9

0

(

b2 − 2b
√
y + y

)

dy − π

∫ 9

0

(

b2 − 6b+ 9
)

dy

= π

[

b2y − 4b

3
y3/2 +

y2

2

]9

0

− π
[(

b2 − 6b+ 9
)

y
]9

0

= 9b2π − 36bπ +
81π

2
− 9b2π + 54bπ − 81π

=
36b− 81

2
π

49. The region is shown below:
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(a) Solving y = x2 for x gives x = y1/2. The radius of each disk when revolved around
the y-axis is x− 0 = y1/2 − 0 = y1/2. Therefore the volume is

V = π

∫ 4

0

(

y1/2
)2

dy = π

∫ 4

0

y dy = π

[

1

2
y2
]4

0

= π

[

1

2
(4)2 − 0

]

= 8π

(b) The outer radius of each washer when revolving around the line x = −5 is x− (−5) =
y1/2 + 5, and the inner radius is 0− (−5) = 5. Therefore the volume is

V = π

∫ 4

0

[

(

y1/2 + 5
)2

− 52
]

dy = π

∫ 4

0

[(

y + 10y1/2 + 25
)

− 25
]

dy = π

∫ 4

0

(

y + 10y1/2
)

dy

=

[

1

2
y2 +

20

3
y3/2

]4

0

= π

{[

1

2
(4)2 +

20

3
(4)3/2

]

− 0

}

=
184

3
π

(c) The outer radius of each washer when revolving around the line x = 5 is 5 − 0 = 5,
and the inner radius is 5− x = 5− y1/2. Therefore the volume is

V = π

∫ 4

0

[

52 −
(

5− y1/2
)2
]

dy = π

∫ 4

0

[

25−
(

25− 10y1/2 + y
)]

dy = π

∫ 4

0

(

10y1/2 − y
)

dy

=

[

20

3
y3/2 − 1

2
y2
]4

0

= π

{[

20

3
(4)

3/2 − 1

2
(4)

2

]

− 0

}

=
136

3
π

(d) The outer radius of each washer when revolving around the line x = b ≥ 2 is b− 0 = b
and the inner radius is b− x = b− y1/2. Therefore the volume is

V = π

∫ 4

0

[

b2 −
(

b− y1/2
)2
]

dy = π

∫ 4

0

[

b2 −
(

b2 − 2by1/2 + y
)]

dy = π

∫ 4

0

(

2by1/2 − y
)

dy

=

[

4b

3
y3/2 − 1

2
y2
]4

0

= π

{[

4b

3
(4)

3/2 − 1

2
(4)

2

]

− 0

}

=
32b

3
− 8 =

32b− 24

3
π

50. (a) V = π

∫ 2

0

(4− 0)
2
dx− π

∫ 2

0

(

x2
)2

dx

= π

∫ 2

0

16 dx− π

∫ 2

0

x4 dx

= 16π[x]20 − π

[

x5

5

]2

0

= 16π(2− 0)− π

(

32

5
− 0

)

= 32π − 32π

5

=
128

5
π
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(b) V = π

∫ 2

0

[4− (−1)]
2
dx− π

∫ 2

0

(y + 1)
2
dx

= π

∫ 2

0

25 dx− π

∫ 2

0

(

x2 + 1
)2

dx

= [25πx]
2
0 − π

∫ 2

0

(

x4 + 2x2 + 1
)

dx

= 50π − π

[

x5

5
+

2x3

3
+ x

]2

0

= 50π − π

[

32

5
+

16

3
+ 2− 0

]

= 50π − 206π

15

=
544

15
π

(c) V = π

∫ 2

0

(4− y)
2
dx

= π

∫ 2

0

(

16− 8y + y2
)

dx

= π

∫ 2

0

(

16− 8x2 + x4
)

dx

= π

[

16x− 8x3

3
+

x5

5

]2

0

= π

(

32− 64

3
+

32

5
− 0

)

=
256

15
π

(d) V = π

∫ 2

0

(a− y)
2
dx− π

∫ 2

0

(a− 4)
2
dx

= π

∫ 2

0

(a2 − 2ay + y2) dx − π

∫ 2

0

(a2 − 8a+ 16)dx

= π

∫ 2

0

(

a2 − 2ax2 + x4
)

dx− π

∫ 2

0

(a2 − 8a+ 16)dx

= π

[

a2x− 2ax3

3
+

x5

5
− a2x+ 8ax− 16x

]2

0

= π

(

2a2 − 16a

3
+

32

5
− 2a2 + 16a− 32

)

=
160a− 384

15
π
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Applications and Extensions

51. (a) The graph is an upper semicircle, centered at (0, 0) and with radius a.

(b) The radius of each disk when revolving around the x-axis is y − 0 =
√
a2 − x2.

Therefore the volume is

V = π

∫ a

−a

(

√

a2 − x2
)2

dx

Because the function is an even function and is therefore symmetrical around the
y-axis, we can make this slightly faster to calculate by integrating from 0 to a and
then doubling the result:

V = 2

[

π

∫ a

0

(

√

a2 − x2
)2

dx

]

= 2π

∫ a

0

(

a2 − x2
)

dx = 2π

[

a2x− 1

3
x3

]a

0

= 2π

{[

a2(a)− 1

3
(a)

3

]

− 0

}

= 2π · 2
3
a3 =

4

3
πa3

52. (a) y − a =
0− h

a− 0
(x− 0)

= −h

a
x

y = −h

a
x+ h

(b)
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(c) x = −a

h
(y − h)

V = π

∫ h

0

(x− 0)2 dy

= π

∫ h

0

x2 dy

= π

∫ h

0

[

−a

h
(y − h)

]2

dy

=
πa2

h2

∫ h

o

(y − h)2 dy

=
πa2

h2

[

(y − h)
3

3

]h

0

=
πa2

3h2
(y − h)h0

=
πa2

3h2

[

0− (−h)
3
]

=
πa2h3

3h2

=
a2h

3
π

53. (a) The radius of each disk when revolving around the x-axis is y − 0 = 1
x2+4 . Therefore

the volume is

V = π

∫ 1

0

(

1

x2 + 4

)2

dx = π

∫ 1

0

1

(x2 + 4)
2 dx

(b) Using an online algebra and calculus app, this equals

2 + 5 tan−1
(

1
2

)

80
π ≈ 0.170

54. (a) V = π

∫ e

1

(y − 0)
2
dx

= π

∫ e

1

(lnx)
2
dx

(b) (e− 2)π ≈ 2.256
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55. (a) The ellipse is centered at (0, 0) and has semi-major axis length 3 vertically and semi-
minor axis length 3

2 horizontally.

(b) The radius of each disk when revolving around the x-axis is y − 0 =
√
9− 4x2.

Therefore the volume is

V = π

∫ 3/2

−3/2

(

√

9− 4x2
)2

dx

Because the function is an even function and is therefore symmetrical around the
y-axis, we can make this slightly faster to calculate by integrating from 0 to 3

2 and
doubling the result:

V = 2

[

π

∫ 3/2

0

(

√

9− 4x2
)2

dx

]

= 2π

∫ 3/2

0

(

9− 4x2
)

dx = 2π

[

9x− 4

3
x3

]3/2

0

= 2π

{[

9

(

3

2

)

− 4

3

(

3

2

)3
]

− 0

}

= 2π · 9 = 18π

56. (a)

(b) V = π

∫ 1

−1

(y − 0)2 dx

= π

∫ 1

−1

y2 dx

= π

∫ 1

−1

(

4x2 + 1
)

dx

= π

[

4x3

3
+ x

]1

−1

= π

[(

4

3
+ 1

)

−
(−4

3
− 1

)]

=
14

3
π
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57. The graph of y = kx − x2 intersects the x-axis at x = 0 and again at x = k. A graph of
kx− x2, with the region in question shaded, is below:

(a) When the region is revolved around the x-axis, we use the disk method; the radius is
kx− x2, so the volume is

Vx = π

∫ k

0

(

kx− x2
)2
dx = π

∫ k

0

(

k2x2 − 2kx3 + x4
)

dx = π

[

1

3
k2x3 − 1

2
kx4 +

1

5
x5

]k

0

=
1

30
πk5 .

(b) This is just the area between the function and the x-axis, so the area is

A =

∫ k

0

(

kx− x2
)

dx =

[

1

2
kx2 − 1

3
x3

]k

0

=

[

1

2
k(k)

2 − 1

3
(k)

3

]

− 0 =
k3

6

58. (a) The graphs of y = 2x+ b and y2 = 4x intersect when (2x+ b)2 = 4x. Expanding this
equation gives 4x2 + (4b− 4)x+ b2 = 0; this quadratic equation has roots

x =
4− 4b±

√

(4b− 4)2 − 16b2

8
=

1

2
(1− b±

√
1− 2b).

So there are two distinct points of intersection when the roots of this quadratic equa-
tion are real and distinct, which occurs when 1− 2b > 0, or when b < 1

2 .

(b) When b = −4, the region is shown below:

y 2 x 4

y2 4 x

0, 0

1, 2

4, 4

1 2 3 4
x

4

3

2

1

1

2

3

4

5

6

y

To find the area of this region, we partition along the y-axis. Solving these two

equations for x gives x = y2

4 and x = y+4
2 = 1

2y + 2, so the area of the region is

∫ 4

−2

(

1

2
y + 2− y2

4

)

dy =

[

1

4
y2 + 2y − 1

12
y3
]4

−2

= 9 .
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(c) When b = 0, the region is shown below:

y 2 x

y2 4 x

0, 0

1, 2

0.25 0.5 0.75 1.
x

0.5

1.

1.5

2.

y

Revolving this region about the x-axis, we use the washer method; the outer radius
is
√
4x and the inner radius is 2x, so that the volume is

V = π

∫ 1

0

(

(√
4x
)2

− (2x)2
)

dx = π

∫ 1

0

(

4x− 4x2
)

dx = π

[

2x2 − 4

3
x3

]1

0

=
2

3
π .

59. The region is shown below, with the line of revolution shown as a dashed line:

y 0

y 1

y cos x

0, 0

π

2
, 0

0, 1

π

4

π

2

x

0.25

0.5

0.75

1.

y

Revolving about the line y = 1, we use the washer method. The outer radius is 1− 0 = 1,
and the inner radius is 1− cosx, so the volume is

V = π

∫ π/2

0

(

12 − (1 − cosx)2
)

dx = π

∫ π/2

0

(

2 cosx− cos2 x
)

dx

= π

∫ π/2

0

(

2 cosx−
(

1 + cos 2x

2

))

dx

= π

∫ π/2

0

(

2 cosx− 1

2
− 1

2
cos 2x

)

dx

= π

[

2 sinx− 1

2
x− 1

4
sin 2x

]π/2

0

= π
(

2− π

4

)

= 2π − π2

4
.
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60. A plot of this region is identical to the plot for Problem 59, except that the line of rotation
is y = −1 instead of y = 1. Again we use the washer method; this time the outer radius is
cosx− (−1) = 1 + cosx and the inner radius is 0− (−1) = 1. Therefore the volume is

V = π

∫ π/2

0

(

(1 + cosx)2 − 12
)

dx = π

∫ π/2

0

(

2 cosx+ cos2 x
)

dx

= π

∫ π/2

0

(

2 cosx+
1 + cos 2x

2

)

dx = π

∫ π/2

0

(

2 cosx+
1

2
+

1

2
cos 2x

)

dx

= π

[

2 sinx+
1

2
x+

1

4
sin 2x

]π/2

0

= π
(

2 +
π

4

)

= 2π +
π2

4
.

Challenge Problems

61. P (x) together with the line y = e−b2 is below:

y k x2

y b2

0, 0

b, b2

0, b

b
x

y

(a) No matter what k is, P (0) = 0, so that (0, 0) is always on the graph. Evaluating at

b, we also have P (b) = kb2 = e−b2 , so that k = 1
b2 e

−b2 . Therefore P (x) = 1
b2 e

−b2x2.

(b) The line y = e−b2 intersects the curve at x = b. Also, for 0 ≤ x ≤ b, we have x2

b2 ≤ 1

and so P (x) = x2

b2 e
−b2 ≤ e−b2 , so that the region is bounded above by y = e−b2 and

below by P (x). The left edge of the region is at x = 0 and the right edge is at x = b.
Using the shell method, we get for the volume

V = 2π

∫ b

0

x

(

e−b2 − 1

b2
e−b2x2

)

dx = 2πe−b2
∫ b

0

(

x− 1

b2
x3

)

dx

= 2πe−b2
[

1

2
x2 − 1

4b2
x4

]b

0

=
1

2
π
b2

eb2
.

(c) Regarding the volume V as a function of b, it reaches its maximum either at a critical
point or at b = 0, which is the left end of its interval. However, we need not consider
b = 0 since we are assuming b > 0. Now,

V ′(b) = πbe−b2 +
1

2
πb2e−b2 · (−2b) = πe−b2(b− b3),

so the only critical points are when b − b3 = 0, so for b = 0 or b = ±1. Since we are
assuming b > 0, the only relevant critical point is b = 1. Then

V (1) =
1

2
π · 12e−12 =

1

2
πe−1/2 ≈ 0.578.

Since limb→∞ V (b) = 0 as the exponential term dominates, it follows that b = 1 is
in fact a global maximum.



6.2 Volume of a Solid of Revolution: Disks and Washers 6-61

62. Since coshx ≥ 1 for all values of x, it follows that

a cosh
(x

a

)

+ b− a ≥ a+ b− a = b,

so assuming b > 0, we see that y ≥ 0 for any x. Then using the disk method, the radius of
each disk is a cosh

(

x
a

)

+ b− a, so the volume is

V = π

∫ 1

0

(

a cosh
(x

a

)

+ b− a
)2

dx

= π

∫ 1

0

(

a2 cosh2
(x

a

)

+ 2(b− a)a cosh
(x

a

)

+ (b − a)2
)

dx

= π

∫ 1

0

(

a2

(

1 + cosh 2
(

x
a

)

2

)

+ 2(b− a)a cosh
(x

a

)

+ (b − a)2

)

dx

= π

∫ 1

0

(

a2

2
cosh 2

(x

a

)

+
a2

2
+ 2(b− a)a cosh

(x

a

)

+ (b− a)2
)

dx

= π

[

a3

4
sinh 2

(x

a

)

+
a2

2
x+ 2(b− a)a2 sinh

(x

a

)

+ (b− a)2x

]1

0

= π

(

a3

4
sinh

2

a
+

a2

2
+ 2(b− a)a2 sinh

1

a
+ (b− a)2

)

.

AP
R©

Practice Problems

1. V = π

∫ 3

0

(ex)
2
dx

= π

∫ 3

0

(

e2x
)

dx

=
π

2

[

e2x
]3

0

=
π

2

(

e6 − 1
)

CHOICE B

2. V = π

∫ 3π/4

π/4

(cscx− 0)
2
dx

= π

∫ 3π/4

π/4

(

csc2 x
)

dx

= −π[cotx]
3π/4
π/4

= −π

(

cot
3π

4
− cot

π

4

)

= −π(−1− 1)

= 2π

CHOICE D
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3. V = π

∫ 8

0

(2− 0)
2
dy− π

∫ 8

0

(x− 0)
2
dy

= π

∫ 8

0

4dy−π

∫ 8

0

x2 dy

= π

∫ 8

0

4dy−
∫ 8

0

y2/3 dy

= 4π[y]
8
0 −

3π

5

[

y5/3
]8

0

= 4π(8− 0)− 3π

5

(

85/3 − 0
)

= 32π − 96π

5

=
64π

5

CHOICE B

4. Using the washer method, the outer radius is
π

6
− 0 =

π

6
and the inner radius (of the hole)

is x− 0 = x.

Since y = sinx, therefore

if 0 ≤ x ≤ π

6

then sin 0 ≤ sinx ≤ sin
π

6

or 0 ≤ y ≤ 1

2

so the limits of integration are 0 and
1

2
.

Also, x = arcsin y, so

V = π

∫ 1/2

0

[

(π

6

)2

− x2

]

dy

= π

∫ 1/2

0

[

(π

6

)2

− (arcsin y)
2

]

dy

CHOICE B
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5. V = π

∫ 1

−1

(x− 0)
2
dy

= 2 ·
[

π

∫ 1

0

(x− 0)
2
dy

]

, since the function is symmetrical about the x-axis

= 2π

∫ 1

0

(

√

4− 4y2
)2

dy

= 2π

∫ 1

0

(

4− 4y2
)

dy

= 2π

[

4y − 4y3

3

]1

0

= 2π

(

4− 4

3
− 0

)

=
16

3
π

CHOICE D

6. V = π

∫ 2

0

(ex − 0)2 dx− π

∫ 2

0

(1 − 0)2 dx

= π

∫ 2

0

e2xdx− π

∫ 2

0

dx

=
π

2

[

e2x
]2

0
− πx|20

=
π

2

(

e4 − e0
)

− 2π

=
π

2

(

e4 − 5
)

CHOICE A

7. y =
√
x

x = y2

V = π

∫ 2

0

(4− 0)
2
dy − π

∫ 2

0

(4− x)
2
dy

= π

∫ 2

0

(4− 0)
2
dy − π

∫ 2

0

(

4− y2
)2

dy

= π

∫ 2

0

16dy − π

∫ 2

0

(

y4 − 8y2 + 16
)

dy

= π

∫ 2

0

(

−y4 + 8y2
)

dy

= π

[−y5

5
+

−8y3

3

]2

0

= π

[−32

5
+

64

3
− 0

]

=
224

15
π

CHOICE B
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8. V = π

∫ 2

0

(5− y)
2
dx− π

∫ 2

0

(5− 4)
2
dx

= π

∫ 2

0

(

5− x2
)2

dx− π

∫ 2

0

dx

= π

∫ 2

0

[

(

5− x2
)2 − 1

]

dx

CHOICE C

9. Determine the point of intersection of y = x + 2 and y = 2x, for the upper limit on the
integral.

x+ 2 = 2x

x = 2

V = π

∫ 2

0

[(x+ 2)− (−1)]
2
dx−π

∫ 2

0

[2x− (−1)]
2
dx

= π

∫ 2

0

(x+ 3)
2
dx− π

∫ 2

0

(2x+ 1)
2
dx

= π

∫ 2

0

(

x2 + 6x+ 9
)

dx− π

∫ 2

0

(

4x2 + 4x+ 1
)

dx

= π

∫ 2

0

(

−3x2 + 2x+ 8
)

dx

= π
[

−x3 + x2 + 8x
]2

0

= π(−8 + 4 + 16− 0)

= 12π

CHOICE B

10. (a) To determine the point(s) of intersection of f(x) and g(x), let f(x) = g(x):

−x2 + 4x = 3x2 − 12x+ 12

4x2 − 16x+ 12 = 0

x2 − 4x+ 3 = 0

(x− 3)(x− 1) = 0

x = 3 or x = 1

The points of intersection are (3, f(3)) = (3, 3) and (1, f(1)) = (1, 3) .

(b) A =

∫ 3

1

[(

−x2 + 4x
)

−
(

3x2 − 12x+ 12
)]

dx

=

∫ 3

1

(

−4x2 + 16x− 12
)

dx

=

[−4x3

3
+ 8x2 − 12x

]3

1

= [−4(9) + 72− 36]−
(−4

3
+ 8− 12

)

=
16

3
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(c) V = π

∫ 3

1

[

(

−x2 + 4x
)2 −

(

3x2 − 12x+ 12
)2
]

dx

(d) V = π

∫ 3

1

[

(f(x)− (−2))
2 − (g(x)− (−2))

2
]

dx

= π

∫ 3

1

[

(

−x2 + 4x+ 2
)2 −

(

3x2 − 12x+ 14
)2
]

dx

6.3 Volume of a Solid of Revolution: Cylindrical Shells

Concepts and Vocabulary

1. False. When using the method of shells, the integration occurs along the axis perpendicular
to the axis of revolution.

2. False. It is given by πR2h− πr2h = π(R2 − r2)h.

3. False. Sections 6.2 and 6.3 present methods for determining such volumes under rotation
about either the x or y-axis.

4. True. See the discussion in the text. The x represents the radius of each cylinder, f(x)
represents the height, and dx represents the thickness.

Skill Building

5. The region is shown below:

x
0

x
1

y x2 1

0, 0

0, 1

1, 0

1, 2

0.5 1.
x

0.5

1.

1.5

2.

y

When revolving about the y-axis, using the shell method, each cylinder has a radius of x
and a height of x2 + 1, so the volume is

V = 2π

∫ 1

0

x(x2 + 1) dx = 2π

∫ 1

0

(

x3 + x
)

dx = 2π

[

1

4
x4 +

1

2
x2

]1

0

=
3

2
π .

6. The region is shown below:

y x2

y x3

0, 0

1, 1

0.5 1.
x

0.5

1.

y
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When revolving about the y-axis using the shell method, each cylinder has a radius of x
and a height of x2 − x3, so the volume is

V = 2π

∫ 1

0

x(x2 − x3) dx = 2π

∫ 1

0

(

x3 − x4
)

dx = 2π

[

1

4
x4 − 1

5
x5

]1

0

=
1

10
π .

7. The region is shown below:

y x2

y x

0, 0

1, 1

0.5 1.
x

0.5

1.

y

When revolving about the y-axis using the shell method, each cylinder has a radius of x
and a height of

√
x − x2, so the volume is

V = 2π

∫ 1

0

x
(√

x − x2
)

dx = 2π

∫ 1

0

(

x3/2 − x3
)

dx = 2π

[

2

5
x5/2 − 1

4
x4

]1

0

=
3

10
π .

8. The region is shown below:

x
4

x
1

y
1

x

1, 1

1, 0 4, 0

4,
1

4

0.5 1. 1.5 2. 2.5 3. 3.5 4.
x

0.5

1.

y

When revolving about the y-axis using the shell method, each cylinder has a radius of x
and a height of 1

x , so the volume is

V = 2π

∫ 4

1

x · 1
x
dx = 2π

∫ 4

1

1 dx = 6π .

9. The region is shown below:

y 8

y x3

0, 0

0, 8 2, 8

0.5 1. 1.5 2.
x

1

2

3

4

5

6
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When revolving about the x-axis using the shell method, we first solve y = x3 for x, giving
x = y1/3. Then each cylinder has a radius of y and a height of y1/3, so the volume is

V = 2π

∫ 8

0

y · y1/3 dy = 2π

∫ 8

0

y4/3 dy = 2π

[

3

7
y7/3

]8

0

=
768

7
π .

10. The region is shown below:

y 2

y x

0, 0

0, 2
4, 2

1 2 3 4
x

1

2

y

When revolving about the x-axis using the shell method, we first solve y =
√
x for x, giving

x = y2. Then each cylinder has a radius of y and a height of y2, so the volume is

V = 2π

∫ 2

0

y · y2 dy = 2π

∫ 2

0

y3 dy = 2π

[

1

4
y4
]2

0

= 8π .

11. The region is shown below:

x y

y 1

0, 0

0, 1 1, 1

0.5 1.
x

0.5

1.

y

When revolving about the x-axis using the shell method, each cylinder has a radius of y
and a height of

√
y, so the volume is

V = 2π

∫ 1

0

y · √y dy = 2π

∫ 1

0

y3/2 dy = 2π

[

2

5
y5/2

]1

0

=
4

5
π .
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12. The region is shown below:

x 4 y

y 4

0, 0

0, 4 8, 4

1 2 3 4 5 6 7 8
x

1

2

3

4

y

When revolving about the x-axis using the shell method, each cylinder has a radius of y
and a height of 4

√
y, so the volume is

V = 2π

∫ 4

0

y · 4√y dy = 8π

∫ 4

0

y3/2 dy = 8π

[

2

5
y5/2

]4

0

=
512

5
π .

13. The region is shown below:

y x2

y x

0, 0

1, 1

0.5 1.
x

0.5

1.

y

When revolving about the x-axis using the shell method, we first solve the two equations
for x, giving x = y and x =

√
y. Then each shell has a radius of y and a height of

√
y− y,

so that the volume is

V = 2π

∫ 1

0

y (
√
y − y) dy = 2π

∫ 1

0

(

y3/2 − y2
)

dy = 2π

[

2

5
y5/2 − 1

3
y3
]1

0

=
2

15
π .

14. The region is shown below:

y x3

y x

0, 0

1, 1

0.5 1.
x

0.5

1.

y
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When revolving about the x-axis using the shell method, we first solve the two equations
for x, giving x = y and x = y1/3. Then each shell has a radius of y and a height of y1/3−y,
so that the volume is

V = 2π

∫ 1

0

y
(

y1/3 − y
)

dy = 2π

∫ 1

0

(

y4/3 − y2
)

dy = 2π

[

3

7
y7/3 − 1

3
y3
]1

0

=
4

21
π .

15. The region is shown below:

x
0

y x2

0, 0

0, 1

2, 0

2,
1

4

0.5 1. 1.5 2.
x

0.5

1.

y

When revolving about the y-axis using the shell method, each shell has a radius of x and

a height of e−x2

, so that the volume is

V = 2π

∫ 2

0

xe−x2

dx.

Now use the substitution u = −x2, so that du = −2x dx. Then x = 0 corresponds to
u = 0, and x = 2 to u = −4, so we get

V = −1

2
· 2π

∫ −4

0

eu du = −π [eu]
−4
0 = π

(

1− 1

e4

)

.

16. The region is shown below:

y x3 x

x
1

0, 0 1, 0

1, 2

0.5 1.
x

0.5

1.

1.5

2.

y

When revolving about the y-axis using the shell method, each shell has a radius of x and
a height of x3 + x, so that the volume is

V = 2π

∫ 1

0

x
(

x3 + x
)

dx = 2π

∫ 1

0

(

x4 + x2
)

dx = 2π

[

1

5
x5 +

1

3
x3

]1

0

=
16

15
π .
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17. The region is shown below:

x
4

y x2

y 4 x x2

0, 0

2, 4

1 2 3 4
x

1

2

3

4

y

When revolving about x = 4 using the shell method, each shell has a radius of 4− x (the
distance from x to 4) and a height of 4x− x2 − x2 = 4x− 2x2. Therefore the volume is

V = 2π

∫ 2

0

(4−x)(4x−2x2) dx = 2π

∫ 2

0

(2x3−12x2+16x) dx = 2π

[

1

2
x4 − 4x3 + 8x2

]2

0

= 16π .

18. The region is shown below:

x
3

y x2

y 4 x x2

0, 0

2, 4

1 2 3
x

1

2

3

4

y

When revolving about x = 3 using the shell method, each shell has a radius of 3− x (the
distance from x to 3) and a height of 4x− x2 − x2 = 4x− 2x2. Therefore the volume is

V = 2π

∫ 2

0

(3−x)(4x−2x2) dx = 2π

∫ 2

0

(2x3−10x2+12x) dx = 2π

[

1

2
x4 − 10

3
x3 + 6x2

]2

0

=
32

3
π .

19. The region is shown below:

x
1

y x2

x
2

1, 0

1, 1
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When revolving about x = 1 using the shell method, each shell has a radius of x− 1 (the
distance from x to 1) and a height of x2. Therefore the volume is

V = 2π

∫ 2

1

(x− 1)x2 dx = 2π

∫ 2

1

(x3 − x2) dx = 2π

[

1

4
x4 − 1

3
x3

]2

1

=
17

6
π .

20. The region is shown below:

x
2

y x2

x
2

x
1

1, 0

1, 1

2, 0

2, 4

2 1 1 2
x

1

2

3

4

y

When revolving about x = −2 using the shell method, each shell has a radius of x−(−2) =
x+ 3 (the distance from x to −2) and a height of x2. Therefore the volume is

V = 2π

∫ 2

1

(x+ 3)x2 dx = 2π

∫ 2

1

(x3 + 3x2) dx = 2π

[

1

4
x4 + x3

]2

1

=
43

2
π .

21. The region is shown below:

x y y2

y 1

0, 0

0, 1

0.25

1.

0.5

0.5

1.

When revolving about y = −1 using the shell method, each shell has a radius of y−(−1) =
y + 1 (the distance from y to −1) and a height of y − y2. Therefore the volume is

V = 2π

∫ 1

0

(y + 1)(y − y2) dy = 2π

∫ 1

0

(−y3 + y) dy = 2π

[

−1

4
y4 +

1

2
y2
]1

0

=
π

2
.
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22. The region is shown below:

x y y2

y 1

0, 0

0, 1

0.25

0.5

1.

When revolving about y = 1 using the shell method, each shell has a radius of 1− y (the
distance from y to 1) and a height of y − y2. Therefore the volume is

V = 2π

∫ 1

0

(1 − y)(y − y2) dy = 2π

∫ 1

0

(y3 − 2y2 + y) dy = 2π

[

1

4
y4 − 2

3
y3 +

1

2
y2
]1

0

=
π

6
.

23. (a) To rotate about the x-axis, use the disk method; the radius of each disk is 2x2 − x3.
Therefore the volume is

V = π

∫ 2

0

(2x2−x3)2 dx = π

∫ 2

0

(4x4−4x5+x6) dx = π

[

4

5
x5 − 2

3
x6 +

1

7
x7

]2

0

=
128

105
π .

(b) To rotate about the y-axis, use the shell method; the radius of each shell is x and its
height is 2x2 − x3, so the volume is

V = 2π

∫ 2

0

x(2x2 − x3) dx = 2π

∫ 2

0

(2x3 − x4) dx = 2π

[

1

2
x4 − 1

5
x5

]2

0

=
16

5
π .

(c) In each case, we chose to integrate by partitioning along the x-axis, since partitioning
along the y-axis would entail solving y = 2x2 − x3 for x and then using one solution
as the lower bound and the other as the upper bound.

24. (a) To rotate about the x-axis, use the washer method; the outer radius of each disk is
−x2 + 9 and the inner radius is 2x+ 1. Therefore the volume is

V = π

∫ 2

0

(

(−x2 + 9)2 − (2x+ 1)2
)

dx

= π

∫ 2

0

(

x4 − 22x2 − 4x+ 80
)

dx

= π

[

1

5
x5 − 22

3
x3 − 2x2 + 80x

]2

0

=
1496

15
π .
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(b) To rotate about the y-axis, use the shell method. The radius of each shell is x, and
its height is −x2 + 9− (2x+ 1) = −x2 − 2x+ 8. Therefore the volume is

V = 2π

∫ 2

0

x(−x2−2x+8) dx = 2π

∫ 2

0

(−x3−2x2+8x) dx = 2π

[

−1

4
x4 − 2

3
x3 + 4x2

]2

0

=
40

3
π .

(c) In each case, we chose to integrate by partitioning along the x-axis, since partitioning
along the y-axis would entail splitting the integral into two separate integrals, one
from y = 0 to y = 5 and the other from y = 5 to y = 9.

25. (a) To rotate about the x-axis, use the disk method; the radius of each disk is x2 + 1, so
the volume is

V = π

∫ 2

0

(

x2 + 1
)2

dx = π

∫ 2

0

(

x4 + 2x2 + 1
)

dx = π

[

1

5
x5 +

2

3
x3 + x

]2

0

=
206

15
π .

(b) To rotate about the y-axis, use the shell method; the radius of each shell is x and its
height is x2 + 1, so the volume is

V = 2π

∫ 2

0

x(x2 + 1) dx = 2π

∫ 2

0

(x3 + x) dx = 2π

[

1

4
x4 +

1

2
x2

]2

0

= 12π .

(c) In each case, we chose to integrate by partitioning along the x-axis, since partitioning
along the y-axis would entail splitting the integral into two separate integrals, one
from y = 0 to y = 1 and the other from y = 1 to y = 5.

