
Chapter 8 Infinite Series

8.1 Sequences

Concepts and Vocabulary

1. False: A sequence is a function whose domain is the set of positive integers and not the set
of positive real numbers.

2. False: A sequence {sn} is convergent to a limit L if lim
n→∞

= L. (L = 0 is a special case, but

in general a sequence that is convergent will converge to a real number L.)

3. True: This is because if f(x) is a related function of the sequence {sn} then if
lim
x→∞

f(x) = L it follows that lim
n→∞

sn = L (theorem, p.637).

4. (b) : Bounded, because no term of {sn} will ever exceed in absolute value, K.

5. False: Consider the sequence {sn} =
{
sin(π2n)

}
(see p.642, fig.13). This sequence is

bounded by ±1, but it never converges as it oscillates between −1 and +1.

6. True: A sequence whose nth term cannot be bounded in absolute value by any finite real
number cannot converge to a finite real number.

7. False: A sequence is decreasing if and only if sn > sn+1 for n ≥ 1.

8. False: As an example, consider the sequence {tn} =
{

1 + (−1)n

n2

}

(see fig.14, p.642). This

sequence is not monotonic, but it converges to the limit 1.

9. False: If the sequence {sn} is increasing then the algebraic ratio sn+1

sn
> 1 for all n ≥ 1.

10. (b) : This follows from the properties of a monotonic function. A function whose

derivative is < 0 at x = x0 is decreasing in an open interval about x = x0. Since the function is
a related function of the sequence {sn} it follows that the sequence is also decreasing.

11. True: It is only the eventual (large n) terms of the sequence which determine its
convergence or divergence properties.

12. False: A bounded, monotonic sequence will be a convergent sequence (see theorem, p.642).
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Skill Building

13. sn = n+1
n . Put n = 1, 2, 3, 4. Then s1 = 2; s2 = 3

2 ; s3 = 4
3 ; s4 = 5

4 . The first four terms of

the sequence are 2,
3

2
,
4

3
,
5

4
.

14. sn = 2
n2 . Put n = 1, 2, 3, 4. Then s1 = 2; s2 = 2

4 = 1
2 ; s3 = 2

9 ; s4 = 2
16 = 1

8 . The first four

terms of the sequence are 2,
1

2
,
2

9
,
1

8
.

15. sn = lnn. Put n = 1, 2, 3, 4. Then s1 = ln1 = 0; s2 = ln 2; s3 = ln 3; s4 = ln 4. The first

four terms of the sequence are 0, ln 2, ln 3, ln 4.

16. sn = n
ln(n+1) . Put n = 1, 2, 3, 4. Then s1 = 1

ln 2 ; s2 = 2
ln 3 ; s3 = 3

ln 4 ; s4 = 4
ln 5 . The first four

terms of the sequence are
1

ln 2
,

2

ln 3
,

3

ln 4
,

4

ln 5
.

17. sn = (−1)n+1

2n+1 . Put n = 1, 2, 3, 4. Then s1 = (−1)2

2+1 = 1
3 ; s2 = (−1)3

4+1 = − 1
5 ; s3 = (−1)4

6+1 = 1
7 ;

s4 = (−1)5

8+1 = − 1
9 . The first four terms of the sequence are

1

3
,−1

5
,
1

7
,−1

9
.

18. sn = 1−(−1)n

2 . Put n = 1, 2, 3, 4. Then s1 = 1−(−1)1

2 = 1+1
2 = 1; s2 = 1−(−1)2

2 = 1−1
2 = 0;

s3 = 1−(−1)3

2 = 1+1
2 = 1; s4 = 1−(−1)4

2 = 1−1
2 = 0. The first four terms of the sequence are

1, 0, 1, 0.

19. sn =

{
(−1)n+1 if n is even
1 if n is odd.

Put n = 1, 2, 3, 4. Then s1 = 1; s2 = (−1)2+1 = (−1)3 = −1;

s3 = 1; s4 = (−1)4+1 = (−1)5 = −1. The first four terms of the sequence are 1,−1, 1,−1.

20. sn =

{
n2 + n if n is even
4n+ 1 if n is odd.

Put n = 1, 2, 3, 4. Then s1 = 4(1) + 1 = 5; s2 = 22 + 2 = 6;

s3 = 4(3) + 1 = 13; s4 = 42 + 4 = 20. The first four terms of the sequence are 5, 6, 13, 20.

21. sn = n!
2n . Put n = 1, 2, 3, 4. Then s1 = 1!

21 = 1
2 ; s2 = 2!

22 = 2·1
4 = 1

2 ; s3 = 3!
23 = 3·2·1

8 = 3
4 ;

s4 = 4!
24 = 4·3·2·1

16 = 3
2 . The first four terms of the sequence are

1

2
,
1

2
,
3

4
,
3

2
.

22. sn = n!
n2 . Put n = 1, 2, 3, 4. Then s1 = 1!

12 = 1; s2 = 2!
22 = 2·1

4 = 1
2 ; s3 = 3!

32 = 3·2·1
9 = 2

3 ;

s4 = 4!
42 = 4·3·2·1

16 = 3
2 . The first four terms of the sequence are 1,

1

2
,
2

3
,
3

2
.

23. 2, 4, 6, 8, 10, . . . Observe that this is the set of even numbers. The nth of term of the

sequence is 2n.

24. 1, 3, 5, 7, 9, . . . Observe that this is the set of odd numbers. The nth term of the sequence is

2n− 1. (We don’t write 2n+ 1 because the first term, for n = 1, needs to be 1.)
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25. 2, 4, 8, 16, 32