26. (a) To rotate about the x-axis, use the disk method; the radius of each disk is 4x − x2,
so the volume is

V = π

∫ 4

0

(4x−x2)2 dx = π

∫ 4

0

(

16x2 − 8x3 + x4
)

dx = π

[

16

3
x3 − 2x4 +

1

5
x5

]4

0

=
512

15
π .

(b) To rotate about the y-axis, use the shell method; the radius of each shell is x and its
height is 4x− x2, so the volume is

V = 2π

∫ 4

0

x(4x− x2) dx = 2π

∫ 4

0

(4x2 − x3) dx = 2π

[

4

3
x3 − 1

4
x4

]4

0

=
128

3
π .

(c) In each case, we chose to integrate by partitioning along the x-axis, since partitioning
along the y-axis would entail solving y = 4x − x2 for x and then using one solution
as the lower bound and the other as the upper bound.

27. The region is shown below:

y x
3

y 2

0, 0

0, 2
8, 2
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2

y
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This could be done using shells along the y-axis or washers along the x-axis. Since y = x1/3

becomes x = y3, which is somewhat simpler, we choose the shell method. Then the radius
of each shell is y and its height is y3, so the volume is

V = 2π

∫ 2

0

y · y3 dy = 2π

∫ 2

0

y4 dy = 2π

[

1

5
y5
]2

0

=
64

5
π .

28. The region is shown below:

x
4

x
1

y x x

1, 2

1, 0 4, 0

4, 6

1 2 3 4
x

1

2

3

4

5

6

y

If we chose disks/washers along the y-axis, we would have to solve the equation for x, and
we would have to split the integral up into two separate integrals. So use shells along the
x-axis. The radius of each shell is x, and the height is

√
x+ x, so the volume is

V = 2π

∫ 4

1

x(
√
x+ x) dx = 2π

∫ 4

1

(

x3/2 + x2
)

dx = 2π

[

2

5
x5/2 +

1

3
x3

]4

1

=
334

5
π .

29. The region is shown below:

y x3

y x

0, 0

1, 1

0.5 1.
x

0.5

1.

y

Either disks/washers along the y-axis or shells along the x-axis could be used. Since we
are given y in terms of x, we choose shells. The radius of each shell is x, and the height is
x− x3, so the volume is

V = 2π

∫ 1

0

x(x − x3) dx = 2π

∫ 1

0

(x2 − x4) dx = 2π

[

1

3
x3 − 1

5
x5

]1

0

=
4

15
π .
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30. The region is shown below:

y x2

y x3

0, 0

1, 1

0.5 1.
x

0.5

1.

y

Either disks/washers along the x-axis or shells along the y-axis could be used. Since we
are given y in terms of x, we choose disks/washers. The outer radius of each washer is x2

and the inner radius is x3, so the volume is

V = π

∫ 1

0

(

(

x2
)2 −

(

x3
)2
)

dx = π

∫ 1

0

(

x4 − x6
)

dx = π

[

1

5
x5 − 1

7
x7

]1

0

=
2

35
π .

31. The region is shown below:

x
1

y 3 x2

y 30 x

1, 3

1, 29

3, 27

0 1 2 3
x

2

4

6

8
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12

14
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22

24

26

28

30

y

If we use disks along the y-axis, we will need two separate integrals, since the outer radius
changes equations at y = 27. So use shells along the x-axis. The radius of each shell is x,
and the height is 30− x− 3x2, so the volume is

V = 2π

∫ 3

1

x
(

30− x− 3x2
)

dx = 2π

∫ 3

1

(

30x− x2 − 3x3
)

dx = 2π

[

15x2 − 1

3
x3 − 3

4
x4

]3

1

=
308

3
π .
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32. This is the same region as in Problem 31, but revolved about the x-axis. A similar argument
applies: if we use shells along the y-axis, we would require two separate integrals, so we
use the washer method along the x-axis. The outer radius of each washer is 30 − x and
the inner radius is 3x2, so the volume is

V = π

∫ 3

1

(

(30− x)
2 −

(

3x2
)2
)

dx

= π

∫ 3

1

(

−9x4 + x2 − 60x+ 900
)

dx

= π

[

−9

5
x5 +

1

3
x3 − 30x2 + 900x

]3

1

=
16996

15
π .

33. The region is shown below:

x
1

y 8 x2

y x2

1, 1

1, 7
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x

1

2

3

4

5

6

7

y

If we use shells along the y-axis, we will need two separate integrals, since the outer radius
changes equations at y = 4. So use washers along the x-axis. The outer radius is 8 − x2

and the inner radius is x2, so the volume is

V = π

∫ 2

1

(

(

8− x2
)2 −

(

x2
)2
)

dx = π

∫ 2

1

(

64− 16x2
)

dx = π

[

64x− 16

3
x3

]2

1

=
80

3
π .

34. This is the same region as in Problem 33, but revolved about the y-axis. A similar argument
applies: if we use disks along the y-axis, we will need two separate integrals, since the outer
radius changes equations at y = 4. So use shells along the x-axis. The radius of each shell
is x, and the height is 8− x2 − x2 = 8− 2x2, so the volume is

V = 2π

∫ 2

1

x
(

8− 2x2
)

dx = 2π

∫ 2

1

(

8x− 2x3
)

dx = 2π

[

4x2 − 1

2
x4

]2

1

= 9π .

35. The region is shown below:
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y
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This can be done either using washers along the y-axis or shells along the x-axis. Since we
are given y in terms of x, we choose shells. The radius of each shell is x and the height is
x− x2, so the volume is

V = 2π

∫ 1

0

x
(

x− x2
)

dx = 2π

∫ 1

0

(

x2 − x3
)

dx = 2π

[

1

3
x3 − 1

4
x4

]1

0

=
π

6
.

36. The region is shown below:

x
1

x
8

y x2 3 x
3

1, 0

1, 2

8, 0

8, 6

1 2 3 4 5 6 7 8
x

1

2

3

4

5

6

y

If we use washers along the y-axis, we will have to solve this equation for x in terms of y,
and also split it into two integrals. So using shells along the x-axis is much easier. The
radius of each shell is x, and the height is x2/3 + x1/3, so the volume is

V = 2π

∫ 8

1

x
(

x2/3 + x1/3
)

dx = 2π

∫ 8

1

(

x5/3 + x4/3
)

dx = 2π

[

3

8
x8/3 +

3

7
x7/3

]8

1

=
8403

28
π .

37. The region is shown below:

x
1

y x

y 18 x2

1, 1

1, 17
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1 2 3 4
x

2
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6
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y

Revolving about the y-axis, if we use washers along the y-axis we will require two separate
integrals. So use shells along the x-axis. The radius of each shell is x, and the height is
18− x2 −√

x, so the volume is

V = 2π

∫ 4

1

x(18 − x2 −
√
x) dx = 2π

∫ 4

1

(

18x− x3 − x3/2
)

dx = 2π

[

9x2 − 1

4
x4 − 2

5
x5/2

]4

1

=
1177

10
π .
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38. This is the same region as in Problem 37, but revolved about the x-axis. A similar argument
applies: if we use shells along the y-axis, we will need two separate integrals, since the radius
changes equations at y = 2. So use washers along the x-axis. The outer radius is 18− x2,
and the inner radius is

√
x. Therefore the volume is

V = π

∫ 4

1

(

(

18− x2
)2 −

(√
x
)2
)

dx

= π

∫ 4

1

(

x4 − 36x2 − x+ 324
)

dx

= π

[

1

5
x5 − 12x3 − 1

2
x2 + 324x

]4

1

=
4131

10
π .

Applications and Extensions

39. Use the shell method along the x-axis. The radius of each shell is x and the height is
1

(x2+1)2 , so the volume is

V = 2π

∫ 1

0

x

(x2 + 1)2
dx.

Now use the substitution u = x2 + 1, so that du = 2x dx. Then x = 0 corresponds to
u = 1, and x = 1 to u = 2, so that we get

V = 2π · 1
2

∫ 2

1

1

u2
du = π

[

− 1

u

]2

1

=
π

2
.

40. The region is shown below:
x

3

x
0

y x 1 x

0, 0

0, 1

3, 0

3, 5

1 2 3
x

1

2

3

4

5

y

The disk/washer method along the y-axis requires solving the equation for x, which looks
difficult. So we use the shell method along the x-axis. The radius of each shell is x, and
the height is

√
x+ 1 + x, so the volume is

V = 2π

∫ 3

0

x
(√

x+ 1 + x
)

dx = 2π

(
∫ 3

0

x
√
x+ 1 dx+

∫ 3

0

x2 dx

)

.
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For the first integral, use the substitution u = x+1, so that x = u− 1 and du = dx. Then
x = 0 corresponds to u = 1 while x = 3 corresponds to u = 4. So we get

V = 2π

(
∫ 4

1

(u− 1)
√
udu+

∫ 3

0

x2 dx

)

= 2π

(
∫ 4

1

(

u3/2 − u1/2
)

du +

∫ 3

0

x2 dx

)

= 2π

(

[

2

5
u5/2 − 2

3
u3/2

]4

1

+

[

1

3
x3

]3

0

)

=
502

15
π .

41. The region is shown below:

y 2 x x2

0, 0 9, 0

1 2
x

0.25

0.5

0.75

1.

y

(a) To revolve about the x-axis, use the disk method. The radius of each disk is 2x− x2,
so the volume is

V = π

∫ 2

0

(

2x− x2
)2

dx = π

∫ 2

0

(

4x2 − 4x3 + x4
)

dx = π

[

4

3
x3 − x4 +

1

5
x5

]2

0

=
16

15
π .

(b) To revolve about the y-axis, use the shell method along the x-axis. The radius of each
shell is x and its height is 2x− x2, so the volume is

V = 2π

∫ 2

0

x
(

2x− x2
)

dx = 2π

∫ 2

0

(

2x2 − x3
)

dx = 2π

[

2

3
x3 − 1

4
x4

]2

0

=
8

3
π .

(c) To revolve about the line x = 3, use the shell method along the x-axis. The radius of
each shell is 3−x (the distance from x to 3), and the height is 2x−x2, so the volume
is

V = 2π

∫ 2

0

(3−x)(2x−x2) dx = 2π

∫ 2

0

(

x3 − 5x2 + 6x
)

dx = 2π

[

1

4
x4 − 5

3
x3 + 3x2

]2

0

=
16

3
π .

(d) To revolve about the line y = 1, use the washer method along the x-axis. The outer
radius of each shell is 1− 0 = 1, and the inner radius is 1− (2x− x2) = x2 − 2x+1 =
(x− 1)2. Therefore the volume is

V = π

∫ 2

0

(

12 −
(

(x − 1)2
)2
)

dx = π

∫ 2

0

(

1− (x− 1)4
)

dx = π

[

x− 1

5
(x− 1)5

]2

0

=
8

5
π .
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42. The region is shown below:

y x 9 x

0, 0 2, 0

1 2 3 4 5 6 7 8 9
x

1

2

3

4

5

6

7

8

9

10

y

(a) To revolve about the x-axis, use the disk method. The radius of each disk is x
√
9− x,

so the volume is

V = π

∫ 9

0

(

x
√
9− x

)2
dx = π

∫ 9

0

(

9x2 − x3
)

dx = π

[

3x3 − 1

4
x4

]9

0

=
2187

4
π .

(b) To revolve about the y-axis, use the shell method along the x-axis. The radius of each
shell is x and its height is x

√
9− x, so the volume is

V = 2π

∫ 9

0

x
(

x
√
9− x

)

dx = 2π

∫ 9

0

x2
√
9− x dx.

Now use the substitution u = 9 − x, so that x = 9 − u and du = −dx. Then x = 0
corresponds to u = 9 and x = 9 corresponds to u = 0, so that we get

V = −2π

∫ 0

9

(9 − u)2
√
udu

= 2π

∫ 9

0

(

u5/2 − 18u3/2 + 81u1/2
)

du

= 2π

[

2

7
u7/2 − 36

5
u5/2 + 54u3/2

]9

0

=
23328

35
π .

(c) To revolve about the line y = −3, use the washer method along the x-axis. The
outer radius of each shell is x

√
9− x − (−3) = x

√
9− x + 3, and the inner radius is

0− (−3) = 3. Therefore the volume is

V = π

∫ 9

0

(

(x
√
9− x + 3)2 − 32

)

dx

= π

∫ 9

0

(

x2(9− x) + 6x
√
9− x

)

dx

= π

(
∫ 9

0

(

9x2 − x3
)

dx+ 6

∫ 9

0

x
√
9− x dx

)

.
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For the second integral, use the substitution u = 9 − x, so that x = 9 − u and
du = −dx. Then x = 0 corresponds to u = 9 and x = 9 corresponds to u = 0, so that
we get

V = π

(
∫ 9

0

(

9x2 − x3
)

dx− 6

∫ 0

9

(9− u)
√
udu

)

= π

(
∫ 9

0

(

9x2 − x3
)

dx+ 6

∫ 9

0

(

9u1/2 − u3/2
)

du

)

= π

(

[

3x3 − 1

4
x4

]9

0

+ 6

[

6u3/2 − 2

5
u5/2

]9

0

)

=
18711

20
π .

(d) To revolve about the line x = −2, use the shell method along the x-axis. The radius of
each shell is x− (−2) = x+2 (the distance from x to −2), and the height is x

√
9− x,

so the volume is

V = 2π

∫ 9

0

(x+ 2)x
√
9− x dx = 2π

∫ 9

0

(

x2 + 2x
)√

9− x dx.

Again we use the substitution u = 9− x, so that x = 9− u, x2 + 2x = u2 − 20u+ 99,
and du = −dx. Then x = 0 corresponds to u = 9 and x = 9 corresponds to u = 0, so
that we get

V = −2π

∫ 0

9

(

u2 − 20u+ 99
)√

u du

= 2π

∫ 9

0

(

u5/2 − 20u3/2 + 99u1/2
)

du

= 2π

[

2

7
u7/2 − 8u5/2 + 66u3/2

]9

0

=
6480

7
π .

43. Using the disk method to compute the volume gives

π

∫ k

0

f(x)2 dx =
1

5
k5 + k4 +

4

3
k3.

Assuming that the antiderivative of f(x)2, evaluated at 0 is zero, we see that 1
5k

5+k4+ 4
3k

3

is π times the antiderivative of f(x)2 evaluated at x = k. Therefore f(x)2 has as an
antiderivative 1

π

(

1
5x

5 + x4 + 4
3x

3
)

, so that f(x)2 = 1
π

(

x4 + 4x3 + 4x2
)

= 1
πx

2(x2 + 4x +

4) = 1
π (x(x + 2))

2
. Since we are given that f(x) ≥ 0, taking square roots gives f(x) =

1√
π
x(x+ 2) =

1√
π

(

x2 + 2x
)

.

44. We first determine the inflection point. With f(x) = e−x2

, we have f ′(x) = −2xe−x2

, so
that

f ′′(x) = −2x
(

−2xe−x2
)

− 2e−x2

= (4x2 − 2)e−x2

.

Then f ′′(x) = 0 when x = ± 1√
2
; since we want the positive value, we get x = 1√

2
. Therefore

the region in question is the following:
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x
1 2

x
0

y x2

0, 0

0, 1

1

2

, 0

1

2

,
1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x

0.25

0.5

0.75

1.

y

To revolve this about the y-axis, it appears easiest to use the shell method along the x-axis.

The radius of each shell is x and its height is e−x2

, so we get for the volume

V = 2π

∫ 1/
√
2

0

xe−x2

dx.

Use the substitution u = −x2, so that du = −2x dx. Then x = 0 corresponds to u = 0
while x = 1√

2
corresponds to u = − 1

2 . So we get for the integral

V = 2π ·
(

−1

2

)
∫ −1/2

0

eu du = −π [eu]
−1/2
0 =

(

1− 1

e1/2

)

π .

45. The region is shown below:

x

y sin3 x

0, 0
π, 0

3 π

4

π

2

π

4
0

π

4

π

2

3 π

4
π

x

0.25

0.5

0.75

1.

y

We should use the shell method, as the washer method will involve solving y = sin3 x for x
and then integrating. With the shell method, the radius of each shell is x− (−π) = x+ π,
and the height is sin3 x. Therefore the volume is (using a CAS)

V = 2π

∫ π

0

(x+ π) sin3 x dx ≈ 12.566π ≈ 39.478 ≈ 4π2.

46. (a) m =
0− h

a− 0
=

−h

a

y − h =
−h

a
(x)

y = −h

a
x+ h
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(b)

(c)

(d) 2π

∫ a

0

x

(−hx

a
+ h

)

dx = 2π

∫ a

0

(−hx2

a
+ hx

)

dx

= 2π

[−hx3

3a
+

hx2

2

]a

0

= 2π

[−ha3

3a
+

ha2

2
− 0

]

= 2π

[−ha3

3a
+

ha2

2

]

= 2π

[−ha2

3
+

ha2

2

]

= 2π

[

ha2

6

]

=
πha2

3
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47. (a) By the Shell Method, the radius of each shell is x, the height is y = cosx, and the
radius of the base of the solid is from x = 0 to x = π

2 , so

V = 2π

∫ π/2

0

x cosx dx

By the Disk Method, the radius of each disk is x = cos−1 y, and the height of the
solid is from y = 0 to y = 1, so

V = π

∫ 1

0

(

cos−1 y
)2

dy

(b) Using technology, V = π (π − 1) ≈ 3.586

48. (a) V = π

∫ 1

0

[

(π

2

)2

−
(

sin−1 y
)2
]

dy by the Washer Method

V = 2π

∫ π/2

0

x sinx dx by the Shell Method

(b) V = 2π ≈ 6.283

49. Consider the region A. Suppose that it is wholly contained between the vertical lines
x = a > 0 and x = b > a. Integrate it using the shell method. At any x ≥ 0, A consists of
one or more line segments. Define g(x) to be the total length of all of those segments at
x. Then using the shell method, the volume of the solid of revolution about the y-axis is

V = 2π

∫ b

a

xg(x) dx.

When revolving A about the line x = −k, the heights at x are the same, g(x), but the
radius in each case is now x+ k. So using the shell method in this case gives

Vx=−k = 2π

∫ b

a

(x+k)g(x) dx = 2π

∫ b

a

xg(x) dx+2π

∫ b

a

kg(x) dx = V+2πk

∫ b

a

g(x) dx = V+2πkA,

as desired.

50. For this parabola, the latus rectum is the line x = 2; we wish to revolve the area to the
left of this line about that line.

(a) Using the disk method, we must solve the equation for x in terms of y, giving x = y2

8 .

Then the radius of each disk is 2− y2

8 , so that the volume of the solid is

V = π

∫ 4

−4

(

2− y2

8

)2

dy = π

∫ 4

−4

(

4− y2

2
+

y4

64

)

dy = π

[

4y − y3

6
+

y5

320

]4

−4

=
256

15
π .

(b) Using the shell method, the radius of each shell is 2− x, and the height of each shell

is then
√
8x−

(

−
√
8x
)

= 2
√
8x = 4x1/2

√
2, so that the volume is

V = 2π

∫ 2

0

(2− x)
(

4x1/2
√
2
)

dx

= 8
√
2 π

∫ 2

0

(

2x1/2 − x3/2
)

dx

= 8
√
2 π

[

4

3
x3/2 − 2

5
x5/2

]2

0

=
256

15
π .
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Challenge Problem

51. (a) From the diagram, f(x) is constant and equal to f(a) for 0 ≤ x ≤ a, and also g(x)
is constant and equal to g(a) for 0 ≤ x ≤ a. So using the shell method, we get two
separate integrals, one on [0, a] and one on [a, b]. For the first, the radius of each shell
is x and the height is f(x)− g(x) = f(a)− g(a), while for the second, the radius is x
and the height is f(x)− g(x). Therefore the volume of the solid is

V = 2π

(

∫ a

0

x[f(a)− g(a)] dx+

∫ b

a

x[f(x) − g(x)] dx

)

= 2π

(

[

1

2
x2[f(a)− g(a)]

]a

0

+

∫ b

a

x[f(x) − g(x)] dx

)

= πa2[f(a)− g(a)] + 2π

∫ b

a

x[f(x) − g(x)] dx.

(b) Using the disk method, we also get two separate integrals, one from y = g(a) to
y = g(b) = f(b) and one from y = f(b) to y = f(a). For the first integral, the radius
of the disk is g−1(y) and for the second it is f−1(y). Therefore the volume is the sum
of these integrals, or

V = π

∫ g(b)

g(a)

[

g−1(y)
]2

dy + π

∫ f(a)

f(b)

[

f−1(y)
]2

dy.

AP
R©

Practice Problems

1. By the Shell Method,

V = 2π

∫

xf(x) dx

= 2π

∫ 3

0

x
(

−x2 + 3x
)

dx

= 2π

∫ 3

0

(

−x3 + 3x2
)

dx

= 2π

[−x4

4
+ x3

]3

0

= 2π

[

−(3)4

4
+ 33 − 0

]

=
27π

2

= 13.5π
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By the Disk Method:

First, solve to get x as a function of y:

y = −x2 + 3x

y = −
[

x2 − 3x+

(

3

2

)2
]

+
9

4

y = −
(

x− 3

2

)2

+
9

4

y − 9

4
= −

(

x− 3

2

)2

x− 3

2
= ±

√

9

4
− y

x =
3

2
±
√

9− 4y

4

x =
3±√

9− 4y

2

Then

V = π

∫ 9/4

0

(

3 +
√
9− 4y

2
− 0

)2

dy − π

∫ 9/4

0

(

3−√
9− 4y

2
− 0

)2

dy

= π

∫ 9/4

0

9 + 6
√
9− 4y + 9− 4y −

(

9− 6
√
9− 4y + 9− 4y

)

4
dy

= π

∫ 9/4

0

12
√
9− 4y

4
dy

= 3π

∫ 9/4

0

(9− 4y)
1/2

dy

=

(−π

2

)

[

(9− 4y)3/2
]9/4

0

=

(−π

2

)

(

0− (9)
3/2
)

=

(−π

2

)

(−27)

=
27π

2

= 13.5π

CHOICE B
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2. By the Shell Method,

V = 2π

∫ 2

0

(x+ 3)
(

x2 + 1
)

dx

= 2π

∫ 2

0

(

x3 + 3x2 + x+ 3
)

dx

= 2π

∫ 2

0

(

x3 + 3x2 + x+ 3
)

dx

= 2π

[

x4

4
+ x3 +

x2

2
+ 3x

]2

0

= 2π(4 + 8 + 2 + 6− 0)

= 40π

By the Disk Method:

First, solve to get x as a function of y:

y = x2 + 1

x2 = y − 1

x = ±
√

y − 1

Then

V = π

∫ 5

1

(x− (−3))2 dy − π

∫ 5

1

(0− (−3))2 dy

= π

∫ 5

1

(x+ 3)
2
dy − 9π

∫ 5

1

dy

= π

∫ 5

1

(

3 +
√

y − 1
)2

dy − 9π

∫ 5

1

dy

= π

∫ 5

1

(

9 + 6
√

y − 1 + y − 1
)

dy − 9π

∫ 5

1

dy

= π

∫ 5

1

(

6
√

y − 1 + y − 1
)

dy

= π

[

4 (y − 1)
3/2

+
y2

2
− y

]5

1

= π

[

4 (4)
3/2

+
25

2
− 5−

(

0 +
1

2
− 1

)]

= 40π

CHOICE D
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3. Determine the point of intersection of y = 4− x
2 and y =

√
x.

4− x

2
=

√
x

8− x = 2
√
x

(8− x)
2
=
(

2
√
x
)2

64− 16x+ x2 = 4x

x2 − 20x+ 64 = 0

(x− 4) (x− 16) = 0

x = 4

(Testing x = 16 in the original equation shows that it is an extraneous solution.)

y =
√
x intersects the x-axis at x = 0.

y = 4− x
2 intersects the x-axis at x = 8.

V = π

∫ 4

0

(√
x
)2

dx+ π

∫ 8

4

(

4− x

2

)2

dx

= π

∫ 4

0

x dx + π

∫ 8

4

(

16− 4x+
x2

4

)

dx

=

[

πx2

2

]4

0

+ π

[

16x− 2x2 +
x3

12

]8

4

= 8π + π

[

128− 128 +
512

12
−
(

64− 32 +
64

12

)]

= 8π + π

[

448

12
− 32

]

=
40π

3

CHOICE B



6.4 Volume of a Solid: Slicing 6-89

4. By the Shell Method,

V = 2π

∫ 2

0

xex
2

dx

= πex
2
∣

∣

∣

2

0

= π
(

e4 − e0
)

= π
(

e4 − 1
)

(By the Washer/Disk Method: Here, the volume would have to be divided into two pieces,
the “top” done by the Washer Method and integrating from 1 to e4 and the “bottom”
done by the Disk Method and integrating from 0 to 1. This would be considerably more
complicated than the simple result of the Shell Method, so the Shell Method is the best
one to use.)

CHOICE A

5. (a) V = π

∫ 2

0

(

−2x3 + 4x2
)2

dx

(b) V = 2π

∫ 2

0

x
(

−2x3 + 4x2
)

dx

6.4 Volume of a Solid: Slicing

Concepts and Vocabulary

1. Answers vary. When computing the volume of a solid whose cross sections have a regular
geometric shape whose area we can compute, we can integrate over the area of each slice
of the solid along one of its axes.

2. False. For instance, Example 3 uses the method of slicing to compute the volume of
a square pyramid, which is not a solid of revolution. The slicing method can be used
effectively whenever the cross sections have a regular geometric shape whose area we can
compute.

Skill Building

3. The equation of the circle is x2 + y2 = 4, so that for a given value of x, y can range from
−
√
4− x2 to

√
4− x2. Therefore, for each value of x from −2 to 2, the cross section is a

square of side 2
√
4− x2, so that its area is 4(4− x2). Therefore the volume of the solid is

V =

∫ 2

−2

4
(

4− x2
)

dx = 4

∫ 2

−2

(

4− x2
)

dx = 4

[

4x− 1

3
x3

]2

−2

=
128

3
.

4. The equation of the circle is x2 + y2 = 4, so that for a given value of x, y can range from
−
√
4− x2 to

√
4− x2. Therefore, for each value of x from −2 to 2, the cross section is an

isosceles right triangle one of whose legs is 2
√
4− x2, so that its area is 1

2

(

2
√
4− x2

)2
=

2(4− x2). Therefore the volume of the solid is

V =

∫ 2

−2

2
(

4− x2
)

dx = 2

∫ 2

−2

(

4− x2
)

dx = 2

[

4x− 1

3
x3

]2

−2

=
64

3
.
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5. (a) From the figure, these two curves intersect at (0, 0) and at (4, 2), so we will integrate
from 0 to 4. For each value of x, the cross section is a semicircle of diameter

√
x− 1

8x
2,

so its area is

A =
1

2
πr2 =

1

2
π

(
√
x− 1

8x
2

2

)2

=
π

512

(

8
√
x− x2

)2

=
π

512

(

64x− 16x5/2 + x4
)

Therefore the volume is

V =

∫ 4

0

π

512

(

64x− 16x5/2 + x4
)

dx =
π

512

[

32x2 − 32

7
x7/2 +

1

5
x5

]4

0

=
9

35
π

(b) For each value of x, the cross section is an equilateral triangle with base B =
√
x − 1

8x
2

and height H =
√
3
2 B =

√
3
2

(√
x− 1

8x
2
)

, so its area is

A =
1

2
BH =

1

2

(√
x− 1

8
x2

)

·
√
3

2

(√
x− 1

8
x2

)

=

√
3

4

(√
x− 1

8
x2

)2

=

√
3

4

(

x− 1

4
x5/2 +

1

64
x4

)

.

Therefore the volume is

V =

∫ 4

0

√
3

4

(

x− 1

4
x5/2 +

1

64
x4

)

dx =

√
3

4

[

1

2
x2 − 1

4
· 2
7
x7/2 +

1

64
· 1
5
x5

]4

0

=

√
3

4

[(

1

2
· 42 − 1

14
· 47/2 + 1

320
· 45
)

− 0

]

=

√
3

4
· 72
35

=
18

√
3

35

6. (a) Determine the point(s) of intersection of y =
√
x and y = 1

8x
2:

√
x =

x2

8

x =
x4

64

64x = x4

x4 − 64x = 0

x
(

x3 − 64
)

= 0

x (x− 4)
(

x2 + x+ 16
)

= 0

x = 0, so y =
√
0 = 0

or x = 4, so y =
√
4 = 2
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Then

V =

∫ 2

0

1

2
· π
(√

8y − y2

2

)2

dy

=
π

2

∫ 2

0

(

8y − 2y2
√
8y + y4

4

)

dy

=
π

8

∫ 2

0

(

8y − 4
√
2y5/2 + y4

)

dy

=
π

8

[

4y2 − 8
√
2

7
(y)

7/2
+

y5

5

]2

0

=
π

8

[

16− 8
√
2

7
(2)7/2 +

32

5
− 0

]

=
π

8

[

16− 128

7
+

32

5

]

=
π

8

[

560− 640 + 224

35

]

=
144π

8(35)

=
18π

35
≈ 1.615

(b) V =

∫ 2

0

1

2
·
√
3

2

(

√

8y − y2
)2

dy

=

√
3

4

∫ 2

0

(

8y − 2y2
√

8y + y4
)

dy

=

√
3

4

∫ 2

0

(

8y − 4
√
2y5/2 + y4

)

dy

=

√
3

4

[

4y2 − 8
√
2

7
(y)7/2 +

y5

5

]2

0

=

√
3

4

[

16− 8
√
2

7
(2)

7/2
+

32

5
− 0

]

=

√
3

4

[

16− 128

7
+

32

5

]

=

√
3

4

[

560− 640 + 224

35

]

=
36

√
3

35
≈ 1.781
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7. (a) For each value of x, the cross section is a square with side s = y−0 = x2, so its area is

A = s2 =
(

x2
)2

= x4.

Therefore the volume is

V =

∫ 4

0

x4 dx =
x5

5

]2

0

=
25

5
− 0 =

32

5

(b) For each value of x, the cross section is a semicircle with diameter D = x2 and

therefore radius r = D
2 = x2

2 , so its area is

A =
1

2
πr2 =

1

2
π ·
(

x2

2

)2

=
π

8
x4.

Therefore the volume is

V =
π

8

∫ 2

0

x4 dx =
π

8
· 32
5

=
4

5
π

using the integral from Part (a).

(c) For each value of x, the cross section is a triangle of baseB = x2 and heightH =
√
3
2 x2,

so its area is

A =
1

2
BH =

1

2
x2 ·

√
3

2
x2 =

√
3

4
x4.

Therefore the volume is

V =

√
3

4

∫ 2

0

x4 dx =

√
3

4
· 32
5

=
8
√
3

5

using the integral from Part (a).

8. (a) V =

∫ 4

0

(2−√
y)

2
dy

=

∫ 4

0

(4− 4
√
y + y) dy

= 4

∫ 4

0

dy − 4

∫ 4

0

√
y dy +

∫ 4

0

y dy

= [4y]
4
0 −

[

8

3
y3/2

]4

0

+

[

y2

2

]4

0

= 16− 8

3
(4)

3/2
+

16

2

= 16− 64

3
+ 8

=
8

3
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(b) V =

∫ 4

0

1

2
· π
(

2−√
y

2

)2

dy

=
π

2

∫ 4

0

(

4− 4
√
y + y

)

4
dy

=
π

8

∫ 4

0

(4− 4
√
y + y) dy

=
4π

8

∫ 4

0

dy − 4π

8

∫ 4

0

√
y dy +

π

8

∫ 4

0

y dy

=
[πy

2

]4

0
−
[π

3
y3/2

]4

0
+

[

πy2

16

]4

0

= 2π − 8π

3
+ π

=
π

3

(c) V =

∫ 4

0

1

2
·
√
3

2
(2−√

y)
2
dy

=

√
3

4

∫ 4

0

(4− 4
√
y + y) dy

=
√
3

∫ 4

0

dy −
√
3

∫ 4

0

√
y dy +

√
3

4

∫ 4

0

y dy

=

√
3

4

(

[4y]
4
0 −

[

8

3
y3/2

]4

0

+

[

y2

2

]4

0

)

=

√
3

4

[

16− 8

3
(4)

3/2
+

16

2

]

=

√
3

4

[

16− 64

3
+ 8

]

=

√
3

4
· 8
3

=
2
√
3

3

9. Find the intersections of the two curves, for the limits of integration:

x2 = 3
√
3x

(

x2
)2

=
(

3
√
3x
)2

x4 = 27x

x4 − 27x = 0

x
(

x3 − 27
)

= 0

x (x− 3)
(

x2 + 3x+ 9
)

= 0

x = 0, so y = (0)
2
= 0

or x = 3, so y = (3)
2
= 9

(Algebra or technology shows that x2 + 3x+ 9 is always positive.)
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Solve each equation for x as a function of y:

3
√
3x = y

(

3
√
3x
)2

= y2

27x = y2

x =
1

27
y2

x2 = y

x =
√
y

(Positive
√
y because the region is in the first quadrant.)

(a) For each value of y, the cross section is a square with side s =
√
y− 1

27y
2, so its area is

A = s2 =

(√
y − 1

27
y2
)2

Therefore the volume is

V =

∫ 9

0

(√
y − 1

27
y2
)2

dy =

∫ 9

0

(

y − 2

27
y5/2 +

1

729
y4
)

dy

=

[

1

2
y2 − 2

27
· 2
7
y7/2 +

1

729
· 1
5
y5
]9

0

=

[(

1

2
· 42 − 4

189
· 47/2 + 1

3645
· 45
)

− 0

]

=
729

70

(b) For each value of y, the cross section is a semicircle with diameter D =
√
y − y2

27 and

therefore radius r = D
2 = 1

2

(√
y− 1

27y
2
)

, so its area is

A =
1

2
πr2 =

π

2
·
[

1

2

(√
y − 1

27
y2
)]2

=
π

8
·
(√

y − 1

27
y2
)2

Therefore the volume is

V =
π

8

∫ 9

0

(√
y − 1

27
y2
)2

dy =
π

8
· 729
70

=
729

560
π

using the integral from Part (a).

(c) For each value of y, the cross section is an equilateral triangle with baseB =
√
y− 1

27y
2

and height H =
√
3
2 B =

√
3
2

(√
y − 1

27y
2
)

, so its area is

A =
1

2
BH =

1

2

(√
y − 1

27
y2
)

·
√
3

2

(√
y − 1

27
y2
)

=

√
3

4

(√
y − 1

27
y2
)2

.

Therefore the volume is

V =

√
3

4

∫ 9

0

(√
y − 1

27
y2
)2

dy =

√
3

4
· 729
70

=
729

√
3

280

using the integral from Part (a).
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10. (a) V =

∫ 3

0

(

3
√
3x− x2

)2

dx

=

∫ 3

0

(

27x− 6x2
√
3x+ x4

)

dx

=

∫ 3

0

(

27x−
(

6
√
3
)

x5/2 + x4
)

dx

=

[

27x2

2
−
(

12
√
3
)

x7/2

7
+

x5

5

]3

0

=
243

2
− 972

7
+

243

5
− 0

=
2187

70

(b) V =

∫ 3

0

1

2
· π
(

3
√
3x− x2

2

)2

dx

=
π

8

∫ 3

0

(

27x− 6x2
√
3x+ x4

)

dx

=
π

8

∫ 3

0

(

27x−
(

6
√
3
)

x5/2 + x4
)

dx

=
π

8

[

27x2

2
−
(

12
√
3
)

x7/2

7
+

x5

5

]3

0

=
π

8

(

243

2
− 972

7
+

243

5
− 0

)

=
2187π

560

(c) V =

∫ 3

0

1

2
·
√
3

2

(

3
√
3x− x2

)2

dx

=

√
3

4

∫ 3

0

(

27x− 6x2
√
3x+ x4

)

dx

=

√
3

4

∫ 3

0

(

27x−
(

6
√
3
)

x5/2 + x4
)

dx

=

√
3

4

[

27x2

2
−
(

12
√
3
)

x7/2

7
+

x5

5

]3

0

=

√
3

4

(

243

2
− 972

7
+

243

5
− 0

)

=
2187

√
3

280
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11. Place the origin at the tip of the pyramid, with the x-axis along the axis of the pyramid.

Then at x, the cross section is a square with side 2x, so that its area is (2h)
2
= 4h2 m2.

Therefore the volume of the pyramid is

V =

∫ 40

0

4x2 dx =
4x3

3

]40

0

=
4 · 403

3
− 0 =

256,000

3
m3 = 85,333.3̄ m3

12. V =

∫ 20

0

2x2 dx

=

[

2x3

3

]20

0

=
2 (8000)

3

=
16, 000

3
m3

Applications and Extensions

13. Place the center of the sphere at the origin. Then x ranges from −R to R, so that for each
x, the possible values of y are from −

√
R2 − x2 to

√
R2 − x2. Therefore the cross section

at x is a circle with radius
√
R2 − x2, so its area is π

(√
R2 − x2

)2
= π(R2 − x2). So the

total volume of the sphere is

V =

∫ R

−R

π(R2 − x2) dx = π

[

R2x− 1

3
x3

]R

−R

= π · 4
3
R3 =

4

3
πR3 .

14. (a) Determine the point(s) of intersection of y =
√
x and y = 1

8x
2:

√
x =

x2

8

x =
x4

64

64x = x4

x4 − 64x = 0

x
(

x3 − 64
)

= 0

x (x− 4)
(

x2 + x+ 16
)

= 0

x = 0 or x = 4

Then

V =

∫ 4

0

1

2
· 3
(√

x− x2

8

)2

dx

=
3

2

∫ 4

0

(

x− x2√x

4
+

x4

64

)

dx

=
3

2

∫ 4

0

(

x− x5/2

4
+

x4

64

)

dx

=
3

2

[

x2

2
− x7/2

14
+

x5

320

]4

0

=
3

2

[

8− 64

7
+

16

5
− 0

]

=
108

35
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(b) Solve each equation for x as a function of y:

y =
√
x

x = y2

y =
x2

8

x2 = 8y

x =
√

8y

As determined above in 14(a), y =
√
x and y = 1

8x
2 intersect at x = 0 and x = 4.

The points of intersection are (0, 0) and (4, 2).

Then

V =

∫ 2

0

1

2
· 3
(

√

8y − y2
)2

dy

=
3

2

∫ 2

0

(

8y − 4y2
√

2y + y4
)

dy

=
3

2

∫ 2

0

(

8y − 25/2y5/2 + y4
)

dy

=
3

2

[

4y2 − 27/2

7
y7/2 +

y5

5

]2

0

=
3

2

[

16− 128

7
+

32

5

]

=
216

35

15. For each value of x, the cross section is a circle with diameter D = 4
3x

1/3 − x1/2, and

therefore radius r = D
2 = 1

2

(

4
3x

1/3 − x1/2
)

= 2
3x

1/3 − 1
2x

1/2. Therefore its area is

A = πr2 = π

(

2

3
x1/3 − 1

2
x1/2

)2

= π

(

4

9
x2/3 − 2

3
x5/6 +

1

4
x

)

.

Therefore the volume is

V = π

∫ 1

0

(

4

9
x2/3 − 2

3
x5/6 +

1

4
x

)

dx = π

[

4

9
· 3
5
x5/3 − 2

3
· 6

11
x11/6 +

1

4
· 1
2
x2

]1

0

= π

[(

4

15
· 15/3 − 4

11
· 111/6 + 1

8
· 12
)

− 0

]

=
37

1320
π
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16. The region is shown below:

y
3 x

3

2

y x
3

0, 0

1, 1

1,
3

2

0.5 1.
x

0.5

1.

1.5

y

For each x, the cross section is a circle whose diameter is 3
2x

1/3−x1/3 = 1
2x

1/3, so the area
of that circle is

A = πr2 = π

(

1
2x

1/3

2

)2

=
1

16
πx2/3.

Therefore the volume is

V =

∫ 1

0

(

1

16
πx2/3

)

dx =
1

16
π

[

3

5
x5/3

]1

0

=
3

80
π .

17. Because of symmetry around the x-axis, for each value of x the radius of the cross section

is r = e−x2 − 0 = e−x2

. Therefore its area is

A = πr2 = π
(

e−x2
)2

= πe−2x2

By symmetry around the y-axis, the volume from x = −1 to x = 1 is twice the volume
from x = 0 to x = 1:

V = π

∫ 1

−1

e−2x2

dx = 2π

∫ 1

0

e−2x2

Using technology, the volume is ≈ 3.758 .

18. Place the center of the top of the hemispherical bowl at the origin, with the x-axis pointing
down (so the bottom of the bowl is at (R, 0)). Then x ranges from R − h to R, and for

each x, the possible values of y are from −
√
R2 − x2 to

√
R2 − x2. Therefore the cross

section at x is a circle with radius
√
R2 − x2, so its area is π

(√
R2 − x2

)2
= π(R2 − x2).

So the total volume of the contents is

V =

∫ R

R−h

π(R2 − x2) dx

= π

[

R2x− 1

3
x3

]R

R−h

= π

(

R3 − 1

3
R3 −R2(R− h) +

1

3
(R− h)3

)

= π

(

R2h−R2h+Rh2 − 1

3
h3

)

= πh2

(

R− h

3

)

.

Note that if h = 0 (the bowl is empty), this gives 0, while if h = R (the bowl is completely
full), it gives 2

3πR
3, which is indeed half the volume of a sphere of radius R.
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19. A diagram of the water in the glass, in a three-dimensional view on the left and a two-
dimensional projection on the right, is shown below:

For a given value of x, the length of the water line along the base is 2
√
r2 − x2, since

the base is a circle of radius r. To determine its height, use similar triangles (look at the

two-dimensional picture): if H is the height, then H
x = h

r , so that H = h
rx. So the cross

section at x is a rectangle with dimensions 2
√
r2 − x2 × h

r x. Therefore the volume of this
amount of water is

V =

∫ r

0

h

r
x · 2

√

r2 − x2 dx .

20. Place the origin at the point where the dotted line in the diagram meets the sharp edge of
the solid, with the x-axis along that sharp edge. Note that since the cylinder has diameter
10, the wedge penetrates halfway through the cylinder, so that the x-axis coordinates of
the wedge range from −5 to 5. Now, for each value of x, the distance from the x-axis
to the outer edge of the wedge is

√
25− x2, and the height of the wedge at that point is√

25− x2 · tan 30◦ =
√
3
3

√
25− x2. The cross section is therefore a right triangle whose

area is

A =
1

2
bh =

1

2

√

25− x2 ·
√
3

3

√

25− x2 =

√
3

6
(25− x2).

So the volume of the wedge is

V =

∫ 5

−5

√
3

6
(25− x2) dx =

√
3

6

[

25x− 1

3
x3

]5

−5

=
250

√
3

9
m3 .

Challenge Problems

21. The volume removed is almost a cylinder with radius 2, except for the ends, which are
spherical caps. Let’s first determine the x-coordinate of the point where the bore reaches
the edge of the sphere (which is the “edge” in the front of the diagram). We have x2+y2 =

25, since the sphere has radius 5. But at this point, y = 2, so that x2 = 21 and x =
√
21.

Then the volume of metal removed consists of three pieces: a cylinder of height 2
√
21

and radius 2, and two spherical “caps” of height 5 −
√
21 taken from a sphere of radius

5. We can compute the volume of those spherical caps using Problem 14 with R = 5 and
h = 5−

√
21, giving a volume of

πh2

(

R − h

3

)

= π(5 −
√
21)2

(

5− 5−
√
21

3

)

= π

(

250

3
− 18

√
21

)

.

Then the total volume of the bore is

V = volume of cylinder + 2 volume of cap

= π · 22 · 2
√
21 + 2π

(

250

3
− 18

√
21

)

= π

(

500

3
− 28

√
21

)

.
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22. Place the pipes so that their axes lie along the x and y-axes. Two plots of the pipes are
below; the one on the right is the view from above.

Consider a horizontal slice through the pipes at a distance R from the xy-plane. The cross
section of one pipe is the lines x = ±

√
r2 −R2 and the cross section of the other is the

lines y = ±
√
r2 −R2. Therefore the slice representing the cross sectional area contained

in both pipes at this level is a square of side 2
√
r2 −R2 (see the right-hand diagram). The

possible distance R range from −r to r, so the volume of the solid bounded by both pipes
is

V =

∫ r

−r

(

2
√

r2 −R2
)2

dR = 4

∫ r

−r

(r2 −R2) dR = 4

[

r2R − 1

3
R3

]r

−r

=
16

3
r3 .

23. Place the origin at the tip of the cone, with the positive x-axis pointing in the direction of
the base, so that the base of the cone is an ellipse at x = h:
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Then for a given value of x, similar triangles tell us that the cross section at x is an ellipse
with major axis 2ax

h and minor axis 2b x
h . We must integrate over the area of these ellipses.

Now by the hint, the area of each ellipse is

π ·
(

a
x

h

)

·
(

b
x

h

)

= π
ab

h2
x2,

so the volume is

V =

∫ h

0

(

π
ab

h2
x2

)

dx = π
ab

h2

[

1

3
x3

]h

0

=
1

3
πabh .

24. The parallelepiped is made up of a number of slices, each of which is a parallelogram with
sides a and b where the angle between a and b is θ. The area of such a parallelogram is
ab sin θ. The height of the parallelepiped is c sinφ, so the volume is

V =

∫ c sinφ

0

ab sin θ dx = abc sinφ sin θ .

AP
R©

Practice Problems

1. Determine the point(s) of intersection of f(x) = 3x and g(x) = x2:

Let 3x = x2

x2 − 3x = 0

x(x − 3) = 0

x = 0 or x = 3

Then

V =

∫ 3

0

(

3x− x2
)2

dx

=

∫ 3

0

(

9x2 − 6x3 + x4
)

dx

=

[

3x3 − 3x4

2
+

x5

5

]3

0

=

[

3 (3)3 − 3
(

34
)

2
+

35

5
− 0

]

=
81

10

CHOICE B

2. V =

∫ 2

0

1

2
· π
(

e2 − ex

2

)2

dx

=
1

2

∫ 2

0

π

(

e2 − ex

2

)2

dx

CHOICE C
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3. V =

∫ 4

0

(

e−x + 1− 0
)2

dx

=

∫ 4

0

(

e−2x + 2e−x + 1
)

dx

=

[

e−2x

−2
− 2e−x + x

]4

0

=

(

e−8

−2
− 2e−4 + 4

)

−
(

e0

−2
− 2e0 − 0

)

=
1

−2e8
− 2

e4
+ 4 +

1

2
+ 2

=
1

2

(−1

e8
− 4

e4
+ 13

)

=
1

2

(

13− e−8 − 4e−4
)

CHOICE D

4. V =

∫ 3

0

(

−x2 + 9
)2

dx

=

∫ 3

0

(

x4 − 18x2 + 81
)

dx

=

[

x5

5
− 6x3 + 81x

]3

0

=
35

5
− 6 (3)

3
+ 81 (3)− 0

=
648

5

CHOICE C

5. V =

∫ 3

0

1

2
·
√
3

2
(2x)

2
dx

=
√
3

∫ 3

0

x2 dx

=

√
3

3

[

x3
]3

0

=

√
3

3
[27− 0]

= 9
√
3

CHOICE C
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6. V =

∫ 4

0

(x− 0)
2
dy

=

∫ 4

0

x2 dy

=

∫ 4

0

y dy

=

[

y2

2

]4

0

=
16

2
− 0

= 8

CHOICE B

7. For y = ln x, x = ey.

Then

V =

∫ 1

0

1

2
· π
(

e − x

2

)2

dy

=
π

8

∫ 1

0

(e− ey)2 dy

=
π

8

∫ 1

0

(

e2 − 2e · ey + e2y
)

dy

=
π

8

∫ 1

0

(

e2 − 2ey+1 + e2y
)

dy

=
π

8

[

e2y − 2ey+1 +
1

2
e2y
]1

0

=
π

8

[(

e2 − 2e2 +
1

2
e2
)

−
(

−2e+
1

2
e0
)]

=
π

8

[

−e2

2
+ 2e− 1

2

]

=
π

16

[

−e2 + 4e− 1
]

CHOICE B

8. (a) Determine the point of intersection of y = 2
√
x and y = (x− 2)

2
, for the upper limit

of the integral:

2
√
x = (x− 2)

2

(

2
√
x
)2

= (x− 2)
4

4x = x4 − 8x3 + 24x2 − 32x+ 16

x4 − 8x3 + 24x2 − 36x+ 16 = 0

(x− 4)
(

x3 − 4x2 + 8x− 4
)

= 0

x = 4
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Then

A =

∫ 4

1

2
√
x− (x2 − 4x+ 4) dx

=

∫ 4

1

(2
√
x− x2 + 4x− 4) dx

=

[

4x3/2

3
− x3

3
+ 2x2 − 4x

]4

1

=
4

3
(4)3/2 − 43

3
+ 2

(

42
)

− 4 (4)−
(

4

3
− 1

3
+ 2− 4

)

=
19

3

(b) V = π

∫ 4

1

[

(

2
√
x
)2 −

(

(x− 2)2
)2
]

dx = π

∫ 4

1

[

4x− (x− 2)
4
]

dx

(c) By the shell method:

V = 2π

∫ 4

1

x
[

2
√
x− (x− 2)2

]

dx

(d) V =

∫ 4

1

[

2
√
x− (x− 2)2

]

dx

6.5 Arc Length; Surface Area of a Solid of Revolution

Concepts and Vocabulary

1. False. The integrand should be
√

1 + [f ′(x)]2, not
√

1 + [f(x)]2: s =
∫ b

a

√

1 + [f ′(x)]2 dx.

2. True. By regarding f as a piecewise continuous function, we may be able to find the arc
length of each continuous piece and add up all the pieces.

Skill Building

3. With f(x) = 3x − 1, we have f ′(x) = 3. Since f ′(x) is continuous everywhere, the Arc
Length Formula applies, so that the arc length is

s =

∫ 3

1

√

12 + 32 dx =

∫ 3

1

√
10 dx = 2

√
10 .

Using the Distance Formula, we get s =
√

(3 − 1)2 + (8− 2)2 =
√
4 + 36 =

√
40 = 2

√
10,

and the answers are the same.

4. With f(x) = −4x+ 1, we have f ′(x) = −4. Since f ′(x) is continuous everywhere, the Arc
Length Formula applies, so that the arc length is

s =

∫ 1

−1

√

12 + (−4)2 dx =

∫ 1

−1

√
17 dx = 2

√
17 .

Using the Distance Formula, we get s =
√

(1 − (−1))2 + (−3− 5)2+ =
√
22 + 82 =

√
68 =

2
√
17, and the answers are the same.
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5. First solve for y, giving y = 2
3x+ 4

3 and y′ = 2
3 . Since f ′(x) is continuous everywhere, the

Arc Length Formula applies, so that the arc length is

s =

∫ 4

1

√

12 +

(

2

3

)2

dx =

∫ 4

1

√
13

3
dx =

√
13 .

Using the Distance Formula, we get s =
√

(4− 1)2 + (4− 2)2 =
√
9 + 4 =

√
13, and the

answers are the same.

6. First solve for y, giving y = − 3
4x + 3 and y′ = − 3

4 . Since f ′(x) is continuous everywhere,
the Arc Length Formula applies, so that the arc length is

s =

∫ 4

0

√

12 +

(

−3

4

)2

dx =

∫ 4

0

5

4
dx = 5 .

Using the Distance Formula, we get s =
√

(4− 0)2 + (0− 3)2 =
√
16 + 9 = 5, and the

answers are the same.

7. The derivative of y = x2/3 + 1 is y = 2
3x

−1/3, so that y has a continuous derivative on an
interval containing 1 and 8. Therefore the Arc Length Formula applies, and the arc length
is

s =

∫ 8

1

√

12 +

(

2

3
x−1/3

)2

dx =
1

3

∫ 8

1

√

9 + 4x−2/3 dx =
1

3

∫ 8

1

x−1/3
√

9x2/3 + 4 dx.

Now use the substitution u = 9x2/3 + 4, so that du = 6x−1/3 dx. Then x = 1 corresponds
to u = 13 while x = 8 corresponds to u = 40, and we get

s =
1

3
· 1
6

∫ 40

13

√
udu =

1

18

[

2

3
u3/2

]40

13

=
1

27

(

403/2 − 133/2
)

=
1

27

(

80
√
10− 13

√
13
)

.

8. The derivative of y = x2/3 + 6 is y = 2
3x

−1/3, so that y has a continuous derivative on an
interval containing 1 and 8. Therefore the Arc Length Formula applies, and the arc length
is

s =

∫ 8

1

√

12 +

(

2

3
x−1/3

)2

dx =
1

3

∫ 8

1

√

9 + 4x−2/3 dx =
1

3

∫ 8

1

x−1/3
√

9x2/3 + 4 dx.

Now use the substitution u = 9x2/3 + 4, so that du = 6x−1/3 dx. Then x = 1 corresponds
to u = 13 while x = 8 corresponds to u = 40, and we get

s =
1

3
· 1
6

∫ 40

13

√
udu =

1

18

[

2

3
u3/2

]40

13

=
1

27

(

403/2 − 133/2
)

=
1

27

(

80
√
10− 13

√
13
)

.

9. The derivative of y = x3/2 is y = 3
2x

1/2, so that y has a continuous derivative on an interval
containing 0 and 4. Therefore the Arc Length Formula applies, and the arc length is

s =

∫ 4

0

√

12 +

(

3

2
x1/2

)2

dx =
1

2

∫ 4

0

√
4 + 9x dx.

Now substitute u = 4 + 9x; then du = 9 dx. Further, x = 0 corresponds to u = 4 while
x = 4 corresponds to u = 40, so we get

1

2

∫ 4

0

√
4 + 9xdx =

1

2
·1
9

∫ 40

4

u1/2 du =
1

18

[

2

3
u3/2

]40

4

=
1

27

(

40
√
40− 8

)

=
1

27
(80

√
10− 8) .
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10. The derivative of x3/2 + 4 is 3
2x

1/2, so that y has a continuous derivative on an interval
containing 1 and 4. Therefore the Arc Length Formula applies, and the arc length is

s =

∫ 4

1

√

12 +

(

3

2
x1/2

)2

dx =
1

2

∫ 4

1

√
4 + 9x dx.

Now substitute u = 4 + 9x; then du = 9 dx. Further, x = 1 corresponds to u = 13 while
x = 4 corresponds to u = 40, so we get

1

2

∫ 4

1

√
4 + 9x dx =

1

2
· 1
9

∫ 40

13

u1/2 du =
1

18

[

2

3
u3/2

]40

13

=
1

27

(

40
√
40− 13

√
13
)

=
1

27
(80

√
10− 13

√
13) .

11. First solve for y, giving (since we are given y ≥ 0) y = 2
3x

3/2. Then y′ = x1/2 has a
continuous derivative on an interval containing 0 and 1, so that the Arc Length Formula
applies, and the arc length is

s =

∫ 1

0

√

12 +
(

x1/2
)2

dx =

∫ 1

0

√
1 + x dx =

[

2

3
(1 + x)3/2

]1

0

=
2

3
(2
√
2− 1) .

12. We have y′ = x2

2 − 1
2x2 , which is continuous on an interval containing 1 and 3. Therefore

the Arc Length Formula applies, and the arc length is

s =

∫ 3

1

√

12 +

(

x2

2
− 1

2x2

)2

dx

=

∫ 3

1

√

1 +
x4

4
− 1

2
+

1

4x4
dx

=

∫ 3

1

√

x4

4
+

1

2
+

1

4x4
dx

=

∫ 3

1

√

(

x2

2
+

1

2x2

)2

dx

=

∫ 3

1

(

x2

2
+

1

2x2

)

dx

=

[

x3

6
− 1

2x

]3

1

=
14

3
.
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13. We have y′ = (x2 + 1)1/2 · 2x = 2x
√
x2 + 1, which is continuous on an interval containing

1 and 4. Therefore the Arc Length Formula applies, and the arc length is

s =

∫ 4

1

√

12 +
(

2x
√

x2 + 1
)2

dx

=

∫ 4

1

√

4x4 + 4x2 + 1 dx

=

∫ 4

1

√

(2x2 + 1)2 dx

=

∫ 4

1

(2x2 + 1) dx

=

[

2

3
x3 + x

]4

1

= 45 .

14. We have y′ = 1
2 (x

2 + 2)1/2 · 2x = x
√
x2 + 2, which is continuous on an interval containing

2 and 4. Therefore the Arc Length Formula applies, and the arc length is

s =

∫ 4

2

√

12 +
(

x
√

x2 + 2
)2

dx

=

∫ 4

2

√

x4 + 2x2 + 1 dx

=

∫ 4

2

√

(x2 + 1)2 dx

=

∫ 4

2

(x2 + 1) dx

=

[

1

3
x3 + x

]4

2

=
62

3
.

15. We have

y′ =
2

9

√
3 · 3

2
(3x2 + 1)1/2 · 6x = 2

√
3 x
√

3x2 + 1.

This is continuous on an interval containing −1 and 2, so the Arc Length Formula applies
and the arc length is

s =

∫ 2

−1

√

12 +
(

2
√
3 x
√

3x2 + 1
)2

dx

=

∫ 2

−1

√

36x4 + 12x2 + 1 dx

=

∫ 2

−1

√

(6x2 + 1)2 dx

=

∫ 2

−1

(6x2 + 1) dx

=
[

2x3 + x
]2

−1

= 21 .
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16. We have

y′ =
3

2

(

1− x2/3
)1/2

·
(

−2

3
x−1/3

)

= −x−1/3
√

1− x2/3.

This is continuous on an interval containing 1
8 and 1, so that the Arc Length Formula

applies and the arc length is

s =

∫ 1

1/8

√

12 +
(

−x−1/3
√

1− x2/3
)2

dx

=

∫ 1

1/8

√

x−2/3 dx

=

∫ 1

1/8

x−1/3 dx

=

[

3

2
x2/3

]1

1/8

=
9

8
.

17. Solving for y gives y = x4

8 + 1
4x2 . Then y′ = x3

2 − 1
2x3 , which is continuous on an interval

containing 1 and 2. Therefore the Arc Length Formula applies, and the arc length is

s =

∫ 2

1

√

12 +

(

x3

2
− 1

2x3

)2

dx

=

∫ 2

1

√

1 +
x6

4
− 1

2
+

1

4x6
dx

=

∫ 2

1

√

x6

4
+

1

2
+

1

4x6
dx

=

∫ 2

1

√

(

x3

2
+

1

2x3

)2

dx

=

∫ 2

1

(

x3

2
+

1

2x3

)

dx

=

[

x4

8
− 1

4x2

]2

1

=
33

16
.
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18. Solving for y gives y2 = 4
9 (1 + x2)3, so that y = 2

3 (1 + x2)3/2 (since y ≥ 0). Then

y′ = (1 + x2)1/2 · 2x = 2x
√
1 + x2. This is continuous everywhere, so that the Arc Length

Formula applies and the arc length is

s =

∫ 2
√
2

0

√

12 +
(

2x
√

1 + x2
)2

dx

=

∫ 2
√
2

0

√

4x4 + 4x2 + 1 dx

=

∫ 2
√
2

0

√

(2x2 + 1)2 dx

=

∫ 2
√
2

0

(2x2 + 1) dx

=

[

2

3
x3 + x

]2
√
2

0

=
38

3

√
2 .

19. We get y′ = 1
sin x · (− cosx) = − cotx. This is continuous on an interval containing π

6 and
π
3 , so the Arc Length Formula applies. Using the identity 1+cot2 x = csc2 x, the arc length
is

s =

∫ π/3

π/6

√

12 + (− cotx)
2
dx

=

∫ π/3

π/6

√

1 + cot2 x dx

=

∫ π/3

π/6

cscx dx

= [ln |cscx− cotx|]π/3π/6

= ln

∣

∣

∣

∣

2√
3
− 1√

3

∣

∣

∣

∣

− ln
∣

∣

∣
2−

√
3
∣

∣

∣
.

This expression can be simplified to − ln(2
√
3− 3) .
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20. We get y′ = 1
cosx · sinx = tanx. This is continuous on an interval containing π

6 and π
3 , so

the Arc Length Formula applies. Using the identity 1 + tan2 x = sec2 x, the arc length is

s =

∫ π/3

π/6

√

12 + (tanx)2 dx

=

∫ π/3

π/6

√

1 + tan2 x dx

=

∫ π/3

π/6

secx dx

= [ln |secx+ tanx|]π/3π/6

= ln
∣

∣

∣
2 +

√
3
∣

∣

∣
− ln

∣

∣

∣

∣

2√
3
+

1√
3

∣

∣

∣

∣

= ln(2 +
√
3)− ln(

√
3)

= ln
2 +

√
3√

3
= ln

2
√
3 + 3

3
.

21. Since y ≥ 0, solving for y gives y = 1
2 (x+1)3/2, so that y′ = 3

4

√
x+ 1, which is continuous

on an interval containing −1 and 16. Therefore the Arc Length Formula applies, and the
arc length is

s =

∫ 16

−1

√

12 +

(

3

4

√
x+ 1

)2

dx =
1

4

∫ 16

−1

√
9x+ 25 dx.

Now use the substitution u = 9x + 25, so that du = 9 dx. Then x = −1 corresponds to
u = 16 and x = 16 corresponds to u = 169, so we get

1

4

∫ 16

−1

√
9x+ 25 dx =

1

4
· 1
9

∫ 169

16

u1/2 du =
1

36

[

2

3
u3/2

]169

16

=
1

54
(133 − 43) =

79

2
.

22. The derivative of x3/2 + 8 is 3
2x

1/2, so that y has a continuous derivative on an interval
containing 0 and 4. Therefore the Arc Length Formula applies, and the arc length is

s =

∫ 4

0

√

12 +

(

3

2
x1/2

)2

dx =
1

2

∫ 4

0

√
4 + 9x dx =

1

2

[

2

27
(4 + 9x)3/2

]4

0

=
1

27
(80

√
10− 8) .

23. Since y′ = 2
3x

−1/3 is not continuous (or even defined) at x = 0, we try partitioning the

y-axis instead. Solving y = x2/3 for x gives x = y3/2, so that x′ = 3
2

√
y. Note that this

is the same curve as the one we are interested in, just expressed differently, so that it has
the same arc length. Now, x = 0 corresponds to y = 0, and x = 1 to y = 1. Since 3

2

√
y

is continuous on an interval containing 0 and 1, the Arc Length Formula for partitioning
along the y-axis applies, and the arc length is

s =

∫ 1

0

√

1 +

(

3

2

√
y

)2

dy =
1

2

∫ 1

0

√

4 + 9y dy.

Now substitute u = 4 + 9y; then du = 9 dy. Further, y = 0 corresponds to u = 4 while
y = 1 corresponds to u = 13, so we get

1

2

∫ 1

0

√

4 + 9y dy =
1

2
· 1
9

∫ 13

4

u1/2 du =
1

18

[

2

3
u3/2

]13

4

=
1

27
(13

√
13− 8) .
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24. Since y = x2/3 is symmetric about the y-axis, its arc length from x = −1 to x = 0 is the
same as its arc length from x = 0 to x = 1. But this arc length was just computed in

Problem 23 to be
1

27
(13

√
13− 8) .

25. Since we wish to partition along the y-axis, we solve for x, giving x = 2y3/2−1. (Note that
we took the positive square root of 4y3 since we have x ≥ −1.) Then x′ = 3y1/2 = 3

√
y,

which is continuous on an interval containing 0 and 1. Therefore the Arc Length Formula
applies, and the arc length is

s =

∫ 1

0

√

12 + (3
√
y)

2
dy =

∫ 1

0

√

9y + 1 dy.

Now make the substitution u = 9y + 1, so that du = 9 dy. Then y = 0 corresponds to
u = 1, and y = 1 corresponds to u = 10, so we get

∫ 1

0

√

9y + 1 dy =
1

9

∫ 10

1

u1/2 du =
1

9

[

2

3
u3/2

]10

1

=
2

27
(10

√
10− 1) .

26. We get x′ = (y − 5)1/2 =
√
y − 5, which is continuous on an interval containing 5 and 6,

so the Arc Length Formula applies, and the arc length is

s =

∫ 6

5

√

12 +
(

√

y − 5
)2

dy =

∫ 6

5

√

y − 4 dy =

[

2

3
(y − 4)3/2

]6

5

=
2

3
(2
√
2− 1) .

27. (a) We have y′ = 2x, which is continuous everywhere, so the Arc Length Formula applies
and the arc length is

s =

∫ 2

0

√

12 + (2x)2 dx =

∫ 2

0

√

4x2 + 1 dx.

(b) Using technology, this evaluates to s ≈ 4.64678 .

28. We will determine arc length by subdividing along the y-axis.

(a) x′ = 2y, which is continuous everywhere, so the Arc Length Formula applies and the
arc length is

s =

∫ 3

1

√

12 + (2y)2 dy =

∫ 3

1

√

4y2 + 1 dy.

(b) Using technology, this evaluates to s ≈ 8.26815 .

29. (a) y′ = 1
2 (25 − x2)−1/2 · (−2x) = −x(25 − x2)−1/2. This is continuous on an interval

containing 0 and 4, so the Arc Length Formula applies, and the arc length is

s =

∫ 4

0

√

12 +
(

−x(25− x2)−1/2
)2

dx =

∫ 4

0

√

1 +
x2

25− x2
dx =

∫ 4

0

√

25

25− x2
dx.

(b) Using technology, this evaluates to s ≈ 4.63648 .

30. We will determine arc length by partitioning along the y-axis.

(a) x′ = 1
2 (4 − y2)−1/2 · (−2y) = −y(4 − y2)−1/2. This is continuous on an interval

containing 0 and 1, so the Arc Length Formula applies, and the arc length is

s =

∫ 1

0

√

12 +
(

−y(4− y2)−1/2
)2

dy =

∫ 1

0

√

1 +
y2

4− y2
dy =

∫ 1

0

√

4

4− y2
dy.

(b) Using technology, this evaluates to s ≈ 1.0472 .
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31. (a) y′ = cosx, which is continuous everywhere, so the Arc Length Formula applies. The
arc length is

s =

∫ π/2

0

√

12 + (cosx)
2
dx =

∫ π/2

0

√

1 + cos2 x dx.

(b) Using technology, this evaluates to s ≈ 1.9101 .

32. We will determine arc length by partitioning along the y-axis.

(a) x′ = 1+ 1
y , which is continuous on an interval containing 1 and 4, so the Arc Length

Formula applies. The arc length is

s =

∫ 4

1

√

12 +

(

1 +
1

y

)2

dy =

∫ 4

1

√

1

y2
+

2

y
+ 2 dy =

∫ 4

1

√

2y2 + 2y + 1

y
dy.

(b) Using technology, this evaluates to s ≈ 5.32324 .

33. If f(x) = 3x + 5, then f ′(x) = 3. This is continuous everywhere, so the Surface Area
Formula applies. Therefore the surface area is

S = 2π

∫ 2

0

(3x+ 5)

√

1 + (3)
2
dx = 2π

∫ 2

0

(3x+ 5)
√
10 dx = 2π

√
10

∫ 2

0

(3x+ 5) dx

= 2π
√
10

[

3

2
x2 + 5x

]2

0

= 2π
√
10

[(

3

2
· 22 + 5 · 2

)

− 0

]

= 2π
√
10 · 16 = 32π

√
10 .

34. Surface area = 2π

∫ b

a

f(x)

√

1 + (f ′(x))
2
dx

For f(x) = −x+ 5, f ′(x) = −1

S = 2π

∫ 5

1

(−x+ 5)
√

1 + 12 dx

= 2π

∫ 5

1

(−x+ 5)
√
2 dx

= 2π
√
2

[−x2

2
+ 5x

]5

1

= 2π
√
2

[(−25

2
+ 25

)

−
(−1

2
+ 5

)]

= 2π
√
2

[

25

2
− 9

2

]

= 16π
√
2

35. If f(x) =
√
3x = (3x)1/2, then f ′(x) = 1

2 (3x)
−1/2 · 3 = 3

2
√
3x
. This is continuous on an

interval containing 1 and 2, so the Surface Area Formula applies. Therefore the surface
area is

S = 2π

∫ 2

1

√
3x

√

1 +

(

3

2
√
3x

)2

dx = 2π

∫ 2

1

√
3x

√

1 +
9

12x
dx = 2π

∫ 2

1

√
3x

√

1 +
3

4x
dx

= 2π

∫ 2

1

√
3x ·

√
4x+ 3

2
√
x

dx = π
√
3

∫ 2

1

√
4x+ 3 dx.
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Now let u = 4x+ 3, so du = 4 dx, so dx = 1
4 du. Also, when x = 1, then u = 4(1) + 3 = 7

and when x = 2, then u = 4(2) + 3 = 11. Therefore

S = π
√
3

∫ 11

7

u1/2 · 1
4
du =

π
√
3

4

∫ 11

7

u1/2 du =
π
√
3

4

[

2

3
u3/2

]11

7

=
π
√
3

6

(

113/2 − 73/2
)

=

√
3

6
π
(

11
√
11− 7

√
7
)

.

36. Surface area = S = 2π

∫ b

a

f(x)

√

1 + (f ′(x))
2
dx

For f(x) =
√
2x = (2x)

1/2
, f ′(x) =

1

2
(2x)

−1/2
(2) = (2x)

−1/2

S = 2π

∫ 8

2

√
2x

(

√

1 +
(

(2x)−1/2
)2
)

dx

= 2π

∫ 8

2

√
2x

(

√

1 +
1

2x

)

dx

= 2π

∫ 8

2

√
2x+ 1 dx

=

[

2π

3
(2x+ 1)

3/2

]8

2

=
2
(

173/2 − 53/2
)

π

3
=

2

3
π
(

17
√
17− 5

√
5
)

37. If f(x) = 2
√
x = 2x1/2, then f ′(x) = 2 · 1

2x
−1/2 = 1√

x
. This is continuous on an interval

containing 1 and 4, so the Surface Area Formula applies. Therefore the surface area is

S = 2π

∫ 4

1

2
√
x ·

√

1 +

(

1√
x

)2

dx = 2π

∫ 4

1

2
√
x ·
√

1 +
1

x
dx = 2π

∫ 4

1

2
√
x ·
√

x+ 1

x
dx

= 2π

∫ 4

1

2
√
x ·

√
x+ 1√
x

dx = 4π

∫ 4

1

√
x+ 1 dx.

Now let u = x + 1, so du = dx. Also, when x = 1, then u = (1) + 1 = 2 and when x = 4,
then u = (4) + 1 = 5. Therefore

S = 4π

∫ 5

2

u1/2 dx = 4π

[

2

3
u3/2

]5

2

= 4π · 2
3

(

53/2 − 23/2
)

=
8

3
π
(

5
√
5− 2

√
2
)

.
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38. Surface area = S = 2π

∫ b

a

f(x)

√

1 + (f ′(x))
2
dx

For f(x) = 4
√
x, f ′(x) = 2x−1/2

S = 2π

∫ 9

4

4
√
x

√

1 +
(

2x−1/2
)2

dx

= 2π

∫ 9

4

4
√
x
√

1 + 4x−1 dx

= 2π

∫ 9

4

4
√
x+ 4 dx

=
16π

3

[

(x+ 4)
3/2
]9

4

=
16π

(

133/2 − 83/2
)

3
=

16

3
π
(

13
√
13− 16

√
2
)

39. If f(x) = x3, then f ′(x) = 3x2. This is continuous everywhere, so the Surface Area Formula
applies. Therefore the surface area is

S = 2π

∫ 2

0

x3

√

1 + (3x2)2 dx = 2π

∫ 2

0

x3
√

1 + 9x4 dx.

Now let u = 1 + 9x4, so du = 36x3 dx, so x3 dx = 1
36 du. Also, when x = 0, then

u = 1 + 9(0)4 = 1, and when x = 2, then u = 1 + 9(2)4 = 145. Therefore

S = 2π

∫ 145

1

√
u · 1

36
du =

π

18

∫ 145

1

u1/2 du =
π

18

[

2

3
u3/2

]145

1

=
π

27

(

1453/2 − 13/2
)

=
1

27
π
(

145
√
145− 1

)

.

40. Surface area = S = 2π

∫ b

a

f(x)

√

1 + (f ′(x))
2
dx

For f(x) =
x3

3
, f ′(x) = x2

S = 2π

∫ 3

1

(

x3

3

)

√

1 + (x2)
2
dx

=
2π

3

∫ 3

1

x3
√

1 + x4 dx

Let u = 1 + x4, du = 4x3 dx,
du

4
= x3 dx

S =
2π

3

∫ 82

2

√
u

(

du

4

)

=
π

6

∫ 82

2

u1/2 du

=
π

6

(

2

3

)

[

u3/2
]82

2

=
π

9

(

823/2 − 23/2
)

=

(

823/2 − 23/2
)

π

9
=

1

9
π
(

82
√
82− 2

√
2
)
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41. If f(x) =
√
4− x2 =

(

4− x2
)1/2

, then f ′(x) = 1
2

(

4− x2
)−1/2

(−2x) = − x√
4−x2

. This

is continuous on an interval containing 0 and 1, so the Surface Area Formula applies.
Therefore the surface area is

S = 2π

∫ 1

0

√

4− x2 ·

√

1 +

(

− x√
4− x2

)2

dx = 2π

∫ 1

0

√

4− x2 ·
√

1 +
x2

4− x2
dx

= 2π

∫ 1

0

√

4− x2 ·
√
4− x2 + x2

√
4− x2

dx = 2π

∫ 1

0

√
4 dx = 2π · 2

∫ 1

0

dx = 4π[x]
1
0 = 4π(1− 0) = 4π .

42. Surface area = S = 2π

∫ b

a

f(x)

√

1 + (f ′(x))
2
dx

For f(x) =
√

9− 4x2 =
(

9− 4x2
)1/2

, f ′(x) =
1

2

(

9− 4x2
)−1/2

(−8x) =
−4x

(9− 4x2)
1/2

S = 2π

∫ 1

0

√

9− 4x2

√

√

√

√1 +

(

−4x

(9− 4x2)
1/2

)2

dx

= 2π

∫ 1

0

√

9− 4x2

√

1 +
16x2

9− 4x2
dx

= 2π

∫ 1

0

√

9− 4x2 + 16x2 dx

= 2π

∫ 1

0

√

9 + 12x2 dx

= 2π
√
3

∫ 1

0

√

3 + 4x2 dx

Let x =

√
3 tanu1

2
, dx =

√
3 sec2 u1

2
du1, u1 = Tan−1

(

2x√
3

)

For x = 0, u1 = Tan−1(0) = 0. For x = 1, u1 = Tan−1

(

2√
3

)

S = 2π
√
3

∫ Tan−1(2/
√
3)

0







√

√

√

√3 + 4

(√
3 tanu1

2

)2






(√
3 sec2 u1

2
du1

)

= 2π
√
3

∫ Tan−1(2/
√
3)

0

[

√

3 + 4

(

3 tan2 u1

4

)

](√
3 sec2 u1

2
du1

)

= 2π
√
3

∫ Tan−1(2/
√
3)

0

[

√

3 + 3 tan2 u1

]

(√
3 sec2 u1

2
du1

)

= 3π
√
3

∫ Tan−1(2/
√
3)

0

[

√

1 + tan2 u1

]

sec2 u1(du1)

= 3π
√
3

∫ Tan−1(2/
√
3)

0

[secu1] sec
2 u1(du1)

= 3π
√
3

∫ Tan−1(2/
√
3)

0

sec3 u1(du1)
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Using Integration by Parts

Let u2 = secu1, v = sec2 u1

du2 = secu1 tanu1 du1, dv = tanu1

∫

u2 dv = u2v −
∫

v du

∫

sec3 u1 du1 = secu1 tanu1 −
∫

secu1 tanu1(tanu1) du1

= secu1 tanu1 −
∫

secu1 tan
2 u1 du1

= secu1 tanu1 −
∫

secu1

(

sec2 u1 − 1
)

du1

= secu1 tanu1 −
∫

(

sec3 u1 − secu1

)

du1

= secu1 tanu1 −
∫

sec3 u1du1 +

∫

secu1 du1

2

∫

sec3 u1 du1 = secu1 tanu1 +

∫

secu1 du1

= secu1 tanu1 +

∫

secu1

(

secu1 + tanu1

secu1 + tanu1

)

du1

= secu1 tanu1 +

∫
(

sec2 u1 + secu1 tanu1

secu1 + tanu1

)

du1

Let u3 = secu1 + tanu1, du3 = sec2 u1 + secu1 tanu1du1

= secu1 tanu1 +

∫

du3

u3

= secu1 tanu1 + ln |u3|
= secu1 tanu1 + ln |secu1 + tanu1|

∫

sec3 u1 du1 =
1

2
[secu1 tanu1 + ln |secu1 + tanu1|]

S =
3π

√
3

2
[secu1 tanu1 + ln |secu1 + tanu1|]

Tan−1(2/
√
3)

0

Reconsider the original substitution: x =

√
3 tanu1

2
, tanu1 =

2x√
3
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tanu1 =
2x√
3
, secu1 =

√
4x2 + 3√

3

S =
3π

√
3

2
[secu1 tanu1 + ln |secu1 + tanu1|]

Tan−1(2/
√
3)

0

S =
3π

√
3

2

[(√
4x2 + 3√

3

)

(

2x√
3

)

+ ln

∣

∣

∣

∣

∣

√
4x2 + 3√

3
+

2x√
3

∣

∣

∣

∣

∣

]1

0

=
3π

√
3

2

[(

2
√
7

3

)

+ ln

(

2 +
√
7√

3

)

−
(

ln

(√
3√
3

))]

=
3π

√
3

2

[

2
√
7

3
+ ln

(

2 +
√
7√

3

)

− ln 1

]

=
3π

√
3

2

[

2
√
7

3
+ ln

(

2 +
√
7√

3

)]

=
3π

√
3

2

[

2
√
7

3
+ ln

(

2 +
√
7
)

− ln
√
3

]

=
π
√
3

2

[

2
√
7 + 3 ln

(

2 +
√
7
)

− 3 ln
√
3
]

=

√
3

2
π
[

3 ln
(

2 +
√
7
)

+ 2
√
7− 3 ln 3

]

≈ 7.146π

43. (a) If f(x) = x2, then f ′(x) = 2x. This is continuous everywhere, so the Surface Area
Formula applies. Therefore the surface area is

S = 2π

∫ 3

1

x2

√

1 + (2x)
2
dx = 2π

∫ 3

1

x2
√

1 + 4x2 dx .

(b) Using technology, this evaluates to S ≈ 257.508 .

44. (a) S = 2π

∫ 2

0

(

4− x2
)

√

1 + (−2x)
2
dx

(b) S ≈ 63.560

Integral evaluated by both the Texas Instruments TI-89 Titanium and
www.integral-calculator.com

45. (a) If f(x) = x2/3, then f ′(x) = 2
3x

−1/3 = 2
3x1/3 . This is continuous on an interval

containing 1 and 8, so the Surface Area Formula applies. Therefore the surface area
is

S = 2π

∫ 8

1

x2/3

√

1 +

(

2

3x1/3

)2

dxS = 2π

∫ 8

1

x2/3

√

1 +
4

9x2/3
dx .

(b) Using technology, this evaluates to S ≈ 126.220 .
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46. (a) 2π

∫ 4

0

x3/2

√

1 +
9x

4
dx

(b) 217.031

Integral evaluated by both the Texas Instruments TI-89 Titanium and
www.integral-calculator.com

47. (a) If f(x) = ex, then f ′(x) = ex. This is continuous everywhere, so the Surface Area
Formula applies. Therefore the surface area is

S = 2π

∫ 3

0

ex
√

1 + (ex)
2
dx S = 2π

∫ 3

0

ex
√

1 + e2x dx .

(b) Using technology, this evaluates to S ≈ 1273.371 .

48. (a) 2π

∫ e

1

lnx

√

1 +
1

x2
dx

(b) 7.055

Integral evaluated by both the Texas Instruments TI-89 Titanium and
www.integral-calculator.com

49. (a) If f(x) = sinx, then f ′(x) = cosx. This is continuous everywhere, so the Surface
Area Formula applies. Therefore the surface area is

S = 2π

∫ π/2

0

sinx

√

1 + (cosx)
2
dx = 2π

∫ π/2

0

sinx
√

1 + cos2 x dx .

(b) Using technology, this evaluates to S ≈ 7.212 .

50. (a) 2π

∫ π/4

0

tanx
√

1 + sec4 x dx

(b) 3.839

Integral evaluated by both the Texas Instruments TI-89 Titanium and
www.integral-calculator.com

51. If F (x) =

∫ x

0

√

16t2 − 1 dt, then F ′(x) =
√
16x2 − 1. This is continuous on an interval

containing 0 and 2, so the Arc Length Formula applies. Therefore the arc length is

s =

∫ 2

0

√

1 +
(

√

16x2 − 1
)2

dx =

∫ 2

0

√

1 + (16x2 − 1) dx =

∫ 2

0

√
16x2 dx =

∫ 2

0

4x dx

= 4

[

1

2
x

]2

0

= 2
(

22 − 02
)

= 8 .
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52. F (x) =

∫ x

0

√
4t− 1 dt

F ′(x) =
d

dx

(
∫ x

0

√
4t− 1 dt

)

=
√
4x− 1

L =

∫ 2

0

√

1 + (F ′(x))
2
dx

=

∫ 2

0

√

1 +
(√

4x− 1
)2

dx

=

∫ 2

0

√
1 + 4x− 1 dx

=

∫ 2

0

√
4x dx

= 2

∫ 2

0

x1/2 dx

=

[

2

(

2

3

)

x3/2

]2

0

=

[(

4

3

)

x3/2

]2

0

=

(

4

3

)

(

23/2 − 0
)

=
8
√
2

3

53. If F (x) =

∫ 3x

0

√

et − 1
9 dt, then F ′(x) =

√

e(3x) − 1
9 · d

dx(3x) = 3
√

e3x − 1
9 . This is

continuous on an interval containing 0 and 4, so the Arc Length Formula applies. Therefore
the arc length is

s =

∫ 4

0

√

√

√

√1 +

(

3

√

e3x − 1

9

)2

dx =

∫ 4

0

√

1 + 9

(

e3x − 1

9

)

dx =

∫ 4

0

√

1 + (9e3x − 1) dx

=

∫ 4

0

√
9e3x dx =

∫ 4

0

3e3x/2 dx.

Now let u = 3x
2 , so du = 3

2 dx, so dx = 2
3 du. Also, when x = 0, then u = 3(0)

2 = 0, and

when x = 4, then u = 3(4)
2 = 6. Therefore

s = 3

∫ 6

0

eu · 2
3
du = 2[eu]

6
0 = 2

(

e6 − e0
)

= 2
(

e6 − 1
)
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54. F (x) =

∫ 4x

0

√

t4 − 1

4
dt

F ′(x) =
d

dx

(

∫ 4x

0

√

t4 − 1

4
dt

)

= 4

(

√

(4x)
4 − 1

4

)

= 4

(
√

1024x4 − 1

4

)

= 2
√

1024x4 − 1

L =

∫ 2

1

√

1 + (F ′(x))
2
dx

=

∫ 2

1

√

1 + 4(1024x4 − 1) dx

=

∫ 2

1

√

4096x4 − 3 dx

≈ 149.321 , using technology

Applications and Extensions

55. The hypocycloid is shown below:

a a

a

a

All four arcs are the same (the graph is symmetric in both x and y, since (−x)2/3 = x2/3

and (−y)2/3 = y2/3), and the arc in the first quadrant is symmetric about the line x = y,
so the total arc length is the length of half of that arc, multiplied by 8. The arc in the
first quadrant is divided in half at the point where the x-coordinate and the y-coordinate
are equal, which is when 2x2/3 = a2/3, or x = a

23/2
. So consider the arc from x = a

23/2
to

x = a in the first quadrant. Then x, y ≥ 0, and solving for y gives

y =
(

a2/3 − x2/3
)3/2

,

so that

y′ =
3

2

(

a2/3 − x2/3
)1/2

·
(

−2

3
x−1/3

)

= −x−1/3
(

x2/3 − a2/3
)1/2

.
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Now, y′ is continuous on an interval containing a
23/2

and a, so the Arc Length Formula
applies and the total length of the hypocycloid is therefore

s = 8

∫ a

a/(23/2)

√

12 +
(

−x−1/3
(

a2/3 − x2/3
)1/2

)2

dx

= 8

∫ a

a/(23/2)

√

1 + x−2/3
(

a2/3 − x2/3
)

dx

= 8

∫ a

a/(23/2)

√

a2/3x−2/3 dx

= 8

∫ a

a/(23/2)

a1/3x−1/3 dx

= 8

[

3

2
a1/3x2/3

]a

a/(23/2)

= 12

(

a1/3a2/3 − a1/3 · a2/3

(23/2)2/3

)

= 12
(

a− a

2

)

= 6a.

The arc length of the hypocycloid is 6a .

56. The curve whose arc length we wish to find is in the first quadrant; there, the curve is

y =
√
x3 = x3/2, so that y′ = 3

2

√
x, which is continuous on an interval containing 1 and 3.

Therefore the Arc Length Formula applies, and the arc length is

s =

∫ 3

1

√

12 +

(

3

2

√
x

)2

dx =
1

2

∫ 3

1

√
4 + 9x dx =

1

2

[

2

27
(4 + 9x)3/2

]3

1

=
1

27
(31

√
31− 13

√
13) .

57. The region in question is shown below:

y3 x2

y x

1, 1

0, 0

0.5 1.0

0.5

1.0
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The perimeter of the region is composed of two pieces. The length of the first, along the
line y = x, can be computed using the Distance Formula: s =

√

(1− 0)2 + (1 − 0)2 =
√
2.

For the second, we use the Arc Length Formula. If we try to partition along the x-axis, we
get y = x2/3, so that y′ = 2

3x
−1/3, which is not continuous at x = 0. So partition instead

along the y-axis. Solving the equation for x gives x = y3/2, so that x′ = 3
2

√
y, which is

continuous on an interval containing 0 and 1. Therefore the Arc Length Formula applies,
and the arc length is

s =

∫ 1

0

√

12 +

(

3

2

√
y

)2

dy =
1

2

∫ 3

1

√

4 + 9y dy =
1

2

[

2

27
(4 + 9y)3/2

]3

1

=
1

27
(31

√
31−13

√
13).

So the total arc length is
√
2 +

1

27
(31

√
31− 13

√
13) .

58. The region in question is shown below:

y 3 x 1 3 2

y 3 x 1

1, 0

2, 3

0.5 1. 1.5 2.
x0.

0.5

1.

1.5

2.

2.5

3.

y

The perimeter of the region is composed of two pieces. The length of the first, along the line
y = 3(x − 1), can be computed using the Distance Formula: s =

√

(2− 1)2 + (3− 0)2 =√
10. For the second, we use the Arc Length Formula. Partitioning along the x-axis, we

have y′ = 3 · 3
2 (x − 1)1/2 = 9

2

√
x− 1, which is continuous on an interval containing 1 and

3. Therefore the Arc Length Formula applies, and the arc length is

s =

∫ 3

1

√

12 +

(

9

2

√
x− 1

)2

dx =
1

2

∫ 3

1

√
81x− 77dx =

1

2

[

2

243
(81x− 77)3/2

]3

1

=
1

243
(166

√
166−8).

Therefore the total arc length is

√
10 +

1

243
(166

√
166− 8) .
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59. Solving for x gives x = y4+3
6y = y3

6 + 1
2y . Then x′ = y2

2 − 1
2y2 , which is differentiable on an

interval containing 1 and 2. Therefore the Arc Length Formula applies, and the arc length
is

s =

∫ 2

1

√

12 +

(

y2

2
− 1

2y2

)2

dy

=

∫ 2

1

√

1 +
y4

4
− 1

2
+

1

4y4
dy

=

∫ 2

1

√

y4

4
+

1

2
+

1

4y4
dy

=

∫ 2

1

√

(

y2

2
+

1

2y2

)2

dy

=

∫ 2

1

(

y2

2
+

1

2y2

)

dy

=

[

y3

6
− 1

2y

]2

1

=
17

12
.

60. We have y′ = sinhx, which is continuous everywhere, so that the Arc Length Formula
applies. Therefore the arc length is

s =

∫ 2

0

√

12 + (sinhx)
2
dx =

∫ 2

0

√

1 + sinh2 x dx.

Since cosh2 x− sinh2 x = 1, we see that 1+sinh2 x = cosh2 x. Since coshx > 0 everywhere,
we get for the arc length

s =

∫ 2

0

√

cosh2 x dx =

∫ 2

0

coshx dx = [sinhx]20 = sinh 2− sinh 0 = sinh 2 .

61. We have y′ = 1
csc x · (− cotx cscx) = − cotx, which is continuous on an interval containing

π
4 and π

2 . Therefore the Arc Length Formula applies, and the arc length is

s =

∫ π/2

π/4

√

12 + (− cotx)
2
dx =

∫ π/2

π/4

√

1 + cot2 x dx.

Now use the identity 1 + cot2 x = csc2 x; since we are integrating for angles in the first
quadrant, cscx ≥ 0, so we get for the arc length

x =

∫ π/2

π/4

√
csc2 x dx

=

∫ π/2

π/4

cscx dx = [ln |cscx− cotx|]π/2π/4

= ln 1− ln(
√
2− 1) = − ln(

√
2− 1) .

62. Solving the equation for y in the first quadrant (where y ≥ 0) gives

y = b

√

1− x2

a2
=

b

a

√

a2 − x2.
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Then

y′ =
b

a
· 1
2
(a2 − x2)−1/2 · (−2x) = − bx

a
√
a2 − x2

.

This is continuous on an interval containing 0 and a
2 , so the Arc Length Formula applies

and we get for the arc length

s =

∫ a/2

0

√

12 +

(

− bx

a
√
a2 − x2

)2

dx

=

∫ a/2

0

√

1 +
b2x2

a2(a2 − x2)
dx

=

∫ a/2

0

√

b2x2 + a4 − a2x2

a2(a2 − x2)
dx

=

∫ a/2

0

√

a4 + x2(b2 − a2)

a2(a2 − x2)
dx

=

∫ a/2

0

√

√

√

√

√

a4 + a4
(

x
a

)2
(

(

b
a

)2 − 1
)

a4(1−
(

x
a

)2
)

dx

=

∫ a/2

0

√

√

√

√

√

1 +
(

x
a

)2
(

(

b
a

)2 − 1
)

1−
(

x
a

)2 dx.

63. (a) As mentioned in the comment to Example 3 on page 509, the derivative of y as a
function of x will not be continuous at x = 2. Therefore solve for x as a function of
y and integrate along y:

x2 + 4y2 = 4

x2 = 4− 4y2

x =
√

4− 4y2 = 2
√

1− y2 (positive in the first quadrant)

Next, to find one of the limits of integration, find the y-value of the intersection of
this with y = x:

y = 2
√

1− y2

y2 =
(

2
√

1− y2
)2

= 4
(

1− y2
)

= 4− 4y2

5y2 = 4

y =

√

4

5
=

2√
5
=

2
√
5

5
(positive in the first quadrant)

Find the other limit of integration, when x = 2:

(2)
2
+ 4y2 = 4

4 + y2 = 4

y2 = 0

y = 0
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If x = 2
√

1− y2 = 2
(

1− y2
)1/2

, then x′ = 2 · 1
2

(

1− y2
)−1/2 · 2y = 2y√

1− y2
. This is

continuous on an interval containing 0 and 2
√
5

5 , so the Arc Length Formula applies.
Therefore the arc length is

s =

∫ 2
√
5/5

0

√

√

√

√1 +

(

2y
√

1− y2

)2

dy =

∫ 2
√
5/5

0

√

1 +
4y2

1− y2
dy

=

∫ 2
√
5/5

0

√

(1− y2) + 4y2

1− y2
dy =

∫ 2
√
5/5

0

√

1 + 3y2

1− y2
dy .

(b) Using technology, this evaluates to s ≈ 1.519 .

(c) From Example 3, the arc length from (0, 1) to
(

2
√
5

5 , 2
√
5

5

)

is s ≈ 0.903. Adding that

to the result from Part (b) above gives the arc length of one quarter of the ellipse, so

the arc length of the entire ellipse is s ≈ 4(0.903 + 1.519) = 9.688 .

64. (a) y =
ax

h
(b)

(c)
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(d) S = 2π

∫ h

0

ax

h

√

1 +
a2

h2
dx

=

∫ h

0

ax

h

√

h2 + a2

h2
dx

=
2πa

√
a2 + h2

h2

∫ h

0

x dx

=
2πa

√
a2 + h2

h2

(

x2

2

)h

0

=
2πa

√
a2 + h2

h2

(

h2

2

)

= πa
√
a2 + h2

65. Use the x-axis as the axis of the parabola and the axis of rotation, with the vertex of
the parabola at the origin. Then find the equation of the parabola, using the fact that it
contains the point

(

1
4 ,

1
2

)

:

x = Ay2

1

4
= A

(

1

2

)2

=
1

4
A

A = 4 · 1
4
= 1

x = 1 · y2 = y2

Solving for y as a function of x would give a function whose derivative is undefined at
x = 0, so stay with x as a function of y and integrate along y.

So x′ = 2y. This is continuous everywhere, so the Surface Area Formula applies. Therefore
the surface area is

s = 2π

∫ 1/2

0

y

√

1 + (2y)
2
dy = 2π

∫ 1/2

0

y
√

1 + 4y2 dy

Now let u = 1+4y2, so du = 8y dy, so y dy = 1
8 du. Also, when y = 0, then u = 1+4(0)2 =

1, and when y = 1
2 , then u = 1 + 4

(

1
2

)2
= 2. Therefore

s = 2π

∫ 2

1

√
u · 1

8
du =

π

4

[

2

3
u3/2

]2

1

=
π

6

(

23/2 − 13/2
)

=
π

6

(

2
√
2− 1

)

m2 .

66. (a) We want to find the arc length of the curve y = Ax3/2 from y = 0 to y = h.
Partitioning along the x-axis, then, we get y′ = 3

2Ax
1/2, which is continuous for

x ≥ 0, so the Arc Length Formula applies. Note that y = h gives h = Ax3/2, so that

x =
(

h
A

)2/3
, and this is the upper bound for integration. Then the arc length is

s =

∫ (h/A)2/3

0

√

12 +

(

3

2
Ax1/2

)2

dx =
1

2

∫ (h/A)2/3

0

√

4 + 9A2x dx .

(b) The given numbers mean that h = 150 and that y = h corresponds to x = 250.

Therefore h = Ax3/2 means that 150 = A·2503/2, so that A = 150·250−3/2 ≈ 0.0379 .
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(c) Substituting into the formula in part (a), we get

s =
1

2

∫ (h/A)2/3

0

√

4 + 9A2x dx ≈ 1

2

∫ 250

0

√

4 + 9 · 0.03792x dx

≈ 1

2

∫ 250

0

√
4 + 0.0129xdx ≈ 295.099 m .

(d) If the slope were a straight line, then using the Pythagorean Theorem, its length
would be

√

2502 + 1502 =
√
85000 ≈ 291.55.

The length computed in part (c) is slightly longer than the straight-line distance, so
it appears reasonable.

67. (a) Since y′ = a sinh x
a · 1

a = sinh x
a , and y′(10) = 3

4 , we get 3
4 = sinh 10

a , so that a =
10

sinh−1 3

4

. Now, compute the height of the endpoints above b, the lowest point; this is

y − b = a cosh
10

a
− a =

10

sinh−1 3
4

(

cosh sinh−1 3

4
− 1

)

.

Since cosh2 x = 1 + sinh2 x for all x, we can simplify the above formula as follows:

10

sinh−1 3
4

(

cosh sinh−1 3

4
− 1

)

=
10

sinh−1 3
4

(

√

1 + sinh2 sinh−1 3

4
− 1

)

=
10

sinh−1 3
4

(

√

1 +
9

16
− 1

)

=
10

sinh−1 3
4

(

√

25

16
− 1

)

=
10

sinh−1 3
4

· 1
4
=

5

2 sinh−1 3
4

.

Therefore the height of the supports is b+
5

2 sinh−1 3
4

.

(b) We determine the arc length by partitioning along the x-axis. From part (a), we know

that y′ = sinh x
a , so that the arc length is (using the identity cosh2 x = 1 + sinh2 x

again)

s =

∫ 10

−10

√

12 +
(

sinh
x

a

)2

dx

=

∫ 10

−10

√

1 + sinh2
x

a
dx

=

∫ 10

−10

√

cosh2
x

a
dx

=

∫ 10

−10

cosh
x

a
dx

=
[

a sinh
x

a

]10

−10

= 2a sinh
10

a
.



6-128 Chapter 6 Applications of the Integral

Now substitute the value of a from part (a), giving

s = 2 · 10

sinh−1 3
4

sinh sinh−1 3

4
=

60

4 sinh−1 3
4

=
15

sinh−1 3
4

≈ 21.6404 m .

68. The length of the rope is the arc length. We have y′ = a sinh x
a · 1

a = sinh x
a , so that the

arc length is (using the identity cosh2 x = 1 + sinh2 x)

L =

∫ c

−c

√

12 +
(

sinh
x

a

)2

dx

=

∫ c

−c

√

1 + sinh2
x

a
dx

=

∫ c

−c

√

cosh2
x

a
dx

=

∫ c

−c

cosh
x

a
dx

=
[

a sinh
x

a

]c

−c

= 2a sinh
c

a
.

Then since d is the height of the rope when x = c, we get

(d− b+a)2−a2 =
(

a cosh
c

a
+ b− a− b+ a

)2

−a2 = a2
(

cosh2
c

a
− 1
)

= a2 sinh2
c

a
=

L2

4
.

Expanding the left-hand side and simplifying gives

(d− b)2 + 2a(d− b) =
L2

4
, so that a =

L2

4 − (d− b)2

2(d− b)
=

L2 − 4(d− b)2

8(d− b)
.

(Note that d 6= b, so this expression makes sense, since d is the height of the ends of the
catenary, while b is its lowest height.)

69. (a) Let the parabola be h(x) = ax2 + bx+ c. Since h(0) = 0, we must have c = 0, so that
the equation of motion is h(x) = ax2 + bx = x(ax + b). Since h(0) = h(150) = 0, we
see that 150 must be a zero of ax+ b, so that h(x) = ax(x − 150) = ax2 − 150ax. It
follows that b = −150a. Finally, h′(x) = 2ax− 150a, so that h′(x) = 0 when x = 75.
We are given that h(75) = 46, so that

46 = h(75) = a · 75 · (75− 150) = −752a, so that a = − 46

752
.

Therefore the equation of motion is

h(x) = − 46

752
x(x − 150) =

46

752
(

150x− x2
)

.

(b) The total arc length is twice the length of the arc from x = 0 to the top of the arc,
at x = − b

a . Using a CAS to integrate, we get

s = 2

∫ −b/a

0

√

12 + (2ax+ b)2 dx = 2

∫ 150

0

√

1 +

(

− 92

752
x+

92

75

)2

dx

= 2
√
14089 +

5625

46
sinh−1 92

75
≈ 363.704 m .
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Challenge Problems

70. This function is not differentiable at x = 0. To see this, use the definition of the derivative:

lim
h→0

f(h)− f(0)

h
= lim

h→0

h sin 1
h − 0

h
= lim

h→0
sin

1

h
.

But as h → 0, 1
h → ∞, so that sin 1

h oscillates infinitely often between −1 and 1, so that

this limit does not exist. Since it is not differentiable on an interval containing
(

−π
2 ,

π
2

)

,
we cannot apply the Arc Length Formula.

71. (a) The total angle around point O is 360◦, and the polygon divides it into 2n equal angles,
each of which must be 360

2n = 180
2n−1 = 90

2n−2 degrees. But the dotted ray emanating
from O is the perpendicular bisector of the opposite side of an isosceles triangle, so it
also bisects its angle. Therefore α = 1

2 · 90
2n−2 = 45◦

2n−2 .

(b) The right triangle of which α is one angle has hypotenuse 1. The side opposite α
therefore has length sinα. Since there are 2n sides in the polygon, there are 2 · 2n =
2n+1 segments of length sinα, so that the sum of all of these segments has length

2n+1 sinα = 2n+1 sin
45◦

2n−2
.

(c) A table showing the value of this expression for several values of n is below. The true
circumference of the circle is 2πr = 2π ≈ 6.283185307:

5 10 50 100 500 1000
6.273096981 6.283175451 6.283185307 6.283185307 6.283185307 6.283185307

72. Note that a0 =
√
2
2 = sin 45◦. Then use the half-angle formula

sin
θ

2
=

√

1− cos θ

2
=

√

1−
√

1− sin2 θ

2
.

Since we start with θ = 45◦, all angles will be in the first quadrant, so we can always take
positive square roots. Then

a1 = sin
45◦

2
, a2 = sin

45◦

4
, , . . . , an = sin

45◦

2n
.

Then by Problem 47, we know that 2n+3 sin 45◦

2n = 2n+3an is a good approximation to

the circumference of the circle, which is 2π. Therefore 2n+2an is a good approximation to
1
2 · 2π = π. A table showing the value of 2n+2an for several values of n is below. The true
value is π ≈ 3.141592654:

5 10 50 100 500 1000
3.141277251 3.141592346 3.141592654 3.141592654 3.141592654 3.141592654

The expression approaches π rather rapidly.

73. Since s is as given, with y = f(x) we must have

s = ex − f(x) =

∫ x

0

√

1 + (f ′(t))2 dt.

Taking the derivative of both sides and using the Fundamental Theorem gives

ex−f ′(x) =
√

1 + (f ′(x))2; now square both sides to get e2x−2exf ′(x)+(f ′(x))2 = 1+(f ′(x))2.
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Cancel the quadratic terms and solve for f ′(x), giving

f ′(x) =
e2x − 1

2ex
=

1

2
(ex − e−x).

Now integrate to get

f(x) =
1

2
(ex + e−x) + C = coshx+ C.

Since f(0) = 1, we get C = 0, so that f(x) = coshx. As a check, compute the arc length
of f from 0 to x (use t as a dummy variable):

s =

∫ x

0

√

12 + sinh2 t dt =

∫ x

0

√

cosh2 t dt =

∫ x

0

cosh t dt = sinhx− sinh 0 = sinhx.

But

ex − f(x) = ex − coshx = ex − 1

2
(ex − e−x) =

1

2
(ex + e−x) = sinhx,

and the two are equal.

74. The key point here is that partitioning along either axis works except where the circle
meets the axes. Where it meets the x-axis, we must partition along the y-axis since the
curve has a vertical tangent line, and where it meets the y-axis, we must partition along
the x-axis since the curve has a horizontal tangent line. Solving x2 + y2 = 1 for y gives
y = ±

√
1− x2, so that

y′ = ±1

2
(1− x2)−1/2 · (−2x) = ±x(1 − x2)−1/2.

Similarly, if we solve for x and differentiate, we get x′ = ±y(1− y2)−1/2. So the arc length
integrands when partitioning along each axis are

x-axis :

√

12 +
(

±x(1 − x2)−1/2
)2

=

√

1 +
x2

1− x2
=

1√
1− x2

y-axis :

√

12 +
(

±y(1− y2)−1/2
)2

=

√

1 +
y2

1− y2
=

1
√

1− y2

Then:

(a) Since P1 is in quadrant I and P2 in quadrant II, the only axis crossing occurs at (0, 1),
so we can partition along the x-axis for the whole integration, giving

s =

∫ x1

x2

1√
1− x2

dx.

(b) Since P1 and P2 are both in the third quadrant, there are no axis crossings, so we can
partition along either axis. Using the y-axis, since y1 < y2, we get

s =

∫ y2

y1

1
√

1− y2
dy.

(c) Since P1 is in quadrant II and P2 is in quadrant IV, and we are considering the
counterclockwise arc from P1 to P2, there are two axis crossings, at (−1, 0) and at

(0,−1). From P1 to
(

−
√
2
2 ,−

√
2
2

)

(for example; any other point in the third quadrant

would work as well), we can partition along the y-axis, and then from
(

−
√
2
2 ,−

√
2
2

)

to P2 we partition along the x-axis. Therefore the arc length is

s =

∫ y1

−
√
2/2

1
√

1− y2
dy +

∫ x2

−
√
2/2

1√
1− x2

dx.



6.5 Arc Length; Surface Area of a Solid of Revolution 6-131

AP
R©

Practice Problems

1. f(x) = −x4 + 2

f ′(x) = −4x3

L =

∫ 10

0

√

1 + (−4x3)
2
dx =

∫ 10

0

√

1 + 16x6 dx

CHOICE D

2. y = tanx

y′ = sec2 x

L =

∫ π/2

−π/2

√

1 + (sec2 x)
2
dx =

∫ π/2

−π/2

√

1 + sec4 x dx

CHOICE B

3. f(x) = ln(cosx)

f ′(x) =
−sinx

cosx
= −tanx

L =

∫ π/3

0

√

1 + (−tanx)2 dx

=

∫ π/3

0

√

1 + tan2 x dx

=

∫ π/3

0

√
sec2 x dx

=

∫ π/3

0

secx dx

= [ln |secx+ tanx|]π/30

= ln
∣

∣

∣
sec

π

3
+ tan

π

3

∣

∣

∣
− ln |sec 0 + tan 0|

= ln
∣

∣

∣
2 +

√
3
∣

∣

∣
− ln |1 + 0|

= ln(2 +
√
3)

CHOICE B

4. (a) f(x) = −x3 + 4x2

f ′(x) = −3x2 + 8x

L =

∫ 4

0

√

1 + (−3x2 + 8x)2 dx

(b) V = π

∫ 4

0

(

−x3 + 4x2
)2

dx

(c) By the Shell Method

V = 2π

∫ 4

0

x
(

−x3 + 4x2
)

dx
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6.6 Work

Concepts and Vocabulary

1. True. See the first sentence of this section.

2. W = Fx. See the second sentence of this section.

3. A unit of work is called a newton-meter, or joule, in SI units and a foot-pound in the
customary U.S. system of units.

4. The work W done by a continuously varying force F = F (x) acting on an object, which
moves the object along a straight line in the direction of F from x = a to x = b, is given

by the definite integral
∫ b

a
F (x) dx. See subsection 1.

5. A spring is said to be in equilibrium when it is neither extended nor compressed. See the
discussion in subsection 2 of the text.

6. True. See the discussion of springs in subsection 2.

7. True. See the note in Example 4.

8. True. See the discussion at the end of this section in the text.

Skill Building

9. The work is the integral of the force through the distance, so

W =

∫ 20

5

(40− x) dx =

[

40x− 1

2
x2

]20

5

=
825

2
J .

10. The work is the integral of the force through the distance, so

W =

∫ 2

1

1

x
dx = [lnx]21 = ln 2 J .

11. Following the method of example 1, since the density of the chain is 3 kg/m, and the

portion of chain x m below the bridge must be lifted 40−x m, we get (since g = 9.8 m/s
2
)

W = 9.8

∫ 40

0

3(40− x) dx = 9.8

[

120x− 3

2
x2

]40

0

= 23520 J .

12. Following the method of Example 1, since the density of the chain is 2 lb/ft, and the
portion of chain x ft below the roof must be lifted 120− x feet, we get

W =

∫ 120

0

2(120− x) dx =
[

240x− x2
]120

0
= 14400 ft-lbs .

13. Since the restoring force is −3 N, we have

−3 = −k · 1
4
, so that k = 12 N/m .

14. Since the restoring force is 6 ft-lb, we have

6 = −k ·
(

−1

2

)

, so that k = 12 lb/ft .



6.6 Work 6-133

15. We are stretching the spring 0.6 m beyond equilibrium, so the work done by the spring
force is

∫ 0.6

0

(−5x) dx =

[

−5

2
x2

]0.6

0

= −0.9 J .

16. We are compressing the spring 0.2 m from equilibrium, so the work done by the spring
force is

∫ −0.2

0

(−0.3x) dx =
[

−0.15x2
]−0.2

0
= −0.006 J .

17. (a) Water that is x feet above the bottom of the pool must be lifted 4 − x feet. The
cross-sectional area of the pool at any height is the area of a circle with radius 12 ft,
which is 144π ft2. The water at the bottom must be lifted 4 feet, while the water
at the top is lifted 0 feet, so the limits of integration are from 0 to 4, and the work
performed is

∫ 4

0

[62.42 · 144π · (4− x)] dx = 8988.48π

∫ 4

0

(4− x) dx

= 8988.48π

[

4x− 1

2
x2

]4

0

≈ 2.259× 105 ft lb .

(b) The same as in Part (a), except that now the water must be lifted 9− x ft. So

W = 8988.48π

∫ 4

0

(9− x) dx = 8988.45π

[

9x− 1

2
x2

]4

0

= 8988.45π

[(

9 · 4− 1

2
· 42
)

− 0

]4

0

= 8988.45π · 28 = 251,677π ≈ 7.907× 105 ft lb .

18. (a) Gasoline that is x meters above the bottom of the tank must be lifted 10− x m. The
cross-sectional area of the tank at any height is the area of a circle with radius 8, which
is 64π m2. The gasoline at the bottom must be lifted 10 m, while that at the top is
lifted 0 m, so the limits of integration are from 0 to 10, and the work performed is

W = ρg (64π)

∫ 10

0

(10− x) dx

= (720)(9.8)(64π)

[

10x− x2

2

]10

0

= (451,584)π [100− 50− 0]

= 22,579,200π ≈ 7.093× 107 J

(b) W = ρg (64π)

∫ 10

0

(15− x) dx

= (720)(9.8)(64π)

[

15x− x2

2

]10

0

= (451,584)π [150− 50− 0]

= 45,158,400π ≈ 1.418× 108 J
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19. (a) Each horizontal cross section of the pyramid is a square; the side lengths of this square
decrease linearly from 2 at the top to 0 at the bottom, so at a point x meters below
the top of the container, the side length is 2 − 2

5x ft. Therefore the cross-sectional

area of the slurry at height x is
(

2− 2
5x
)2

ft2, and this must be lifted x m. So the
work performed (since the container is only filled 4 meters deep) is

9.9

∫ 5

1

[

17.9 ·
(

2− 2

5
x

)2

· x
]

dx = 175.42

∫ 5

1

(

4x− 8

5
x2 +

4

25
x3

)

dx

= 175.42

[

2x2 − 8

15
x3 +

1

25
x4

]5

1

= 1197.534 J .

(b) The size of the square cross sections are only proportional to the depth while the water
is still inside the container, so this will be easier to solve if we now let x represent the
distance from the bottom of the container.

If s represents the side of each square cross section, then, by similar triangles, s
x = 2 m

5 m ,

or s = 2
5x, so A = s2 =

(

2
5x
)2

= 4
25x

2. Also, each cross section now has to be lifted
8− x m. Therefore, the work done is

W = 175.42

∫ 4

0

(8− x) · 4

25
x2 dx =

175.42

25

∫ 4

0

(

32x2 − 4x3
)

dx

=
175.42

25

[

32

3
x3 − x4

]4

0

=
175.42

25

[(

32

3
· 43 − 44

)

− 0

]

=
175.42

25
· 1280

3
≈ 2993.835 J

20. Each horizontal cross section of the vat is a rectangle; its sides decrease linearly from
2 m × 0.5 m at the top to 0 m × 0 m at the bottom, so at a point x meters below the
top of the vat, the dimensions of the cross section are

(

2− x
2

)

m ×
(

1
2 − x

8

)

m. Therefore
the area of this cross section is

(

2− x

2

)

(

1

2
− x

8

)

m2 = 1− x

2
+

x2

16
m2

The density of olive oil is 0.9 g/cm
3 × 0.001 kg/g× 1003 cm3/m3 = 900 kg/m

3
.

(a) Each cross section must be lifted x meters, 2 ≤ x ≤ 4.

W = 9.8(900)

∫ 4

2

x

(

1− x

2
+

x2

16

)

dx

= 8820

∫ 4

2

x

(

16− 8x+ x2

16

)

dx

=
8820

16

∫ 4

2

(

16x− 8x2 + x3
)

dx

=
2205

4

[

8x2 − 8x3

3
+

x4

4

]4

2

=
2205

4

[(

128− 512

3
+ 64

)

−
(

32− 64

3
+ 4

)]

=
2205

4
· 20
3

= 3675 J .
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(b) Now each cross section must be lifted 2 + x meters, 2 ≤ x ≤ 4.

W = 9.8(900)

∫ 4

2

(2 + x)

(

1− x

2
+

x2

16

)

dx

= 8820

∫ 4

2

(2 + x)

(

16− 8x+ x2

16

)

dx

=
8820

16

∫ 4

2

(

32− 16x+ 2x2 + 16x− 8x2 + x3
)

dx

=
2205

4

∫ 4

2

(

x3 − 6x2 + 32
)

dx

=
2205

4

[

x4

4
− 2x3 + 32x

]4

2

=
2205

4
[(64− 128 + 128)− (4− 16 + 64)]

=
2205

4
· 12

= 6615 J .

Applications and Extensions

21. The elevator itself is lifted 400 ft, so this takes 10,000 × 400 = 4 × 106 ft-lbs of work.
The remaining work is lifting the cables themselves. For each cable, the portion of the
cable x feet from the top must be lifted x feet. The cable weighs 0.36 lbs/in, which is
0.36× 12 = 4.32 lbs/ft, so the work involved in lifting all six cables is

6

∫ 400

0

4.32x dx = 6
[

2.16x2
]400

0
= 2.0736× 106 ft-lbs.

The total work is the sum of these two, or 6.0736× 106 ft-lbs .

22. The 15 m of cable must be lowered another 60 m; since the cable’s density is 9 kg/m, this
takes 15 × 9 × 60 × 9.8 = 79380 J. The remainder of the work expended is to lower the
additional cable. A bit of cable on the spool that ends up x m below the spool must be
lowered x m, so the work expended is

9.8

∫ 60

0

9x dx = 9.8

[

9

2
x2

]60

0

= 158760 J.

So the total work expended by gravity is 79380 + 158760 = 238140 J .

23. Pulling the bucket itself to the top requires lifting a mass of 75 kg through a distance of
10 m, which takes 75× 10× 9.8 = 7350 J. The remainder of the work expended is for the
chain itself. The mass density of the chain is 20

10 = 2 kg/m, and the portion of the chain x
m below the roof must be lifted x m, so the work expended is

9.8

∫ 10

0

2x dx = 9.8
[

x2
]10

0
= 980 J.

Therefore the total work is 7350 + 980 = 8330 J .
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24. Pulling the bucket itself to the top requires lifting a mass of 75 kg through a distance of
10 m, which takes 75× 10× 9.8 = 7350 J. The remainder of the work expended is for the
chain itself. The mass density of the chain is 15

10 = 1.5 kg/m, and the portion of the chain
x m below the roof must be lifted x m, so the work expended is

9.8

∫ 10

0

1.5x dx = 9.8
[

0.75x2
]10

0
= 735 J.

Therefore the total work is 7350 + 735 = 8085 J .

25. The force required to extend the spring from 1 m to 3 m, which is 2 m beyond its equilibrium
point, is −3 N, so the spring constant is given by −3 = −k · 2, and therefore k = 3

2 . Then
the work expended to extend it 1 m from equilibrium (to a length of 2 m) is

∫ 1

0

(

−3

2

)

x dx = −
[

3

4
x2

]1

0

= −3

4
J .

26. The force required to compress the spring by 3
2 m is 10 N, so the spring constant is given by

the equation 10 = −k ·
(

− 3
2

)

, and therefore k = 20
3 . Then the work expended to compress

the spring to a length of 1 m is

∫ 1

0

(

−20

3
x

)

dx =

[

10

3
x2

]1

0

= −10

3
J .

27. The force required to extend the spring by 4 ft is 2 lb, so the spring constant is given by
−2 = −k · 4, and then k = 1

2 . So

−9 ft-lb =

∫ x

0

(

−1

2
t

)

dt = −
[

1

4
t2
]x

0

= −1

4
x2 ft-lb.

Simplifying gives x2 = 36, so that x = 6 (since we are extending the spring, we take the

positive solution). Therefore the total length of the spring is 6 + 4 = 10 ft .

28. The spring constant is 1
2 , from Problem 27, so using the integral from Problem 27, we get

−8 ft-lb = −1

4
x2 ft-lb,

so that x =
√
32 = 4

√
2. So the spring is extended 4

√
2 ft, for a total length of 4 + 4

√
2 ft .

29. The radius of the cone, which is 4 m at the top and 0 m at the bottom, decreases linearly
with height, so at a distance of x m from the top, its radius is 4−x m. Therefore the cross
sectional area of the cone x m from the top is π(4 − x)2 m2. That cross section must be
lifted x m, so that the total work required is

9.8

∫ 4

0

1000 · x · π(4− x)2 dx = 9800π

∫ 4

0

x(4 − x)2 dx = 9800π

∫ 4

0

(

16x− 8x2 + x3
)

dx

= 9800π

[

8x2 − 8

3
x3 +

1

4
x4

]4

0

=
627200

3
π J .

30. All the calculations from Problem 29 are still valid, except that the integration goes from 2
to 4 (since the integration variable x is the distance below the top of the tank). Therefore
we get for the work

9.8 · 1000π
[

8x2 − 8

3
x3 +

1

4
x4

]4

2

=
196000

3
π J .



6.6 Work 6-137

31. To determine the radius of the cross section x m below the top of the bowl, consider the
following diagram, which shows a vertical cross section through the center of the bowl:

x
4

16 x2

4 3 2 1 1 2 3 4

4

3

2

1

At a height x m below the top, the radius of the cross section is
√
16− x2, so that the area

of the cross section at that height is (16− x2)π. That cross section must be lifted x m, so
the work performed is

9.8

∫ 4

2

1000x(16−x2)π dx = 9800π

∫ 4

2

(16x−x3) dx = 9800π

[

8x2 − 1

4
x4

]4

2

= 352800π J .

32. The area of each cross section is the same as in Problem 31. Now, that cross section must
be lifted x + 2 m, since we want to lift it 2 m above the top of the tank. The integration
bounds are now from 0 to 4, since the tank is full. Then the work performed is

9.8

∫ 4

0

1000(x+ 2)(16− x2)π dx = 9800π

∫ 4

0

(

−x3 − 2x2 + 16x+ 32
)

dx

= 9800π

[

−1

4
x4 − 2

3
x3 + 8x2 + 32x

]4

0

=
4390400

3
π J .

33. The area of each cross section is 4π m2, since the tank has a diameter of 4 m.

(a) The cross section x m below the top must be lifted x m. We wish to lift only the top
half of the water, so the integration bounds are from 0 to 3 and the total work is

9.8

∫ 3

0

1000x · 4π dx = 9.8

∫ 3

0

4000πx dx = 9.8
[

2000πx2
]3

0
≈ 5.542× 105 J .

(b) Now each cross section must be lifted x+3 m. We wish to lift the entire tank, so the
integration bounds are 0 to 6. Therefore the work done is

W = 9.8 · 4000π
∫ 3

0

(x+ 3) dx = 39,200π

[

1

2
x2 + 3x

]3

0

= 39,200π

[(

1

2
· 32 + 3 · 3

)

− 0

]

= 39,200π · 27
2

= 529,200π ≈ 1.663× 106 J .

34. The area of each horizontal cross section is 30 × 20 = 600 ft2, and the cross section x ft
below the top must be raised x ft. The integration bounds are from 1 to 6 since there is
water in the bottom 5 feet of the pool. Therefore the total work is

∫ 6

1

62.42x · 600 dx =
[

18726x2
]6

1
= 655410 ft-lbs .
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35. The area of each horizontal cross section is 25 × 15 = 375 ft2, and the cross section x ft
below the top must be raised x ft. The integration bounds are from 1 to 5 since there is
water in the bottom 4 feet of the pool. Therefore the total work is

∫ 5

1

62.42x · 375 dx =
[

11703.8x2
]5

1
= 280890 ft-lbs.

Since the motor can do 550 ft-lbs of work per second, the time required to empty the pool
is

280890

550
s ≈ 511 s =

511

60
min ≈ 8.5 min .

It takes between 8 and 9 minutes to empty the pool.

36. From the discussion in the text, the work required to move a mass m kg from the surface
of the Earth to a distance d meters above the center of the Earth is

gRm

(

1− R

R+ d

)

J,

where g ≈ 9.8m/s2 is the acceleration due to Earth’s gravity and R ≈ 6.37× 106 m is the
radius of the Earth. So to move a mass of 30 kg a distance of 30 km = 30000 m above the
Earth’s surface requires

9.8 · 6.37× 106 · 30
(

1− 6370000

6370000+ 30000

)

≈ 8.77866× 106 J .

37. From the discussion in the text, the work required to move a mass m kg from the surface
of the Earth to a distance d meters above the surface of the Earth is

gRm

(

1− R

R+ d

)

J,

where g ≈ 9.8m/s2 is the acceleration due to Earth’s gravity and R ≈ 6.37× 106 m is the
radius of the Earth. So to move a mass of 1000 kg a distance of 800 km = 800000 m above
the Earth’s surface requires

9.8 · 6.37× 106 · 1000
(

1− 6370000

6370000+ 800000

)

≈ 6.96524× 109 J .

38. To move the charge from x = 2a to x = a, we must apply a force equal to the negative of
the electrical force, or −m

x2 . Here we are dealing with a unit charge, so m = 1, and then
the work is

∫ a

2a

(

− 1

x2

)

dx =

[

1

x

]a

2a

=
1

2a
.

39. Since the water weighs 20 lb at the bottom, and loses a fourth of its weight, it weighs 15 lb
at the top. So at a depth x from the top of the well, the weight of the water in the bucket
is 15 + 5 x

25 = 15 + x
5 lb. Since the bucket weighs 1.5 lb, the total weight being lifted at

height x is 16.5+ x
5 lb. To compute the work, note that there is no need to multiply by x in

this integration, since we are lifting this weight “infinitesimally higher”, so the expression
above is the complete integrand. Another way of looking at this is that in the previous
problems, we lifted the cross section all the way to the top, so we needed to multiply by x,
the distance to the top, in order to figure out how far to lift it. Here we are lifting it only
dx.

∫ 25

0

(

16.5 +
x

5

)

dx =

[

16.5x+
1

10
x2

]25

0

= 475 ft-lbs .

40. The force is F = −300000x, so the work done is

∫ 0.1

0

(−300000x) dx = −
[

150000x2
]0.1

0
= −1500 J .
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41. A vertical cross section of the container, with the level of the water source shown, is below:

y 2

y

y

2 y

2 1 1 2
x

2

1

1

2

3

4

y

At height y, a horizontal cross section of the container is a washer with inner radius
√
y

and outer radius 2 (see the figure), so its area is π
(

22 −
(√

y
)2
)

= (4 − y)π. To lift that

water to height y, it must be lifted y+2 units since the source is 2 units below the x-axis.
Finally, the container is bounded by x = ±2, so by y = 22 = 4. Therefore the total work
performed is

∫ 4

0

(y + 2)(4− y)π dy = π

∫ 4

0

(−y2 + 2y + 8) dy = π

[

−1

3
y3 + y2 + 8y

]4

0

=
80

3
π .

Challenge Problems

42. (a) Since the volume is given in cubic feet, and we want cubic inches, we multiply by
123 = 1728 to get 3456 in3 for the current volume and 6912 in3 for the desired volume.
Since PV 1.4 = c, and P = 100 when V = 3456 in3, we get 100 · 34561.4 = c, or
c ≈ 8.995× 106. Then since we are doubling the volume from 3456 to 6912, the work
done is

W =

∫ 6912

3456

P dV ≈
∫ 6912

3456

8.995× 106

V 1.4
dV = 8.995× 106

∫ 6912

3456

V −1.4 dV

= 8.995× 106
[

− 1

0.4
V −0.4

]6912

3456

≈ 209209 in-lb .

(b) The work is

W =

∫ 4.6

2.4

P dV =

∫ 4.6

2.4

120

V 1.2
dV = 120

[

− 1

0.2
V −0.2

]4.6

2.4

= 600

(

1

2.40.2
− 1

4.60.2

)

≈ 61.45 in-lb .

6.7 Hydrostatic Pressure and Force

Concepts and Vocabulary

1. Pressure is defined as the force exerted per unit area.

2. True. The pressure is ρgh, where h is the depth of the plate.

3. (b), Pascal, is correct. See Table 2.

4. True. See the discussion following Table 2.
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Skill Building

5. At each height (y-coordinate), the depth of the water above that height is 5 − y, so the
force on a slice at that height is 3ρg(5−y)∆y. Therefore the total force is the integral over
the possible slices, or

∫ 5

0

3ρg(5− y) dy = 3ρg

[

5y − 1

2
y2
]5

0

=
75

2
ρg.

Using SI units, we have ρg = 9800, so we get 75
2 · 9800 = 367500 N .

6. At each height (y-coordinate), the depth of the water above that height is −y. At
that height, the coordinates of the two edges of the end of the container are, using the

Pythagorean Theorem, ±
√

4− y2. So the force on a slice at that height is 2
√

4− y2 ·
ρg(−y)∆y. Therefore the total force is

∫ 0

−2

2
√

4− y2 · ρg(−y) dy = −2ρg

∫ 0

−2

y
√

4− y2 dy.

Make the substitution u = 4 − y2, so that du = −2y dy. Then y = −2 corresponds to
u = 0, and y = 0 to u = 4, so we get

−2ρg

∫ 0

−2

y
√

4− y2 dy = −2ρg ·
(

−1

2

)
∫ 4

0

u1/2 du = ρg

[

2

3
u3/2

]4

0

=
16

3
ρg.

Using SI units, we have ρg = 9800, so we get 16
3 · 9800 =

156800

3
≈ 52266.7 N .

7. Assuming that the diagonal lines make the same angle with the x-axis, we get the following
diagram of the end of the container:

2, 0 4, 0

0, 1 6, 1

1 2 3 4 5 6

1

The diagonal line on the left passes through (2, 0) and (0, 1), so it has equation

y − 1 =
1− 0

0− 2
(x− 0) = −1

2
x, or y = 1− 1

2
x, or x = 2− 2y.

The diagonal line on the right passes through (4, 0) and (6, 1), so it has equation

y =
1− 0

6− 4
(x− 4), or y =

1

2
x− 2, or x = 4 + 2y.

At a height y, the distance below the surface of the water is 1 − y, so the force on a slice
at that height is

ρg(1− y)((4 + 2y)− (2− 2y)) = ρg(1− y)(2 + 4y) = ρg(−4y2 + 2y + 2).
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Therefore the total force on the plate is

∫ 1

0

ρg(−4y2 + 2y + 2) = ρg

[

−4

3
y3 + y2 + 2y

]1

0

=
5

3
ρg =

49000

3
≈ 16333.3 N .

8. The diagonal side of the container passes through the points (3, 0) and (0, 4), so its equation
is given by 4x+ 3y = 12, or x = 3 − 3

4y. At a given y-coordinate, a cross section is 4− y
feet below the surface of the water. Solving 4x + 3y = 12 for x, we see that the width of
that cross section is x = 3− 3

4y. Then the total force on the end of the container is

∫ 4

0

ρg(4− y)

(

3− 3

4
y

)

dy = ρg

∫ 4

0

(

12− 6y +
3

4
y2
)

dy

= ρg

[

12y − 3y2 +
1

4
y3
]4

0

= 16ρg = 1000 lbs .

9. At any depth, the width of the plate is 2 m, so the force on a cross section at height y is
2ρgy∆y. Therefore the total force on the plate is

∫ 6

0

2ρgy dy =
[

ρgy2
]6

0
= 36ρg = 352800 N .

10. The analysis in the solution to Problem 9 is still valid; the only difference is that the
integral goes from y = 1 to y = 7, since the plate is suspended 1 m below the water
surface. Therefore the total force on the plate is

∫ 7

1

2ρgy dy =
[

ρgy2
]7

1
= 48ρg = 470400 N .

Applications and Extensions

11. At any depth, the width of the pool is 20 ft. Therefore the force on the short side of the
pool is (since the pool is 6 ft deep)

∫ 6

0

ρg20y dy = 62.5
[

10y2
]6

0
= 22500 lbs .

12. The long side of the pool is 30 ft long, so, since the pool is again 6 ft deep, the total force
is

∫ 6

0

ρg30y dy = 62.5
[

15y2
]6

0
= 33750 lbs .

13. Place the trapezoid on a Cartesian grid:

2, 0 3, 0

0, 2 5, 2

1 2 3 4 5

1

2
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Then the equations of the two diagonal lines are:

y − 0 =
0− 2

2− 0
(x− 2) or y = 2− x or x = 2− y

y − 0 =
0− 2

3− 5
(x− 3) or y = x− 3 or x = y + 3.

So at any height y, the height of the water above a slice at that point is 1 − y (since the
trough is filled only to a depth of 1 m), and the width of the slice is (y+3)−(2−y) = 2y+1,
so the force on the end of the trough is

∫ 1

0

ρg(1− y)(2y + 1) dy = ρg

∫ 1

0

(−2y2 + y + 1) dy = ρg

[

−2

3
y3 +

1

2
y2 + y

]1

0

= 9800 · 5
6
=

24500

3
≈ 8166.67 N .

14. Placing the bottom vertex of the equilateral triangle at the origin, we get the following
picture:

0, 0

1, 31, 3 0, 3

1. 0.5 0.5 1.

0.5

1.

1.5

Each of the diagonal lines makes an angle of 60◦ with the x-axis, so their equations are
y
x = tan 60◦, or x = 1√

3
y and y

x = tan 120◦, or x = − 1√
3
y. So at a height of y above the

bottom the width of the trough is 1√
3
y−

(

− 1√
3
y
)

= 2√
3
y. Since the equilateral triangle is

2 m on the side, its height is
√
3, so that a cross section at y is

√
3−y m below the surface.

Therefore the force is
∫

√
3

0

ρg(
√
3− y)

(

2√
3
y

)

dy = ρg

∫

√
3

0

(

− 2√
3
y2 + 2y

)

dy

= ρg

[

− 2

3
√
3
y3 + y2

]

√
3

0

= 1ρg = 9800 N .

15. With the origin at the dot in the diagram, water at a given value of y has width 2
√

4− y2,

since the left edge of the trough will be at x = −
√

4− y2 and the right edge will be at
√

4− y2. Since the trough is filled, water at a given value of y is at a depth of −y m. So
the total force is

∫ 0

−2

ρg(−y)2
√

4− y2 dy = ρg

∫ 0

−2

(

−2y
√

4− y2
)

dy.
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Now make the substitution u = 4− y2, so that du = −2y dy. Then y = −2 corresponds to
u = 0, and y = 0 to u = 4, so we get

ρg

∫ 0

−2

(

−2y
√

4− y2
)

dy = ρg

∫ 4

0

u1/2 du = ρg

[

2

3
u3/2

]4

0

=
16

3
ρg ≈ 52266 N .

16. The face of the floodgate is shown below:

0, 0

0.75, 10.75, 1

0.5 0.5

0.5

1.

The diagonal lines have slopes − 1
0.75 = − 4

3 and 1
0.75 = 4

3 , so their equations are x = − 3
4y

and x = 3
4y. Therefore for a given value of y, the width of a cross section of the floodgate

is 3
4y −

(

− 3
4y
)

= 3
2y, and this cross section is 1 − y m below the surface. Then the total

force is

∫ 1

0

ρg(1− y)

(

3

2
y

)

dy = ρg

∫ 1

0

(

3

2
y − 3

2
y2
)

dy = ρg

[

3

4
y2 − 1

2
y3
]1

0

= 2450 lbs .

17. Placing the origin at the center of the bottom of the dam, the face of the dam is shown
below:

75, 0 75, 0

100, 60 100, 60

100 75 50 25 25 50 75 100

20

40

60

The two diagonal lines have equations

y − 0 =
60− 0

−100− (−75)
(x− (−75)) or y = −12

5
(x + 75) or y = −12

5
x− 180

y − 0 =
60− 0

100− 75
(x − 75) or y =

12

5
(x − 75) or y =

12

5
x− 180.

Solving for x gives

x = − 5

12
y − 75 or x =

5

12
y + 75.

Therefore the width of a cross section at height y is

(

5

12
y + 75

)

−
(

− 5

12
y − 75

)

=
5

6
y + 150,
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and such a cross section lies 60− y m below the surface. Then the total force is

∫ 60

0

ρg(60− y)

(

5

6
y + 150

)

dy = ρg

∫ 60

0

(

9000− 100y − 5

6
y2
)

dy

= ρg

[

9000y− 50y2 − 5

18
y3
]60

0

= 2.94× 109 N .

18. Placing the origin at the center of one end of the tank with the positive y-axis pointing
down, the face of the tank is shown below:

y 4

16 y216 y2

4 3 2 1 1 2 3 4

4

3

2

1

1

2

3

4

At a given depth y, the distance across that end of the tank is 2
√

16− y2, and that cross
section lies y ft below the surface. Therefore the total force is

∫ 4

0

ρgy · 2
√

16− y2 dy = 2ρg

∫ 4

0

y
√

16− y2 dy.

Now use the substitution u = 16 − y2, so that du = −2y dy. Then y = 0 corresponds to
u = 16, while y = 4 corresponds to u = 0, so we get

2ρg

∫ 4

0

y
√

16− y2 dy = 2ρg·
(

−1

2

)
∫ 0

16

u1/2 dy = −ρg

[

2

3
u3/2

]0

16

=
128

3
ρg = 60·128

3
= 2560 lbs .
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19. Place the origin at the center of the viewing plate; then the situation is shown below:

y
1

1 y21 y2

1 1

1

5

The equation of the viewing plate is x2 + y2 = 1, so at any y-coordinate, the width of a

cross section of the plate is 2
√

1− y2 (see the figure), and that cross section is 5 − y m
below the water surface. (Note that if y < 0, as drawn, then 5− y > 5, which makes sense
since this part of the plate is more than 5 m below the surface.) Therefore the total force
is

∫ 1

−1

ρg(5− y) · 2
√

1− y2 dy

Evaluating numerically, with ρg = 1025 · 9.8, gives 5ρgπ ≈ 157,786 N .
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20. Place the origin at the center of the viewing plate; then the situation is shown below:

y 1

1 y4
4

1 y4
4

1 1

1

5

The equation of the viewing plate is x4 + y4 = 1, so at any y-coordinate, the width of a

cross section of the plate is 2 4

√

1− y4 (see the figure), and that cross section is 5 − y m
below the water surface. (Note that if y < 0, as drawn, then 5− y > 5, which makes sense
since this part of the plate is more than 5 m below the surface.) Therefore the total force
is (evaluating numerically, with ρg = 1025 · 9.8)

∫ 1

−1

ρg(5− y) · 2 4

√

1− y4 dy ≈ 18.5407ρg ≈ 186,241 N .
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21. Placing the origin at the center of one end of the tank with the positive y-axis pointing
down, the face of the tank is shown below:

y 0.25

0.252 y20.252 y2

0.25 0.25

0.25

0.25

Since the tank’s radius is 0.25 m, it is half-full. At a given y-coordinate (depth), the width

of the cross section of that end is 2
√

0.252 − y2, and the cross section lies y m below the
surface. So the total force is

∫ 0.25

0

ρgy · 2
√

0.252 − y2 dy

Now use the substitution u = 0.252 − y2, so that du = −2y dy. Then y = 0 corresponds to
u = 0.252, while y = 0.25 corresponds to y = 0, and we get

∫ 0.25

0

ρgy · 2
√

0.252 − y2 dy = −ρg

∫ 0

0.252
u1/2 du = −ρg

[

2

3
u3/2

]0

0.252
=

2

3
ρg · 0.253

=
2

3
· 690 · 9.8 · 0.015625 = 70.4375 N .

22. F =

∫ d

c

ρg(H − y) [f(y)− h(y)] dy

=

∫ 0

−2

9800(0− y)
[

√

16− y2 −
(

−
√

16− y2
)]

dy

= 9800

∫ 0

−2

(−y)
[

2
√

16− y2
]

dy

= 9800

∫ 0

−2

−2y
√

16− y2 dy

Let u = 16− y2. Then du = −2y dy, u(−2) = 12, and u(0) = 16.

= 9800

∫ 16

12

u1/2 du

= 9800

[

2u3/2

3

]16

12

= 9800

[

2
(

64− 24
√
3
)

3

]

= 9800

[

128− 48
√
3

3

]

≈ 146,547.766 N ≈ 1.466× 105 N
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6.8 Center of Mass; Centroid; the Pappus Theorem

Concepts and Vocabulary

1. (c), center of mass, is correct. See the first few sentences of this chapter.

2. (c), md, is correct. See the discussion in subsection 1.

3. True. See the discussion in subsection 2.

4. (a) is correct; see Example 4.

5. False. See Example 5 for one instance where it does not.

6. (a) is correct. See the discussion in subsection 2.

Skill Building

7. The center of mass is

x̄ =

∑2
i=1 mixi
∑2

i=1 mi

=
20 · 4 + 50 · 10

20 + 50
=

58

7
.

8. The center of mass is

x̄ =

∑2
i=1 mixi
∑2

i=1 mi

=
10 · (−2) + 3 · 3

10 + 3
= −11

13
.

9. The center of mass is

x̄ =

∑4
i=1 mixi
∑4

i=1 mi

=
4 · (−1) + 3 · 2 + 3 · 4 + 5 · 3

4 + 3 + 3 + 5
=

29

15
.

10. The center of mass is

x̄ =

∑4
i=1 mixi
∑4

i=1 mi

=
7 · 6 + 3 · (−2) + 2 · (−4) + 4 · (−1)

7 + 3 + 2 + 4
=

24

16
=

3

2
.

11. The moments are

My =
3
∑

i=1

mixi = 4 · 0 + 8 · 2 + 1 · 4 = 20

Mx =
3
∑

i=1

miyi = 4 · 2 + 8 · 1 + 1 · 8 = 24

and the mass is M = 4+ 8 + 1 = 13, so that

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

20

13
,
24

13

)

.

12. The moments are

My =

3
∑

i=1

mixi = 6 · (−1) + 2 · 12 + 10 · (−1) = 8

Mx =

3
∑

i=1

miyi = 6 · (−1) + 2 · 6 + 10 · (−2) = −14
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and the mass is M = 6 + 2 + 10 = 18, so that

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

8

18
, −14

18

)

=

(

4

9
, −7

9

)

.

13. The moments are

My =

4
∑

i=1

mixi = 4 · (−1) + 3 · 2 + 3 · 4 + 5 · 3 = 29

Mx =

4
∑

i=1

miyi = 4 · 2 + 3 · 3 + 3 · 5 + 5 · 6 = 62

and the mass is M = 4 + 3 + 3 + 5 = 15, so that

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

29

15
,
62

15

)

.

14. The moments are

My =

4
∑

i=1

mixi = 8 · (−4) + 6 · 0 + 3 · 6 + 5 · (−3) = −29

Mx =

4
∑

i=1

miyi = 8 · 4 + 6 · 5 + 3 · 4 + 5 · (−5) = 49

and the mass is M = 8 + 6 + 3 + 5 = 22, so that

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

−29

22
,
49

22

)

.

15. The lamina is shown below:

y 2 x 3

1, 0

1, 1

2, 0

2, 7

1 1 2
x

1

2

3

4

5

6

7

y

Let the mass density of the lamina be ρ. Then the mass of the lamina is

M =

∫ 2

−1

ρ(2x+ 3) dx = ρ
[

x2 + 3x
]2

−1
= 12ρ,
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and the moments are

My = ρ

∫ 2

−1

x(2x+ 3) dx = ρ

∫ 2

−1

(2x2 + 3x) dx = ρ

[

2

3
x3 +

3

2
x2

]2

−1

=
21

2
ρ

Mx =
1

2
ρ

∫ 2

−1

(2x+ 3)2 dx =
1

2
ρ

[

1

6
(2x+ 3)3

]2

−1

=
342

12
ρ =

57

2
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(21/2)ρ

12ρ
,
(57/2)ρ

12ρ

)

=

(

21

2 · 12 ,
57

2 · 12

)

=

(

7

8
,
19

8

)

.

16. The lamina is shown below:

y
3 x

2

1, 0

1, 2

3, 0

1 1 2 3
x

1

2

y

Let the mass density of the lamina be ρ. Then the mass of the lamina is

M = ρ

∫ 3

−1

3− x

2
dx = ρ

∫ 3

−1

(

3

2
− 1

2
x

)

dx = ρ

[

3

2
x− 1

4
x2

]3

−1

= 4ρ

and the moments are

My = ρ

∫ 3

−1

x · 3− x

2
dx = ρ

∫ 3

−1

(

3

2
x− 1

2
x2

)

dx = ρ

[

3

4
x2 − 1

6
x3

]3

−1

=
4

3
ρ

Mx =
1

2
ρ

∫ 3

−1

(

3− x

2

)2

dx =
1

8
ρ

∫ 3

−1

(3− x)2 dx =
1

8
ρ

[

−1

3
(3− x)3

]3

−1

=
8

3
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(4/3)ρ

4ρ
,
(8/3)ρ

4ρ

)

=

(

4

3 · 4 ,
8

3 · 4

)

=

(

1

3
,
2

3

)

.

17. The lamina is shown below:

y x2

0, 0

3, 9

3, 0

1 2 3
x

1

2

3

4

5

6

7

8

9

y
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Let the mass density of the lamina be ρ. Then the mass of the lamina is

M = ρ

∫ 3

0

x2 dx = ρ

[

1

3
x3

]3

0

= 9ρ

and the moments are

My = ρ

∫ 3

0

x · x2 dx = ρ

∫ 3

0

x3 dx = ρ

[

1

4
x4

]3

0

=
81

4
ρ

Mx =
1

2
ρ

∫ 3

0

(

x2
)2

dx =
1

2
ρ

∫ 3

0

x4 dx =
1

2
ρ

[

1

5
x5

]3

0

=
243

10
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(81/4)ρ

9ρ
,
(243/10)ρ

9ρ

)

=

(

81

4 · 9 ,
243

10 · 9

)

=

(

9

4
,
27

10

)

.

18. The lamina is shown below:

y x3

0, 0

2, 8

2, 0

0.5 1. 1.5 2.
x

1

2

3

4

5

6

7

8

y

Let the mass density of the lamina be ρ. Then the mass of the lamina is

M = ρ

∫ 2

0

x3 dx = ρ

[

1

4
x4

]2

0

= 4ρ

and the moments are

My = ρ

∫ 2

0

x · x3 dx = ρ

∫ 2

0

x4 dx = ρ

[

1

5
x5

]2

0

=
32

5
ρ

Mx =
1

2
ρ

∫ 2

0

(

x3
)2

dx =
1

2
ρ

∫ 2

0

x6 dx =
1

2
ρ

[

1

7
x7

]2

0

=
64

7
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(32/5)ρ

4ρ
,
(64/7)ρ

4ρ

)

=

(

32

5 · 4 ,
64

7 · 4

)

=

(

8

5
,
16

7

)

.
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19. The lamina is shown below:

y 4 x x2

0, 0 4, 0

1 2 3 4
x

1

2

3

4

y

Let the mass density of the lamina be ρ. Then the mass of the lamina is

M = ρ

∫ 4

0

(4x− x2) dx = ρ

[

2x2 − 1

3
x3

]4

0

=
32

3
ρ

and the moments are

My = ρ

∫ 4

0

x · (4x− x2) dx = ρ

∫ 4

0

(4x2 − x3) dx = ρ

[

4

3
x3 − 1

4
x4

]4

0

=
64

3
ρ

Mx =
1

2
ρ

∫ 4

0

(4x− x2)2 dx =
1

2
ρ

∫ 4

0

(

16x2 − 8x3 + x4
)

dx =
1

2
ρ

[

16

3
x3 − 2x4 +

1

5
x5

]4

0

=
256

15
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(64/3)ρ

(32/3)ρ
,
(256/15)ρ

(32/3)ρ

)

=

(

2,
256 · 3
32 · 15

)

=

(

2,
8

5

)

.

20. The lamina is shown below:

y x2 x 1

0, 0 4, 0

0, 1

4, 21

1 2 3 4
x

2

4

6

8

10

12

14

16

18

20

y

Let the mass density of the lamina be ρ. Then the mass of the lamina is

M = ρ

∫ 4

0

(x2 + x+ 1) dx = ρ

[

1

3
x3 +

1

2
x2 + x

]4

0

=
100

3
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and the moments are

My = ρ

∫ 4

0

x · (x2 + x+ 1) dx = ρ

∫ 4

0

(x3 + x2 + x) dx = ρ

[

1

4
x4 +

1

3
x3 +

1

2
x2

]4

0

=
280

3
ρ

Mx =
1

2
ρ

∫ 4

0

(x2 + x+ 1)2 dx =
1

2
ρ

∫ 4

0

(

x4 + 2x3 + 3x2 + 2x+ 1
)

dx

=
1

2
ρ

[

1

5
x5 +

1

2
x4 + x3 + x2 + x

]4

0

=
1042

5
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(280/3)ρ

(100/3)ρ
,
(1042/5)ρ

(100/3)ρ

)

=

(

280

100
,
1042 · 3
100 · 5

)

=

(

14

5
,
1563

250

)

.

21. The lamina is

y x

0, 0 4, 0

4, 2

1 2 3 4
x

1

2

y

Let the mass density of the lamina be ρ. Then the mass of the lamina is

M = ρ

∫ 4

0

x1/2 dx = ρ

[

2

3
x3/2

]4

0

=
16

3
ρ

and the moments are

My = ρ

∫ 4

0

x · x1/2 dx = ρ

∫ 4

0

x3/2 dx = ρ

[

2

5
x5/2

]4

0

=
64

5
ρ

Mx =
1

2
ρ

∫ 4

0

(

x1/2
)2

dx =
1

2
ρ

∫ 4

0

x dx =
1

2
ρ

[

1

2
x2

]4

0

= 4ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(64/5)ρ

(16/3)ρ
,

4ρ

(16/3)ρ

)

=

(

64 · 3
16 · 5 ,

4 · 3
16

)

=

(

12

5
,
3

4

)

.
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22. The lamina is shown below:

y x
3

0, 0 8, 0

8, 2

1 2 3 4 5 6 7 8
x

1

2

y

Let the mass density of the lamina be ρ. Then the mass of the lamina is

M = ρ

∫ 8

0

x1/3 dx = ρ

[

3

4
x4/3

]8

0

= 12ρ

and the moments are

My = ρ

∫ 8

0

x · x1/3 dx = ρ

∫ 8

0

x4/3 dx = ρ

[

3

7
x7/3

]8

0

=
384

7
ρ

Mx =
1

2
ρ

∫ 8

0

(

x1/3
)2

dx =
1

2
ρ

∫ 8

0

x2/3 dx =
1

2
ρ

[

3

5
x5/3

]8

0

=
48

5
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(384/7)ρ

12ρ
,
(48/5)ρ

12ρ

)

=

(

384

7 · 12 ,
48

5 · 12

)

=

(

32

7
,
4

5

)

.

23. The circle and the surface are shown below:

1 2 3 4 5 6 7

–3

–2

–1

1

2

3

The circle has a center of (4, 0) and a radius of 3. It is symmetric about the point (4, 0), so
its centroid is (x̄, ȳ) = (4, 0). The distance from (4, 0) to the axis of revolution (the y-axis)
is 4, and the area of the circle is π · 32 = 9π. The circle does not intersect the y-axis, so by
Pappus’ Theorem, the volume of the solid of revolution is

2πAd = 2π · 9π · 4 = 72π2 .
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24. The circle and the surface are shown below:

–1.0 –0.5 0.0 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

The circle has a center of (0, 2) and a radius of 1. It is symmetric about the point (0, 2), so
its centroid is (x̄, ȳ) = (0, 2). The distance from (0, 2) to the axis of revolution (the x-axis)
is 2, and the area of the circle is π · 12 = π. The circle does not intersect the x-axis, so by
Pappus’s Theorem, the volume of the solid of revolution is

2πAd = 2π · π · 2 = 4π2 .

Applications and Extensions

25. If the mass density is ρ, then the mass is the mass of the circle of radius 1 plus the mass
of the square of side 2, so it is (4+π)ρ. By symmetry, since the figure is symmetric around
the line x = 1, we have x̄ = 1. To compute ȳ, we will need the moment Mx. This figure is
the union of a non-overlapping square and circle, so its moment is the sum of the individual
moments. The center of the square, at (1, 1), is its centroid, and its mass is 4ρ, so we have

1 =
M1

4ρ
, so that M1 = 4ρ.

The center of the circle, at (1, 3), is its centroid, and its mass is πρ, so we have

3 =
M2

πρ
, so that M2 = 3πρ.

So for the figure as a whole, we have Mx = (4 + 3π)ρ, and then

(x̄, ȳ) =

(

1,
(4 + 3π)ρ

(4 + π)ρ

)

=

(

1,
4 + 3π

4 + π

)

.
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26. This triangle has a base of 4 and a height of 4, so its area is 1
2 · 4 · 4 = 8 and then its

mass is 8ρ. By symmetry, x̄ = 0. To compute ȳ, note that the triangle is the sum of two
non-overlapping triangles, one for x ≤ 0 and one for x ≥ 0. For x ≤ 0, the diagonal side of
the triangle is the line y = 4+ 2x, while for x ≥ 0, the diagonal side is the line y = 4− 2x.
So the moment Mx is the sum of these two moments, or

Mx =
1

2
ρ

∫ 0

−2

(4 + 2x)2 dx+
1

2
ρ

∫ 2

0

(4− 2x)2 dx

=
1

2
ρ

(

[

1

6
(4 + 2x)3

]0

−2

+

[

−1

6
(4− 2x)3

]2

0

)

=
1

2
ρ

(

32

3
+

32

3

)

=
32

3
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

0,
(32/3)ρ

8ρ

)

=

(

0,
4

3

)

.

27. This triangle has a base of 2c and a height of b, so its area is bc and then its mass is bcρ,
where ρ is the mass density of the lamina. The triangle is composed of two nonoverlapping
triangles, one of which has vertices (−c, 0), (a, 0) and (a, b) and the other of which has
vertices (a, 0), (c, 0) and (a, b). The moments of the given region about either axis are
the sum of the moments of these two triangles about that axis. For the first triangle, the
equation of the diagonal edge is

y − 0 =
b− 0

a− (−c)
(x− (−c)), or y =

b

a+ c
(x+ c).

Therefore its moments are

My = ρ

∫ a

−c

x

(

b

a+ c
(x+ c)

)

dx

= ρ · b

a+ c

∫ a

−c

(x2 + cx) dx

= ρ · b

a+ c

[

1

3
x3 +

1

2
cx2

]a

−c

= ρ · b

a+ c

(

1

6
(2a3 + 3a2c− c3)

)

= ρ · b

a+ c

(

1

6
(2a− c)(a+ c)2

)

=
1

6
b(2a− c)(a+ c)ρ

Mx =
1

2
ρ

∫ a

−c

(

b

a+ c
(x+ c)

)2

dx

=
1

2
ρ

(

b

a+ c

)2 ∫ a

−c

(x+ c)2 dx

=
1

2
ρ

(

b

a+ c

)2 [
1

3
(x+ c)3

]a

−c

=
1

2
ρ

b2

(a+ c)2
· 1
3
(a+ c)3

=
1

6
b2(a+ c)ρ.
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For the second triangle, the equation of the diagonal edge is

y − 0 =
b− 0

a− c
(x− c), or y =

b

a− c
(x− c).

Therefore its moments are

My = ρ

∫ c

a

x

(

b

a− c
(x− c)

)

dx

= ρ · b

a− c

∫ c

a

(x2 − cx) dx

= ρ · b

a− c

[

1

3
x3 − 1

2
cx2

]c

a

= ρ · b

a− c

(

−1

6
(2a+ c)(a− c)2

)

= −1

6
b(2a+ c)(a− c)ρ

Mx =
1

2
ρ

∫ c

a

(

b

a− c
(x− c)

)2

dx

=
1

2
ρ

(

b

a− c

)2 ∫ c

a

(x− c)2 dx

=
1

2
ρ

(

b

a− c

)2 [
1

3
(x− c)3

]c

a

=
1

2
ρ

b2

(a− c)2
·
(

−1

3
(a− c)3

)

= −1

6
b2(a− c)ρ.

So the moments for the figure as a whole are

My =
1

6
b(2a− c)(a+ c)ρ− 1

6
b(2a+ c)(a− c)ρ =

1

3
abcρ

Mx =
1

6
b2(a+ c)ρ− 1

6
b2(a− c)ρ =

1

3
b2cρ.

Then the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(abc/3)ρ

bcρ
,
(b2c/3)ρ

bcρ

)

=

(

a

3
,
b

3

)

.

28. If the mass density is ρ, then the mass is the mass of the semicircle of radius 1 plus the
mass of the 2 × 2 square, so it is

(

4 + 1
2π
)

ρ. By symmetry, since the figure is symmetric
around the line y-axis, we have x̄ = 0. To compute ȳ, we will need the moment Mx. This
figure is the union of a non-overlapping square and circle, so its moment is the sum of the
individual moments. The center of the square, at (0,−1), is its centroid, and its mass is
4ρ, so we have

−1 =
M1

4ρ
, so that M1 = −4ρ.

For the semicircle, we compute

M2 =
1

2
ρ

∫ 1

−1

(

√

1− x2
)2

dx = ρ

∫ 1

−1

(1− x2) dx =
1

2
ρ

[

x− 1

3
x3

]1

−1

=
2

3
ρ.
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So for the entire lamina,

Mx = −4ρ+
2

3
ρ = −10

3
ρ,

and the centroid is

(x̄, ȳ) =

(

0,
Mx

M

)

=

(

0,
−(10/3)ρ

(4 + (1/2)π)ρ

)

=

(

0, − 20

24 + 3π

)

.

29. The mass of the lamina is

M = ρ

∫ a

0

h

a2
x2 dx = ρ · h

a2

∫ a

0

x2 dx = ρ · h

a2

[

1

3
x3

]a

0

= ρ · h

a2
· 1
3
a3 =

1

3
ahρ.

The moments about the axes are

My = ρ

∫ a

0

x

(

h

a2
x2

)

dx = ρ · h

a2

∫ a

0

x3 dx = ρ · h

a2

[

1

4
x4

]a

0

=
1

4
a2hρ

Mx =
1

2
ρ

∫ a

0

(

h

a2
x2

)2

dx =
1

2
ρ · h

2

a4

∫ a

0

x4 dx =
1

2
ρ · h

2

a4

[

1

5
x5

]a

0

=
1

10
ah2.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(a2h/4)ρ

(ah/3)ρ
,
(ah2/10)ρ

(ah/3)ρ

)

=

(

3a

4
,
3h

10

)

.

30. By symmetry, x̄ = 0. Now, this figure is the union of two identical figures, one on each side
of the y-axis; each of these figures has a moment about the x-axis that was determined in
Problem 29 to be 1

10ah
2ρ, so the total moment about the x-axis if 1

5ah
2ρ. The mass of the

lamina is twice the mass of the lamina in Problem 29, or 2
3ahρ. Therefore the centroid is

(x̄, ȳ) =

(

0,
Mx

M

)

=

(

0,
(ah2/5)ρ

(2ah/3)ρ

)

=

(

0,
3h

10

)

.

31. (a) The mass of the bat is

M =

∫ L

0

λdx =

∫ L

0

kx dx =

[

1

2
kx2

]L

0

=
1

2
kL2 .

(b) Solving the result of part (a) for k gives

k =
2M

L2
.

(c) The center of mass of the bat is

x̄ =

∫ L

0
xλdx

M
=

2

kL2

∫ L

0

kx2 dx =
2

L2

[

1

3
x3

]L

0

=
2

3
L .

The center of mass is 2
3 of the way from the handle to the end.

(d) Answers will vary. The “sweet spot” is at the center of mass, since at that point the
bat is neither underbalanced nor overbalanced, and you will be more likely to make
solid contact.

(e) Answers will vary. A small slice through the bat at any x gives a slice whose density
is approximately λ = kx and whose width is ∆x, so the total mass is the limit of
∑

kx∆x as ∆x → 0; this is a Riemann sum whose limit is
∫ L

0
kx dx =

∫ L

0
λdx.
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32. The region is shown below:

y x 1

1, 0 2, 0

2, 1

0.5 1. 1.5 2.
x0.

0.5

1.

y

The density is ρ = 1, so the mass (area) is

∫ 2

1

√
x− 1 dx =

[

2

3
(x− 1)3/2

]2

1

=
2

3
.

Since we are revolving about the y-axis, we need to know the distance of the centroid from
the y-axis to apply Pappus’ Theorem; this distance is x̄. So we compute My:

My =

∫ 2

1

x
√
x− 1 dx

=

∫ 2

1

(

(x− 1)
√
x− 1 +

√
x− 1

)

dx

=

∫ 2

1

(

(x − 1)3/2 dx+ (x− 1)1/2
)

dx

=

[

2

5
(x− 1)5/2 +

2

3
(x− 1)3/2

]2

1

=
16

15
.

Then

x̄ =
My

M
=

16/15

2/3
=

8

5
,

which is also the distance from the centroid to the axis of revolution. Therefore by Pappus’s
Theorem, the volume of the solid of revolution is

2πAd = 2π · 2
3
· 8
5
=

32π

15
.

33. The region is shown below:

x 2 y 9

3, 2

5, 2

3, 3

0 1 2 3 4 5
x0

1

2

3

4

y
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This triangle has base 5 − 3 = 2 and height 3 − 2 = 1, so its area is 1. We are revolving
about the y-axis, so to apply Pappus’ Theorem we will need to know the distance from the
centroid of the region to the y-axis; this distance is x̄, so we must compute My. This is

My =

∫ 5

3

x

(

9− x

2
− 2

)

dx =

∫ 5

3

(

5

2
x− 1

2
x2

)

dx =

[

5

4
x2 − 1

6
x3

]5

3

=
11

3
.

Therefore x̄ = 11
3 (since M = 1), so that by Pappus’ Theorem the volume of the solid of

revolution is

2πAd = 2π · 1 · 11
3

=
22

3
π .

34. This cone is the solid of revolution about the y-axis of a triangle whose vertices are (0, 0),
(R, 0), and (0, H). The equation of the diagonal edge of this triangle is Hx+Ry = RH , or
y = H − H

R x. The area of the triangle is 1
2RH . We will want the distance of the centroid

from the y-axis, so we compute My:

My =

∫ R

0

x

(

H − H

R
x

)

dx =

∫ R

0

(

Hx− H

R
x2

)

dx =

[

H

2
x2 − H

3R
x3

]R

0

=
1

6
HR2.

Then

x̄ =
(1/6)HR2

(1/2)RH
=

1

3
R,

so by Pappus’ Theorem, the volume of the cone is

2πAd = 2πAx̄ = 2π · 1
2
RH · 1

3
R =

1

3
πR2H .

35. The region is shown below:

1, 1

5, 33, 3

1 2 3 4 5

1

2

3

We are revolving this about the x-axis, so using Pappus’ Theorem, we will want the y-
coordinate of the centroid, ȳ. We must split this up into two integrals, one from x = 1 to
x = 3 and the other from x = 3 to x = 5. The equation of the diagonal line from (1, 1)
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to (3, 3) is y = x; the equation of the other diagonal line is y = 1
2 (x+1). Then computing

Mx gives

Mx =
1

2

∫ 3

1

(

x2 −
(

1

2
(x+ 1)

)2
)

dx+
1

2

∫ 5

3

(

32 −
(

1

2
(x+ 1)

)2
)

dx

=
1

2

∫ 3

1

(

3

4
x2 − 1

2
x− 1

4

)

dx+
1

2

∫ 5

3

(

−1

4
x2 − 1

2
x+

35

4

)

dx

=
1

2

[

1

4
x3 − 1

4
x2 − 1

4
x

]3

1

+
1

2

[

− 1

12
x3 − 1

4
x2 +

35

4
x

]5

3

=
1

2

(

15

4
−
(

−1

4

))

+
1

2

(

325

12
− 87

4

)

=
14

3
.

Therefore ȳ = Mx

M = 7
3 , so by Pappus’ Theorem, the volume of the solid is

2πAd = 2π · 2 · 7
3
=

28

3
π .

36. The region is shown below:

0, 0 4, 0

0, 3

1 2 3 4

1

2

3

The triangle has a base of 3 and a height of 4, so its area is 1
2 · 4 · 3 = 6. The equation of

the diagonal edge of this triangle is 4x+ 3y = 12, or y = 4 − 4
3x. Therefore the moments

are

My =

∫ 3

0

x

(

4− 4

3
x

)

dx =

∫ 3

0

(

4x− 4

3
x2

)

dx =

[

2x2 − 4

9
x3

]3

0

= 6

Mx =
1

2

∫ 3

0

(

4− 4

3
x

)2

dx =
1

2

[

−1

4

(

4− 4

3
x

)3
]3

0

= −1

8

[

(

4− 4

3
x

)3
]3

0

= 8,

so that

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

1,
4

3

)

.
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Challenge Problems

37. The triangle with two of the medians drawn is shown below:

a, 0 b, 0

0, c

AB

M

Here A is the midpoint of the side opposite (a, 0), B is the midpoint of the side opposite
(b, 0), and M is the point of intersection of those two medians. So we must show that M
is the centroid of the triangle.

Since A is the midpoint of the segment from (0, c) to (b, 0), its coordinates are 1
2 ((0, c) +

(b, 0)) =
(

b
2 ,

c
2

)

. Similarly the coordinates of B are
(

a
2 ,

c
2

)

. So the equations of the two
medians are

y − 0 =
c
2 − 0
b
2 − a

(x− a), or y =
c

b− 2a
(x− a)

y − 0 =
c
2 − 0
a
2 − b

(x− b), or y =
c

a− 2b
(x − b).

(Note that b−2a > 0 since b > 0 and a < 0, so that the denominator in the first expression
is nonzero. Similarly, a − 2b < 0. Therefore the denominators in these equations cannot
be zero.) These two lines intersect when

c

b− 2a
(x− a) =

c

a− 2b
(x− b).

Clearing fractions gives

c(a− 2b)(x− a) = c(b − 2a)(x− b)

acx− a2c− 2bcx+ 2abc = bcx− b2c− 2acx+ 2abc

(ac− 2bc)x− a2c = (bc− 2ac)x− b2c

(ac− 2bc− bc+ 2ac)x = (b2 − a2)c

3c(a− b)x = (b− a)(b + a)c

−3x = −(a+ b)

x =
a+ b

3
.

Again note that dividing through by (a− b)c is justified since a− b < 0 and c > 0, so the
product cannot be zero. Then

y =
c

b− 2a
(x − a) =

c

b− 2a
·
(

a+ b

3
− a

)

=
c

b− 2a
· b− 2a

3
=

c

3
.
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So the point M has coordinates
(

1
3 (a+ b), 1

3c
)

. Now consider the third median, from (0, c)
to the x-axis. If a = −b, then the midpoint of the lower side of the triangle is the origin,
and the median is the line x = 0 from (0, c) to the origin. In this case, the point M has
coordinates

(

0, 1
3 c
)

since a + b = 0, and so the median from (0, c) passes through M as

well. If a 6= −b, then the midpoint of the lower side of the triangle is a+b
2 , and the median

has equation

y − c =
0− c

a+b
2 − 0

(x− 0), or y = c− 2c

a+ b
x.

Substituting the x-coordinate of M for x in this equation gives

y = c− 2c

a+ b
· a+ b

3
= c− 2

3
c =

1

3
c,

so that again the median passes through M . Therefore M is the point of intersection of
all three medians.

It remains to show that M is the centroid of the triangle. The triangle has base b− a and
height c, so its area is 1

2c(b− a). This triangle is composed of two smaller triangles, one in
the first quadrant and one in the second quadrant. The first quadrant triangle is bounded
above by the line y = − c

bx+ c (note that b 6= 0), so its moments are

My =

∫ b

0

x
(

−c

b
x+ c

)

dx =

∫ b

0

(

cx− c

b
x2
)

dx =

[

1

2
cx2 − c

3b
x3

]b

0

=
1

6
cb2

Mx =
1

2

∫ b

0

(

−c

b
x+ c

)2

dx =
1

2

[

− b

3c

(

−c

b
x+ c

)3
]b

0

=
1

6
bc2.

The second quadrant triangle is bounded above by the line y = − c
ax+ c (note that a 6= 0),

so its moments are

My =

∫ 0

a

x
(

− c

a
x+ c

)

dx =

∫ 0

a

(

cx− c

a
x2
)

dx =

[

1

2
cx2 − c

3a
x3

]0

a

= −1

6
ca2

Mx =
1

2

∫ 0

a

(

− c

a
x+ c

)2

dx =
1

2

[

− a

3c

(

− c

a
x+ c

)3
]0

a

= −1

6
ac2.

The moments of the entire figure are the sum of the moments of each figure, so the centroid
of this triangle is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

(1/6)cb2 − (1/6)ca2

(1/2)c(b− a)
,
(1/6)bc2 − (1/6)ac2

(1/2)c(b− a)

)

=

(

b2 − a2

3(b− a)
,
bc− ac

3(b− a)

)

=

(

1

3
(a+ b),

1

3
c

)

.

These are the coordinates of the point M computed above, so that the centroid of a triangle
is the intersection of the medians.

38. Suppose the region is defined as shown in the diagram. As in the text, partition the interval
[a, b] into n subintervals

[a, x1], [x1, x2], . . . , [xn−1, b] a = x0, b = xn.
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Each of these has width ∆x = b−a
n . Let ui be the midpoint of the ith interval for i =

1, 2, . . . , n. That is,

ui =
xi−1 + xi

2
.

So we have partitioned the lamina into n nonoverlapping regions Ri for i = 1, . . . , n, each

of which is roughly rectangular. The centroid of Ri is the point
(

ui,
f(ui)+g(ui)

2

)

, since

that is the center of the rectangle. Further, the height of each rectangle is f(ui) − g(ui),
and the width is ∆x, so the mass mi of Ri is

mi = ρAi = ρ(f(ui)− g(ui))∆x.

The moment of Ri about the y-axis is

My(Ri) = miui = ρui(f(ui)− g(ui))∆x,

since the distance of the centroid from the y-axis is ui. Adding up these moments over all
rectangles gives

My ≈ ρ

n
∑

i=1

ui(f(ui)− g(ui))∆x.

This is a Riemann sum whose limit as n → ∞ is

My = ρ

∫ b

a

x(f(x) − g(x)) dx.

Similarly, the moment of Ri about the x-axis is the product of its mass and the distance
of its centroid from the x-axis:

Mx(Ri) = mi·
1

2
(f(ui)+g(ui)) = ρ(f(ui)−g(ui))∆x·1

2
(f(ui)+g(ui)) =

1

2
ρ(f(ui)

2−g(ui)
2)∆x.

Adding up these moments over all rectangles gives

Mx ≈ 1

2
ρ

n
∑

i=1

(f(ui)
2 − g(ui)

2)∆x.

This is a Riemann sum whose limit as n → ∞ is

Mx =
1

2
ρ

∫ b

a

(f(x)2 − g(x)2) dx.

Finally, the mass of the lamina is ρ times the area between the curves, which is

M = ρ

∫ b

a

(f(x)− g(x)) dx.

Therefore the centroid of the lamina is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

ρ
∫ b

a
x(f(x) − g(x)) dx

ρ
∫ b

a (f(x)− g(x)) dx
,

1
2ρ
∫ b

a
(f(x)2 − g(x)2) dx

ρ
∫ b

a (f(x)− g(x)) dx

)

=

(

∫ b

a
x(f(x) − g(x)) dx

∫ b

a (f(x)− g(x)) dx
,

1
2

∫ b

a
(f(x)2 − g(x)2) dx

∫ b

a (f(x)− g(x)) dx

)

.
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39. The region is shown below:

y x2

y x2 3

0, 0

1, 11, 1

1. 0.5 0.5 1.
x

0.5

1.

y

The mass of the lamina is

M = ρ

∫ 1

−1

(

x2/3 − x2
)

dx = ρ

[

3

5
x5/3 − 1

3
x3

]1

−1

=
8

15
ρ.

By symmetry, x̄ = 0, so we need only compute Mx to be able to find ȳ. From Problem 38,
Mx is

Mx =
1

2

∫ 1

−1

(

(

x2/3
)2

−
(

x2
)2
)

ρ dx =
1

2
ρ

∫ 1

−1

(

x4/3 − x4
)

dx =
1

2
ρ

[

3

7
x7/3 − 1

5
x5

]1

−1

=
8

35
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

0,
Mx

M

)

=

(

0,
3

7

)

.

40. The region is shown below:

x
1

y
1

4

y
1

x

1,
1

4

1, 1

4,
1

4

0.5 1. 1.5 2. 2.5 3. 3.5 4.
x

0.5

1.

y

The mass of the lamina is

M =

∫ 4

1

(

1

x
− 1

4

)

ρ dx = ρ

[

lnx− 1

4
x

]4

1

=

(

ln 4− 3

4

)

ρ.

From Problem 38, the moments about the two axes are

My =

∫ 4

1

x

(

1

x
− 1

4

)

ρ dx = ρ

∫ 4

1

(

1− 1

4
x

)

dx = ρ

[

x− 1

8
x2

]4

1

=
9

8
ρ

Mx =
1

2

∫ 4

1

(

(

1

x

)2

−
(

1

4

)2
)

ρ dx =
1

2
ρ

∫ 4

1

(

1

x2
− 1

16

)

dx =
1

2
ρ

[

− 1

x
− 1

16
x

]4

1

=
9

32
ρ.
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Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

9

8 ln 4− 6
,

9

32 ln 4− 24

)

.

41. The region is shown below:

y x

y x2 2

0, 0

1, 11, 1

1. 0.5 0.5 1.
x

0.5

1.

1.5

2.

y

By symmetry, the area of the region is twice the area of that portion of the region lying in
the first quadrant. In the first quadrant, y = |x| is the line y = x, so we get for the total
mass

M = 2

∫ 1

0

(

(−x2 + 2)− x
)

dx = 2

∫ 1

0

(

−x2 − x+ 2
)

ρ dx = 2ρ

[

−1

3
x3 − 1

2
x2 + 2x

]1

0

=
7

3
ρ.

Again by symmetry, x̄ = 0, so we need only compute ȳ. Using symmetry yet again, the
moment of the first quadrant region and the moment of the second quadrant region about
the x-axis are equal, so to compute Mx, we compute it for the first quadrant region and
double it (using the hint preceding Problems 25–30). Therefore the moment of the entire
region about the x-axis is

Mx = 2·1
2

∫ 1

0

(

(−x2 + 2)2 − x2
)

ρ dx = ρ

∫ 1

0

(

x4 − 5x2 + 4
)

dx = ρ

[

1

5
x5 − 5

3
x3 + 4x

]1

0

=
38

15
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

0,
Mx

M

)

=

(

0,
38

35

)

.

42. The region is shown below:

y x

y x2

0, 0

1, 1

0.2 0.4 0.6 0.8 1. 1.2
x

0.2

0.2

0.4

0.6

0.8

1.

1.2

y
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The mass of the region is

M =

∫ 1

0

(√
x− x2

)

ρ dx = ρ

[

2

3
x3/2 − 1

3
x3

]1

0

=
1

3
ρ.

From Problem 38, the moments are

My =

∫ 1

0

x
(√

x− x2
)

ρ dx =

∫ 1

0

(

x3/2 − x3
)

ρ dx = ρ

[

2

5
x5/2 − 1

4
x4

]1

0

=
3

20
ρ

Mx =
1

2

∫ 1

0

(

(√
x
)2 −

(

x2
)2
)

ρ dx =
1

2
ρ

∫ 1

0

(

x− x4
)

dx =
1

2
ρ

[

1

2
x2 − 1

5
x5

]1

0

=
3

20
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

9

20
,
9

20

)

.

43. The region is shown below:

y 4 x2

y x 2

2, 0

1, 3

2 1 1
x

1

2

3

4

y

The mass of the region is

M =

∫ 1

−2

(

(4− x2)− (x+ 2)
)

ρ dx = ρ

∫ 1

−2

(

−x2 − x+ 2
)

dx = ρ

[

−1

3
x3 − 1

2
x2 + 2x

]1

−2

=
9

2
ρ.

By Problem 38, the moments are

My =

∫ 1

−2

x
(

(4− x2)− (x + 2)
)

ρ dx = ρ

∫ 1

−2

(

−x3 − x2 + 2x
)

dx = ρ

[

−1

4
x4 − 1

3
x3 + x2

]1

−2

= −9

4
ρ

Mx =
1

2

∫ 1

−2

(

(4− x2)2 − (x+ 2)2
)

ρ dx =
1

2
ρ

∫ 1

−2

(

x4 − 9x2 − 4x+ 12
)

dx

=
1

2
ρ

[

1

5
x5 − 3x3 − 2x2 + 12x

]1

−2

=
54

5
ρ.

Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

−1

2
,
12

5

)

.
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44. The region is shown below:

y x

y 9 x2

0, 0

2 1 1 2
x

1

2

3

4

5

6

7

8

9

y

The point of intersection in the first quadrant is the point where 9 − x2 = x, so that
x2 + x− 9 = 0. Using the quadratic formula, this gives

x =
1

2
(−1 +

√
37), so that the other intersection point is x =

1

2
(1 −

√
37).

The mass of the region is twice the mass of the region in the first quadrant (where |x| = x),
so it is

M = 2

∫ 1

2
(−1+

√
37)

0

(9− x2 − x)ρ dx = 2ρ

[

9x− 1

3
x3 − 1

2
x2

]
1

2
(−1+

√
37)

0

=
1

6
(37

√
37− 55)ρ.

By symmetry, x̄ = 0, so we need only compute ȳ. Using symmetry yet again, the moment
of the first quadrant region and the moment of the second quadrant region about the x-axis
are equal, so to compute Mx, we compute it for the first quadrant region and double it
(using the hint preceding Problems 25–30). Therefore the moment of the entire region
about the x-axis is

Mx = 2 · 1
2

∫ 1

2
(−1+

√
37)

0

(

(9− x2)2 − x2
)

ρ dx = ρ

∫ 1

2
(−1+

√
37)

0

(

x4 − 19x2 + 81
)

dx

= ρ

[

1

5
x5 − 19

3
x3 + 81x

]
1

2
(−1+

√
37)

0

=
2

15
(148

√
37 + 23)ρ.

Now,

Mx

M
=

4(148
√
37 + 23)

5(37
√
37− 55)

=
4(148

√
37 + 23)(37

√
37 + 55)

5(37
√
37− 55)(37

√
37 + 55)

=
815508+ 35964

√
37

238140
=

1

245
(37

√
37 + 839).

Therefore the centroid is

(x̄, ȳ) =

(

0,
1

245
(37

√
37 + 839)

)

.

45. Suppose the region is defined as shown in Figures 69 and 70 in the text. As in the text,
partition the interval [a, b] into n subintervals

[a, x1], [x1, x2], . . . , [xn−1, b] a = x0, b = xn.
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Each of these has width ∆x = b−a
n . Let ui be the midpoint of the ith interval for i =

1, 2, . . . , n. That is,

ui =
xi−1 + xi

2
.

So we have partitioned the lamina into n nonoverlapping regions Ri for i = 1, . . . , n, each
of which is roughly rectangular. Within Ri, the density of the lamina is roughly constant
at ρ(ui), so the centroid of Ri is the point

(

ui,
1
2f(ui)

)

, since that is the center of Ri.
Further, the height of each rectangle is f(ui), and the width is ∆x, so the mass mi of Ri is

mi = ρ(ui)Ai = ρ(ui)f(ui)∆x.

The mass of the lamina is therefore approximated by

M ≈
n
∑

i=1

mi =

n
∑

i=1

ρ(ui)f(ui)∆x.

This is a Riemann sum whose limit as n → ∞ is

M =

∫ b

a

ρ(x)f(x) dx.

The moment of Ri about the y-axis is

My(Ri) = miui = ρ(ui)uif(ui)∆x,

since the distance of the centroid from the y-axis is ui. Adding up these moments over all
rectangles gives

My ≈
n
∑

i=1

ρ(ui)uif(ui)∆x.

This is a Riemann sum whose limit as n → ∞ is

My =

∫ b

a

ρ(x)xf(x) dx.

Similarly, the moment of Ri about the x-axis is the product of its mass and the distance
of its centroid from the x-axis:

Mx(Ri) = mi ·
1

2
f(ui) = ρ(ui)f(ui)∆x · 1

2
f(ui) =

1

2
ρ(ui)f(ui)

2∆x.

Adding up these moments over all rectangles gives

Mx ≈ 1

2

n
∑

i=1

ρ(ui)f(ui)
2∆x.

This is a Riemann sum whose limit as n → ∞ is

Mx =
1

2

∫ b

a

ρ(x)f(x)2 dx.

Therefore the centroid of the lamina is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

∫ b

a
ρ(x)xf(x) dx

∫ b

a
ρ(x)f(x) dx

,
1
2

∫ b

a
ρ(x)f(x)2 dx

∫ b

a
ρ(x)f(x) dx

)

.
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46. The region is shown below:

y
x2

2

1, 0 , 0

,

2

2

1,
1

2

1 2 3
x0

1

2

3

y

From Problem 45, the mass of the lamina is

M =

∫ b

a

ρ(x)f(x) dx =

∫ e

1

1

x3
· 1
2
x2 dx =

1

2

∫ e

1

1

x
dx =

1

2
[ln x]

e
1 =

1

2
.

The moments about the two axes are

My =

∫ b

a

ρ(x)xf(x) dx =

∫ e

1

1

x3
· x · 1

2
x2 dx =

1

2

∫ e

1

1 dx =
1

2
(e− 1)

Mx =
1

2

∫ b

a

ρ(x)f(x)2 dx =
1

2

∫ e

1

1

x3
· 1
4
x4 dx =

1

8

∫ e

1

x dx =
1

8

[

1

2
x2

]e

1

=
1

16
(e2 − 1).

Therefore the center of mass is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

e− 1,
1

8
(e2 − 1)

)

.

47. The region is shown below:

y x 1

0, 1

0, 3 8, 3

1 2 3 4 5 6 7 8
x

1

2

3

y
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From Problems 38 and 45, the mass of the lamina is

M =

∫ 8

0

ρ(x)(3 −
√
x+ 1) dx

=

∫ 8

0

(

3x− x
√
x+ 1

)

dx

=

∫ 8

0

(

3x− (x+ 1)
√
x+ 1 +

√
x+ 1

)

dx

=

∫ 8

0

(

3x− (x + 1)3/2 + (x+ 1)1/2
)

dx

=

[

3

2
x2 − 2

5
(x+ 1)5/2 +

2

3
(x + 1)3/2

]8

0

=
248

15
.

The moments about the two axes are

My =

∫ 8

0

ρ(x)x(3 −
√
x+ 1) dx

=

∫ 8

0

(

3x2 − x2
√
x+ 1

)

dx

=

∫ 8

0

(

3x2 − (x2 + 2x+ 1)
√
x+ 1 + (2x+ 1)

√
x+ 1

)

dx

=

∫ 8

0

(

3x2 − (x+ 1)5/2 + 2(x+ 1)
√
x+ 1−

√
x+ 1

)

dx

=

∫ 8

0

(

3x2 − (x+ 1)5/2 + 2(x+ 1)3/2 − (x+ 1)1/2
)

dx

=

[

x3 − 2

7
(x+ 1)7/2 +

4

5
(x+ 1)5/2 − 2

3
(x + 1)3/2

]8

0

=
6688

105

and

Mx =
1

2

∫ 8

0

ρ(x)
(

32 −
(√

x+ 1
)2
)

dx =

∫ 8

0

x(8−x) dx =

∫ 8

0

(8x−x2) dx =

[

4x2 − 1

3
x3

]8

0

=
128

3
.

Therefore the center of mass is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

836

217
,
80

31

)

.

48. From Problem 45, the mass of the lamina is

M =

∫ 3

0

ρ(x)f(x) dx =

∫ 3

0

x2 dx =

[

1

3
x3

]3

0

= 9.

The moments about the two axes are

My =

∫ 3

0

ρ(x)xf(x) dx =

∫ 3

0

x3 dx =

[

1

4
x4

]3

0

=
81

4

Mx =
1

2

∫ 3

0

ρ(x)f(x)2 dx =

∫ 3

0

x3 dx =
1

2

[

1

4
x4

]3

0

=
81

8
.
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Therefore the center of mass is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

9

4
,
9

8

)

.

49. From Problem 45, the mass of the lamina is

M =

∫ 4

1

ρ(x)f(x) dx =

∫ 4

1

x(3x− 1) dx =

∫ 4

1

(3x2 − x) dx =

[

x3 − 1

2
x2

]4

1

=
111

2
.

The moments about the two axes are

My =

∫ 4

1

ρ(x)xf(x) dx =

∫ 4

1

x2(3x− 1) dx =

∫ 4

1

(3x3 − x2) dx =

[

3

4
x4 − 1

3
x3

]4

1

=
681

4

Mx =
1

2

∫ 4

1

ρ(x)f(x)2 dx =

∫ 4

1

x(3x− 1)2 dx =
1

2

∫ 4

1

(

9x3 − 6x2 + x
)

dx

=
1

2

[

9

4
x4 − 2x3 +

1

2
x2

]4

1

=
1821

8
.

Therefore the center of mass is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

227

74
,
607

148

)

.

50. From Problem 45, the mass of the lamina is

M =

∫ 1

0

ρ(x)f(x) dx =

∫ 1

0

(x + 1) · 2x dx =

∫ 1

0

(

2x2 + 2x
)

dx =

[

2

3
x3 + x2

]1

0

=
5

3
.

The moments about the two axes are

My =

∫ 1

0

ρ(x)xf(x) dx =

∫ 1

0

(x+ 1) · x · 2x dx =

∫ 1

0

(

2x3 + 2x2
)

dx =

[

1

2
x4 +

2

3
x3

]1

0

=
7

6

Mx =
1

2

∫ 1

0

ρ(x)f(x)2 dx =
1

2

∫ 1

0

(x + 1)(2x)2 dx =
1

2

∫ 1

0

(4x3 + 4x2) dx =
1

2

[

x4 +
4

3
x3

]1

0

=
7

6
.

Therefore the center of mass is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

7

10
,
7

10

)

.

51. From Problem 45, the mass of the lamina is

M =

∫ 4

1

ρ(x)f(x) dx =

∫ 4

1

(x+ 1)x dx =

∫ 4

1

(x2 + x) dx =

[

1

3
x3 +

1

2
x2

]4

1

=
57

2
.

The moments about the two axes are

My =

∫ 4

1

ρ(x)xf(x) dx =

∫ 4

1

(x+ 1) · x · x dx =

∫ 4

1

(

x3 + x2
)

dx =

[

1

4
x4 +

1

3
x3

]4

1

=
339

4

Mx =
1

2

∫ 4

1

ρ(x)f(x)2 dx =
1

2

∫ 4

1

(x + 1) · x2 dx =
1

2

∫ 4

1

(x3 + x2) dx =
1

2

[

1

4
x4 +

1

3
x3

]4

1

=
339

8
.

Therefore the center of mass is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

113

38
,
113

76

)

.
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Chapter 6 Review Exercises

1. The region is shown below:

y x

y 4

x
0

0, 1

0, 4 ln 4 , 4

0.2 0.4 0.6 0.8 1. 1.2 1.4
x

1

2

3

4

y

Partitioning along the x-axis, we have ex ≤ 4, so the area is

∫ ln 4

0

(4 − ex) dx = [4x− ex]
ln 4
0 = 4 ln 4− 3 .

2. The region is shown below:

y 18 x2

y x2

3, 9 3, 9

3 2 1 1 2 3
x

2

4

6

8

10

12

14

16

18

y

Partitioning along the x-axis, we have x2 ≤ 18− x2, so the area is

∫ 3

−3

(

18− x2 − x2
)

dx =

∫ 3

−3

(

18− 2x2
)

dx =

[

18x− 2

3
x3

]3

−3

= 72 .
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3. The region is shown below:

x 2 y2

x
2

2, 1

2, 1

0.5 1. 1.5 2.

1.

0.5

0.5

1.

Since we are given x in terms of y, it is more convenient to partition along the y-axis.
There, we have 2y2 ≤ 2, so the area is

∫ 1

−1

(

2− 2y2
)

dx =

[

2y − 2

3
y3
]1

−1

=
8

3
.

4. The region is shown below:

x y 4

y
1

x

2 3 , 2 3

2 3 , 2 3

1 2 3
x

1

2

3

y

The equation x + y = 4 is the same as y = 4 − x. The graphs of 1
x and 4 − x meet when

1
x = 4− x, so when 4x− x2 = 1. This gives the quadratic x2 − 4x+1 = 0, which has roots

2±
√
3. Partitioning along the x-axis, we have 1

x ≤ 4− x, so the area is

∫ 2+
√
3

2−
√
3

(

4− x− 1

x

)

dx =

[

4x− 1

2
x2 − lnx

]2+
√
3

2−
√
3

=

(

8 + 4
√
3−

(

7

2
+ 2

√
3

)

− ln(2 +
√
3)

)

−
(

8− 4
√
3−

(

7

2
− 2

√
3

)

− ln(2−
√
3)

)

= 4
√
3 + ln

2−
√
3

2 +
√
3
= 4

√
3 + ln(7− 4

√
3) .
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5. The region is shown below:

y 3 x

y 4 x2

1, 3

4, 12

4 3 2 1 1
x

12

10

8

6

4

2

2

4

y

Partitioning along the x-axis, we have 4− x2 ≥ 3x, so the area is

∫ 1

−4

(4 − x2 − 3x) dx =

[

4x− 1

3
x3 − 3

2
x2

]1

−4

=
125

6
.

6. The region is shown below:

y x2

y 4 x x2

0, 0

2, 4

1 2
x

1

2

3

4

y

We use the washer method along the x-axis. Each outer radius is 4x− x2 and each inner
radius is x2, so the volume is

V = π

∫ 2

0

(

(

4x− x2
)2 −

(

x2
)2
)

dx = π

∫ 2

0

(

16x2 − 8x3
)

dx = π

[

16

3
x3 − 2x4

]2

0

=
32

3
π .

7. The region is shown below:

y x2 5 x 6

y 0

2, 0 3, 0

1 2 3
x

0.5

0.4

0.3

0.2

0.1

y
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We use the shell method along the x-axis. Each height is −x2 +5x− 6, and each radius is
x, so the volume is

V = 2π

∫ 3

2

x
(

−x2 + 5x− 6
)

dx = 2π

∫ 3

2

(

−x3 + 5x2 − 6x
)

dx = 2π

[

−1

4
x4 +

5

3
x3 − 3x2

]3

2

=
5

6
π .

8. The region is shown below:

x y2 4

x
0

0, 2

0, 2

4 3 2 1

2

1

1

2

Since we are given equations expressing x in terms of y, and we are revolving about the
y-axis, it is easiest to use the disk method along the y-axis. each radius is 4 − y2, so the
volume is

V = π

∫ 2

−2

(

4− y2
)2

dy = π

∫ 2

−2

(

y4 − 8y2 + 16
)

dy = π

[

1

5
y5 − 8

3
y3 + 16y

]2

−2

=
512

15
π .

9. The region is shown below:

y 0

y
1

x

x
1

x
2

1, 0

1, 1

2, 0

2,
1

2

0.5 1. 1.5 2.
x

0.5

1.

y

We use the disk method along the x-axis. Each radius is 1
x , so the volume is

V = π

∫ 2

1

(

1

x

)2

dx = π

∫ 2

1

1

x2
dx = π

[

− 1

x

]2

1

=
1

2
π .
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10. The region is shown below:

y 0

y 4

y x2 4

x

2, 0 2, 02 1 1 2
x

4.

3.5

3.

2.5

2.

1.5

1.

0.5

y

We use the washer method in the x direction. Each outer radius is 0− (−4) = 4, and each
inner radius is x2 − 4− (−4) = x2. Therefore the volume is

V = π

∫ 2

−2

(

42 −
(

x2
)2
)

dx = π

∫ 2

−2

(

16− x4
)

dx = π

[

16x− 1

5
x5

]2

−2

=
256

5
π .

11. The region is shown below:

y 0

y 4 x x2

0, 0 4, 0

1 2 3 4
x

1

2

3

4

y

We use the disk method along the x-axis. Each radius is 4x− x2, so the volume is

V = π

∫ 4

0

(

4x− x2
)2

dx = π

∫ 4

0

(

16x2 − 8x3 + x4
)

dx = π

[

16

3
x3 − 2x4 +

1

5
x5

]4

0

=
512

15
π .
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12. The region is shown below:

8 x y2

y 0

x
2

2, 00, 0

2, 4

0.5 1. 1.5 2.

1

2

3

4

We use the shell method in the x direction, so we must first solve for y, giving y =
√
8x

(note that from the diagram, we take the positive square root). Revolving about x = 2,

each radius is 2− x, and each height is
√
8x, so that the volume is

V = 2π

∫ 2

0

(2− x)
√
8x dx = 4π

√
2

∫ 2

0

(

2x1/2 − x3/2
)

dx

= 4π
√
2

[

4

3
x3/2 − 2

5
x5/2

]2

0

= 4π
√
2

(

8

3

√
2− 8

5

√
2

)

=
128

15
π .

13. The region is shown below:

y 0

x
2

y
x3

2

0, 0 2, 0

2, 4

1 2
x

1

2

3

4

y

It is easiest to use the shell method along the x-axis. Each height is x3

2 , and each radius is
x, so the volume is

V = 2π

∫ 2

0

x · x
3

2
dx = π

∫ 2

0

x4 dx = π

[

1

5
x5

]2

0

=
32

5
π .
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14. The region is shown below:

y 1

x
1

y x

0, 1 1, 1

1,

0.5 1.
x

0.5

1.

1.5

2.

2.5

y

Use the washer method along the x-axis. Each outer radius is ex and each inner radius is
1, so the volume is

V = π

∫ 1

0

(

(ex)
2 − 12

)

dx = π

∫ 1

0

(

e2x − 1
)

dx = π

[

1

2
e2x − x

]1

0

=
1

2
π
(

e2 − 3
)

.

15. The region is shown below:

y2 x3

y 8

x
0

x
4

0, 8

0, 0

4, 8

1 2 3 4

1

2

3

4

5

6

7

8

To revolve about x = 4, we could use either shells along the x-axis or washers in the y
direction. We choose to use shells. Solving y2 = x3 for y gives y = x3/2 (we choose the
positive square root since this is a first quadrant region). Then each height is 8−x3/2, and
each radius is 4− x. Therefore the volume is

V = 2π

∫ 4

0

(4− x)
(

8− x3/2
)

dx = 2π

∫ 4

0

(

32− 8x− 4x3/2 + x5/2
)

dx

= 2π

[

32x− 4x2 − 8

5
x5/2 +

2

7
x7/2

]4

0

=
3456

35
π .

16. Since y′ = 3
2x

1/2, the arc length is

L =

∫ 5

2

√

(y′)2 + 1 dx =

∫ 5

2

√

9

4
x+ 1 dx =

1

2

∫ 5

2

√
9x+ 4 dx.
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Now use the substitution u = 9x+ 4, so that du = 9 dx; then x = 2 corresponds to u = 22
and x = 5 to u = 49, so that we get

L =
1

2

∫ 5

2

√
9x+ 4 dx =

1

18

∫ 49

22

u1/2 du =
1

18

[

2

3
u3/2

]49

22

=
1

27

(

343− 22
√
22
)

.

17. We have y′ = x2

2 − 1
2x2 , so that

(y′)2 + 1 =

(

x2

2
− 1

2x2

)2

+ 1 =
x2

4
− 1

2
+

1

4x4
+ 1 =

x2

4
+

1

2
+

1

4x4
=

(

x2

2
+

1

2x2

)2

.

Then the arc length is

L =

∫ 6

2

√

(y′)2 + 1 dy =

∫ 6

2

(

x2

2
+

1

2x2

)

dx =

[

x3

6
− 1

2x

]6

2

=
209

6
.

18. Partition along the y-axis. Then x = g(y) =
√
2 y3/2, so that g′(y) = 3√

2
y1/2. Then the

arc length is

L =

∫ 2

0

√

(g′(y))2 + 1 dy

=

∫ 2

0

√

9

2
x+ 1 dy

=
1√
2

∫ 2

0

√
9x+ 2 dy

=
1√
2

[

2

27
(9x+ 2)3/2

]2

0

=

√
2

27

(

20
√
20− 2

√
2
)

=
4

27
(10

√
10− 1) .

19. The center of mass is

x̄ =

∑4
i=1 mixi
∑4

i=1 mi

=
1 · (−1) + 3 · 2 + 8 · 14 + 1 · 0

1 + 3 + 8 + 1
= 9 .

20. The moments are

My =

4
∑

i=1

mixi = 2 · (−4) + 2 · 2 + 3 · 4 + 2 · (−3) = 2

Mx =

4
∑

i=1

miyi = 2 · 4 + 2 · 3 + 3 · 4 + 2 · (−5) = 16

and the mass is M = 2+ 2 + 3 + 2 = 9, so the center of mass is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

2

9
,
16

9

)

.
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21. The region is shown below:

x y 1 0

3 x y 13 0

x 3 y 7 0

1, 2

3, 4

4, 1

0 1 2 3 4 5
x

1

2

3

4

5

6

7

y

The lines x− y + 1 = 0 and 3x+ y − 13 = 0 intersect when

y = x+ 1 = 13− 3x, so that 4x = 12, or x = 3, which is the point (3, 4).

The lines x− y + 1 = 0 and x+ 3y − 7 = 0 intersect when

x = y − 1 = 7− 3y, so that 4y = 8, or y = 2, which is the point (1, 2).

The lines 3x+ y − 13 = 0 and x+ 3y − 7 = 0 intersect when

y = 13− 3x =
7

3
− 1

3
x, so that

8

3
x =

32

3
, or x = 4, which is the point (4, 1).

We partition along the x-axis, so we end up with two integrals, one from x = 1 to x = 3
and one from x = 3 to x = 4. The first has lower bound y = 7

3 − 1
3x and upper bound

y = x+1; the second has the same lower bound but has upper bound y = 13− 3x. So the
area is

A =

∫ 3

1

(

(x+ 1)−
(

7

3
− 1

3
x

))

dx+

∫ 4

3

(

(13− 3x)−
(

7

3
− 1

3
x

))

dx

=

∫ 3

1

(

4

3
x− 4

3

)

dx+

∫ 4

3

(

−8

3
x+

32

3

)

dx

=

[

2

3
x2 − 4

3
x

]3

1

+

[

−4

3
x2 +

32

3
x

]4

3

=
8

3
+

4

3
= 4 .

22. The region is shown below:
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An equilateral triangle with side a has height a sin 60◦ =
√
3
2 a, so its area is 1

2 · a ·
√
3
2 x =

√
3
4 a2. With the fixed diameter as shown, along the x-axis, centered at the origin, the side

length of the equilateral triangle at a given value of x is 2
√
16− x2, so the area of the

triangle is √
3

4
·
(

2
√

16− x2
)2

= (16− x2)
√
3.

Therefore the volume of the solid is

V =

∫ 4

−4

(16− x2)
√
3 dx =

√
3

[

16x− 1

3
x3

]4

−4

=
256

3

√
3 .

23. The region is shown below:

4 x2 9 y2 36

0, 0

0, 2

3, 0

1 2 3

1

2

Using the shell method along the y-axis, we solve for x, giving x =
√

9− 9
4y

2. Then the

volume is

V = 2π

∫ 2

0

y

√

9− 9

4
y2 dy = π

∫ 2

0

y
√

36− 9y2 dy.

Now use the substitution u = 36− 9y2, so that du = −18y dy. Then y = 0 corresponds to
u = 36, and y = 2 to u = 0, and the integral becomes

V = π

∫ 2

0

y
√

36− 9y2 dy = π ·
(

− 1

18

)
∫ 0

36

u1/2 du = − π

18

[

2

3
u3/2

]0

36

= 8π .

24. The region is shown below:

Place the origin at the tip of the cone, with the positive x-axis pointing in the direction
of the base, so that the base of the cone is an ellipse with semi axes 2 and 1 at x = 5.
The cross section at each value of x is an ellipse, and since both axes increase linearly, one
from 0 to 2 and the other from 0 to 1 as x increases from 0 to 5, it follows that for a given
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value of x, the cross section at x is an ellipse with semi axes 2 · x
5 = 2x

5 and x
5 . We must

integrate over the area of these ellipses. Now by the hint, the area of each ellipse is

π ·
(

2x

5

)

·
(x

5

)

=
2

25
πx2

so the volume is

V =

∫ 5

0

(

2

25
πx2

)

dx =
2

25
π

[

1

3
x3

]5

0

=
10

3
π .

25. The base is shown below:

y 0

x
0

4 x 5 y 20

0, 0

0, 4

5, 0

1 2 3 4 5
x

1

2

3

4

y

Solving 4x + 5y = 20 for y gives y = 4 − 4
5x, so for a given value of x, the area of the

semicircular cross section is

1

2
π

(

d

2

)2

=
1

2
π

(

4− 4
5x

2

)2

=
1

8
π

(

16− 32

5
x+

16

25
x2

)

.

Therefore the volume of the solid is

V =

∫ 5

0

1

8
π

(

16− 32

5
x+

16

25
x2

)

dx =
1

8
π

[

16x− 16

5
x2 +

16

75
x3

]5

0

=
10

3
π .

26. We have y′ = x1/2, which is continuous for x > 0. So using the Arc Length Formula, the
arc length from 0 to k is

L =

∫ k

0

√

(y′)2 + 1 dx =

∫ k

0

√
x+ 1 dx =

[

2

3
(x + 1)3/2

]k

0

=
2

3

(

(k + 1)3/2 − 1
)

.

We want this length to be 52
3 , so setting the two equal and multiplying through by 3 gives

2((k + 1)3/2 − 1) = 52, or (k + 1)3/2 − 1 = 26.

Add 1 to both sides and simplify to get k = 8. Therefore the point P is
(

8, 2
3 · 83/2

)

=
(

8,
32

3

√
2

)

.

27. The anchor must be lifted 150 ft; since it weighs 800 lb, the work involved in lifting the
anchor itself is 800 · 150 = 120000 ft-lbs. The remainder of the work expended is for the
chain itself. The weight density of the chain is 20 lb/ft, and the portion of the chain x ft
below the boat must be lifted x ft. Therefore the total work expended in lifting the chain
is

∫ 150

0

20x dx =
[

10x2
]150

0
= 225000 ft-lbs.

So the work required to lift the anchor and chain is 120000 + 225000 = 345000 ft-lbs .
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28. The container must be lifted 1200 m; since its mass is 1000 kg, its weight is 9800 N. Then
the work involved in lifting the container itself is 1200 ·9800 = 1.176×107 J. The remainder
of the work expended is for the cable itself. The density of the cable is 3 kg/m, and the
portion of the cable x ft below the surface must be lifted x ft. Therefore the total work
expended in lifting the cable is

9.8

∫ 1200

0

3x dx = 9.8

[

3

2
x2

]1200

0

= 2.1168× 107 J.

So the work required to lift the container and the cable is 1.176 × 107 + 2.1168 × 107 =

3.2928× 107 J .

29. To determine the radius of the cross section x m below the top of the bowl, consider the
following diagram, which shows a vertical cross section through the center of the bowl:

x 6

36 x2

6 5 4 3 2 1 1 2 3 4 5 6

6

5

4

3

2

1

At a height x m below the top, the radius of the cross section is
√
36− x2, so that the area

of the cross section at that height is (36− x2)π. That cross section must be lifted x m, so
the work performed is

9.8

∫ 6

2

1000x(36−x2)π dx = 9800π

∫ 6

2

(36h−x3) dx = 9800π

[

18x2 − 1

4
x4

]6

2

= 2.5088× 106π J .

30. To determine k, note that a displacement of 0.2 m requires 4 N, so that −4 = k · 0.2, or
k = −20. So the equation of the spring is F = −20x. Then stretching it to 1.4 m, or 0.8
m from its equilibrium point, takes

∫ 0.8

0

(−20x) dx =
[

−10x2
]0.8

0
= −6.4 J .

31. Let the equilibrium length of the spring be s, and the spring constant be k. Then

∫ 1.4−s

1−s

(−kx) dx =
1

2

∫ 1.8−s

1.2−s

(−kx) dx

[

−1

2
kx2

]1.4−s

1−s

=
1

2

[

−1

2
kx2

]1.8−s

1.2−s

[

x2
]1.4−s

1−s
=

1

2

[

x2
]1.8−s

1.2−s

2((1.4− s)2 − (1− s)2) = (1.8− s)2 − (1.2− s)2

−1.6s+ 1.92 = −1.2s+ 1.8

0.4s = 0.12

s = 0.3.

The equilibrium length of the spring is 0.3 m .
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32. Place the trapezoid on a Cartesian grid:

1, 0 3, 0

0, 3 4, 3

1 2 3 4

1

2

Then the equations of the two diagonal lines are:

y − 0 =
3− 0

0− 1
(x− 1), or y = −3x+ 3, or x = −1

3
y + 1

y − 0 =
3− 0

4− 3
(x− 3), or y = 3x− 9, or x =

1

3
y + 3.

So at any height y, the height of the water above a slice at that point is 3 − y, and the
width of the slice is

(

1
3y + 3

)

−
(

− 1
3y + 1

)

= 2
3y + 2. For water, ρg = 62.5, so the force on

the end of the trough is

∫ 3

0

ρg(3−y)

(

2

3
y + 2

)

dy = ρg

∫ 3

0

(

−2

3
y2 + 6

)

dy = ρg

[

−2

9
y3 + 6y

]3

0

= 12·62.5 = 750 lbs .

33. Since the tank’s radius is 5 m, it is half-full. Position the y-axis at the center of one end
of the tank, with the positive y-axis pointing down. Then at a given y-coordinate (depth),

the width of the cross section of that end is 2
√

52 − y2, and the cross section lies y m
below the surface. So the total force is

∫ 5

0

ρgy · 2
√

52 − y2 dy = 2ρg

[

−1

3
(52 − y2)3/2

]5

0

= −2

3
ρg
(

(52 − 52)3/2 − (52 − 02)3/2
)

= −2

3
ρg · (−125) =

2

3
· 737 · 9.8 · 125 ≈ 601883 N .

34. Placing the origin at the center of the bottom of the dam, the face of the dam is

350, 0 350, 0

500, 80 500, 80

500 400 300 200 100 100 200 300 400 500

20

40

60

80

Note that for water, ρg = 62.5. The two diagonal lines have equations

y − 0 =
80− 0

−500− (−350)
(x− (−350)) or y = − 8

15
(x+ 350)

y − 0 =
80− 0

500− 350
(x− 350) or y =

8

15
(x− 350).
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Solving for x gives

x = −15

8
y − 350, x =

15

8
y + 350.

Therefore the width of a cross section at height y is
(

15

8
y + 350

)

−
(

−15

8
y − 350

)

=
15

4
y + 700.

(a) If the dam is full, then the cross section at y lies 80− y ft below the surface, and the
total force is

∫ 80

0

ρg(80− y)

(

15

4
y + 700

)

dy = ρg

∫ 80

0

(

−15

4
y2 − 400y + 56000

)

dy

= ρg

[

−5

4
y3 − 200y2 + 56000y

]80

0

= 2.56× 106ρg = 1.6× 108 lbs .

(b) If the water has a depth of 60 ft, then the cross section at y lies only 60− y ft below
the surface, and the integral goes from 0 to 60, so the total force is

∫ 60

0

ρg(60− y)

(

15

4
y + 700

)

dy = ρg

∫ 60

0

(

−15

4
y2 − 475y + 42000

)

dy

= ρg

[

−5

4
y3 − 475

2
y2 + 42000y

]60

0

= 1.395× 106ρg ≈ 8.719× 107 lbs .

35. The region is shown below:

y x

0, 0 9, 0

9, 3

1 2 3 4 5 6 7 8 9
x

1

2

3

y

The mass of the region is

M = ρ

∫ 9

0

√
x dx = ρ

[

2

3
x3/2

]9

0

= 18ρ,

and the moments about the axes are

My = ρ

∫ 9

0

x
√
x dx = ρ

∫ 9

0

x3/2 dx = ρ

[

2

5
x5/2

]9

0

=
486

5
ρ

Mx = ρ · 1
2

∫ 9

0

(√
x
)2

dx =
1

2
ρ

∫ 9

0

x dx =
1

2
ρ

[

1

2
x2

]9

0

=
81

4
ρ.
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Therefore the centroid is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

27

5
,
9

8

)

.

36. This torus is the solid of revolution of the circle of radius 5−2
2 = 3

2 centered at
(

5+2
2 = 7

2 , 0
)

about the y-axis. By symmetry, the centroid of this circle is at
(

7
2 , 0
)

, which is 7
2 cm from

the axis of revolution. So by Pappus’ Theorem, the volume of the torus is

2πAd = 2π · π
(

3

2

)2

· 7
2
=

63

4
π2 cm2 .

37. The region is shown below:

2 x y 12 0

y 0

x
3

3, 0 6, 0

3, 6

1 2 3 4 5 6
x

1

2

3

4

5

6

y

Since we are dealing with areas, we may assume that the region is a homogeneous lamina,
and we must compute its centroid. The diagonal line has equation y = 12− 2x, so we have

A =

∫ 6

3

(12− 2x) dx =
[

12x− x2
]6

3
= 36− 27 = 9

x̄ =
1

A

∫ 6

3

x(12− 2x) dx =
1

9

∫ 6

3

(12x− 2x2) dx =
1

9

[

6x2 − 2

3
x3

]6

3

=
1

9
(72− 36) = 4

ȳ =
1

2A

∫ 6

3

(12− 2x)2 dx =
1

18

∫ 6

3

(144− 48x+ 4x2) dx =
1

18

[

144x− 24x2 +
4

3
x3

]6

3

=
1

18
(288− 252) = 2.

Then the centroid is at (4, 2). We are revolving about the y-axis, so the distance from the
centroid to the line of revolution is 4. The area of the region is 9. So by Pappus’ Theorem,
the volume of the solid of revolution is

V = 2πAd = 2π · 9 · 4 = 72π .
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38. The region is shown below:

y 3 x

y x2 6 x 2

1, 3

4, 6

1 2 3 4
x0

1

2

3

4

5

6

7

y

The two graphs intersect when 3
√
x = −x2+6x−2. Looking at the graph, the intersection

points appear to be at x = 1 and x = 4; substituting those values into the equation above
reveals that 3

√
1 = −12 + 6 · 1− 2 and 3

√
4 = −42 + 6 · 4− 2, so that those are in fact the

correct x-coordinates, and the two points of intersection are (1, 3) and (4, 6).

(a) To revolve about y = 0 (the x-axis), use the washer method. Each outer radius is
−x2 + 6x− 2 and each inner radius is 3

√
x, so the volume is

V = π

∫ 4

1

(

(

−x2 + 6x− 2
)2 −

(

3
√
x
)2
)

dx

= π

∫ 4

1

(

x4 − 12x3 + 40x2 − 33x+ 4
)

dx

= π

[

1

5
x5 − 3x4 +

40

3
x3 − 33

2
x2 + 4x

]4

1

=
441

10
π .

(b) To revolve about x = 0 (the y-axis), use the shell method. The radius of each shell is
x, and the height of each shell is −x2 + 6x− 2− 3

√
x, so the volume is

V = 2π

∫ 4

1

x
(

−x2 + 6x− 2− 3
√
x
)

dx

= 2π

∫ 4

1

(

−x3 + 6x2 − 2x− 3x3/2
)

dx

= 2π

[

−1

4
x4 + 2x3 − x2 − 6

5
x5/2

]4

1

=
201

10
π .



Chapter 6 Review Exercises 6-189

(c) To revolve about y = −2, use the washer method. Outer radii are−x2+6x−2−(−2) =
−x2 + 6x, and inner radii are 3

√
x− (−2) = 3

√
x+ 2. Therefore the volume is

V = π

∫ 4

1

(

(

−x2 + 6x
)2 −

(

3
√
x+ 2

)2
)

dx

= π

∫ 4

1

(

x4 − 12x3 + 36x2 − 9x− 12x1/2 − 4
)

dx

= π

[

1

5
x5 − 3x4 + 12x3 − 9

2
x2 − 8x3/2 − 4x

]4

1

=
601

10
π .

(d) To revolve about y = 8, use the washer method. Each outer radius is 8 − 3
√
x and

each inner radius is 8− (−x2 + 6x− 2) = x2 − 6x+ 10, so the volume is

V = π

∫ 4

1

(

(

8− 3
√
x
)2 −

(

x2 − 6x+ 10
)2
)

dx

= π

∫ 4

1

(

−x4 + 12x3 − 56x2 + 129x− 48x1/2 − 36
)

dx

= π

[

−1

5
x5 + 3x4 − 56

3
x3 +

129

2
x2 − 32x3/2 − 36x

]4

1

=
199

10
π .

(e) To revolve about x = −3, use the shell method along the x-axis. The height of each
shell is −x2 + 6x− 2− 3

√
x and its radius is x− (−3) = x+ 3, so the volume is

V = 2π

∫ 4

1

(x+ 3)
(

−x2 + 6x− 2− 3
√
x
)

dx

= 2π

∫ 4

1

(

−x3 + 3x2 + 16x− 3x3/2 − 9x1/2 − 6
)

dx

= 2π

[

−1

4
x4 + x3 + 8x2 − 6

5
x5/2 − 6x3/2 − 6x

]4

1

=
441

10
π .

(f) To revolve about x = 5, use the shell method along the x-axis. The height of each
shell is −x2 + 6x− 2− 3

√
x and its radius is 5− x, so the volume is

V = 2π

∫ 4

1

(5− x)
(

−x2 + 6x− 2− 3
√
x
)

dx

= 2π

∫ 4

1

(

x3 − 11x2 + 32x+ 3x3/2 − 15x1/2 − 10
)

dx

= 2π

[

1

4
x4 − 11

3
x3 + 16x2 +

6

5
x5/2 − 10x3/2 − 10x

]4

1

=
199

10
π .
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39. If f(x) = 4
√
2x = 4(2x)

1/2
, then f ′(x) = 4 · 1

2 (2x)
−1/2 · 2 = 4√

2x
. Therefore the surface

area is

S = 2π

∫ 4

1

4
√
2x

√

1 +

(

4√
2x

)2

= 2π

∫ 4

1

4
√
2x

√

1 +
16

2x
dx = 2π

∫ 4

1

4
√
2x

√

1 +
8

x
dx

= 2π

∫ 4

1

4
√
2x

√
x+ 8√
x

dx = 8π
√
2

∫ 4

1

√
x+ 8 dx

Let u = x+ 8, so du = dx, u(1) = (1) + 8 = 9, and u(4) = (4) + 8 = 12. Then

S = 8π
√
2

∫ 12

9

u1/2 du = 8π
√
2

[

2

3
u3/2

]12

9

=
16π

√
2

3

(

123/2 − 93/2
)

=
16

√
2

3
π
(

123/2 − 27
)

or 16
√
2
(

8
√
3− 9

)

π

40. S = 2π

∫ 4

0

5x3

3

√

1 + 25x4 dx

=
10π

3

∫ 4

0

x3
√

1 + 25x4 dx

Let u = 1 + 25x4, so du = 100x3 dx, x3 dx = du
100 , u(0) = 1, and u(4) = 6401.

S =
10π

3

∫ 6401

1

1

100

(√
u
)

du

=

[

π

30

(

2

3

)

u3/2

]6401

1

=
π

45

[

64013/2 − 1
]

≈ 35,752.651

AP
R©

Review Problems

1. V =
π

2

∫ 4

1

(

2x

2

)2

dx

=
π

2

∫ 4

1

x2 dx

=
π

2

(

x3

3

)4

1

=
π

2

(

64

3
− 1

3

)

=
21

2
π

CHOICE A

2. V =

∫ 1

0

(2x+ 4− ex) dx

=
[

x2 + 4x− ex
]1

0

= (1 + 4− e)−
(

0 + 0− e0
)

= 6− e

CHOICE C
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3. By the Shell Method

V = 2π

∫ 2

0

x(4e−x2

) dx

=

[

2π

(−1

2

)

(4e−x2

)

]2

0

=
[

−4πe−x2
]2

0

= −4π
(

e−4 − e0
)

= 4π
(

1− e−4
)

By the disk method

y = 4e−x2

y

4
= e−x2

ln
(y

4

)

= ln
(

e−x2
)

ln
(y

4

)

= −x2(ln e)

x2 = ln

(

4

y

)
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V = π

∫ 4

4/e4
x2 dy + 4π

∫ 4/e4

0

dy

= π

∫ 4

4/e4
ln

(

4

y

)

dy + 4π

∫ 4/e4

0

dy

= π

∫ 4

4/e4
(ln 4− ln y) dy + 4π

∫ 4/e4

0

dy

= π ln 4

∫ 4

4/e4
dy − π

∫ 4

4/e4
ln y dy + 4π

∫ 4/e4

0

dy

= [(π ln 4)(y)]
4
4/e4 − π

[

[y ln y]
4
4/e4 −

∫ 4

4/e4
dy

]

+ 4π

∫ 4/e4

0

dy

[By integration by parts on
∫ 4

4/e4
ln y dy]

= π ln 4

(

4− 4

e4

)

− π

(

4 ln 4− 4

e4
ln

(

4

e4

))

+ π[y]
4
4/e4 + 4π[y]

4/e4

0

= 4π ln 4− 4π ln 4

e4
− 4π ln 4 +

4π

e4
ln

(

4

e4

)

+ 4π − 4π

e4
+

16π

e4

= 4π ln 4− 4π ln 4

e4
− 4π ln 4 +

4π

e4
(

ln 4− ln e4
)

+ 4π +
12π

e4

= 4π ln 4− 4π ln 4

e4
− 4π ln 4 +

4π ln 4

e4
− 16π

e4
+ 4π +

12π

e4

= 4π − 4π

e4

= 4π
(

1− e−4
)

CHOICE D

4. V = π

∫ 2

0

(y − (−1))
2
dx

= π

∫ 2

0

(y + 1)
2
dx

= π

∫ 2

0

(

x2 + 1
)2

dx

= π

∫ 2

0

(

x4 + 2x2 + 1
)

dx

= π

[

x5

5
+

2x3

3
+ x

]2

0

= π

[

32

5
+

16

3
+ 2− 0

]

= π

[

96 + 80 + 30

15

]

=
206

15
π

CHOICE C
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5. Determine the point of intersection in the 1st quadrant of

y = sinx and y = cosx:

y = sinx = cosx

tanx = 1

x =
π

4

V = π

∫ π/4

0

(cosx− 0)
2
dx− π

∫ π/4

0

(sinx− 0)
2
dx

= π

∫ π/4

0

(

cos2 x− sin2 x
)

dx

= π

∫ π/4

0

(

1− sin2 x− sin2 x
)

dx

= π

∫ π/4

0

(

1− 2 sin2 x
)

dx

= π

∫ π/4

0

cos (2x) dx

=

[

π sin 2x

2

]π/4

0

=
π

2

[

sin
(π

2

)

− sin 0
]

=
π

2
[1− 0] =

1

2
π

CHOICE B

6. By the Shell Method:

V = 2π

∫ 2

0

x
(

x3
)

dx

= 2π

∫ 2

0

(

x4
)

dx



6-194 Chapter 6 Applications of the Integral

By the Shell Method:

V = 2π

∫ 2

0

x
(

x3
)

dx

= 2π

∫ 2

0

(

x4
)

dx

= 2π

[

x5

5

]2

0

=
64π

5

By the Disk Method:

For y = x3, x = y1/3

V = π

∫ 8

0

22 dy − π

∫ 8

0

x2 dy

= 4π

∫ 8

0

dy − π

∫ 8

0

(

y1/3
)2

dy

= 4π

∫ 8

0

dy − π

∫ 8

0

(y)
2/3

dy

= 4π[y]
8
0 −

3π

5

[

y5/3
]8

0

= 32π − 3π

5

[

85/3 − 0
]

= 32π − 96π

5

=
64π

5

CHOICE B

7. (a) For the limits of the Area Integral, determine the points of intersection of f(x) =
√
x

and g(x) = x
2 .

f(x) = g(x) =
√
x =

x

2

x =
x2

4

4x = x2

x2 − 4x = 0

x(x − 4) = 0

x = 0 x = 4
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A =

∫ 4

0

(√
x− x

2

)

dx

=

[

2x3/2

3
− x2

4

]4

0

=
2

3
(4)

3/2 − 16

4
=

16

3
− 12

3
=

4

3

(b) V = π

∫ 4

0

(√
x
)2

dx − π

∫ 4

0

(x

2

)2

dx

= π

∫ 4

0

x dx− π

∫ 4

0

x2

4
dx

= π

[

x2

2

]4

0

− π

4

[

x3

3

]4

0

= 8π − 16π

3
=

8

3
π

(c) By the Shell Method

V = 2π

∫ 4

0

x
(√

x− x

2

)

dx

= 2π

∫ 4

0

(

x3/2 − x2

2

)

dx

= 2π

[

2x5/2

5
− x3

6

]4

0

= 2π

[

2(4)
5/2

5
− 43

6
− 0

]

= 2π

(

64

5
− 32

3

)

= 2π

(

192− 160

15

)

=
64

5
π

By the Disk Method:

For f(x) = y =
√
x, x = y2

For g(x) = y = x
2 , x = 2y

V = π

∫ 2

0

(2y)2 dy − π

∫ 2

0

(

y2
)2

dy

= π

∫ 2

0

(

4y2
)

dy − π

∫ 2

0

(

y4
)

dy

=

[

4πy3

3

]2

0

−
[

πy5

5

]2

0

=

(

32π

3
− 0

)

−
(

32π

5
− 0

)

=
160π − 96π

15
=

64π

15
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(d) V =

∫ 4

0

(√
x− x

2

)2

dx

=

∫ 4

0

(

x− x
√
x+

x2

4

)

dx

=

∫ 4

0

(

x− x
√
x+

x2

4

)

dx

=

∫ 4

0

(

x− x3/2 +
x2

4

)

dx

=

[

x2

2
− 2x5/2

5
+

x3

12

]4

0

=

(

8− 64

5
+

16

3
− 0

)

=
8

15

8. F =

∫ d

c

ρg(H − y)[f(y)− h(y)] dy

=

∫ 0

−1

(840)(9.8)(0− y)

[

√

1− y2

2
−
(

−
√

1− y2

2

)]

dy

= (840)(9.8)

∫ 0

−1

(−y)
√

1− y2 dy

CHOICE C

9. (a) W = ρg(100π)

∫ 27

0

(36− x) dx

= (1000)(9.8)(100π)

[

36x− x2

2

]27

0

= 980,000π

[

36(27)− 272

2

]

= 980,000π(607.5)

= 595,350,000π

≈ 1,870,347,186 ≈ 1.870× 109 J

(b) W = ρg(100π)

∫ 27

0

(40− x) dx

= (1,000)(9.8)(100π)

[

40x− x2

2

]27

0

= 980,000π

[

40(27)− 272

2

]

= 980,000π(715.5)

= 701,190,000π ≈ 2,202,853,353 ≈ 2.203× 109 J
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10. y =
√
x = x1/2

y′ =
1

2
x−1/2

L =

∫ b

a

√

1 + (y′)
2
dx

=

∫ 5

2

√

1 +

(

1

2
x−1/2

)2

dx

=

∫ 5

2

√

1 +
1

4x
dx

CHOICE A




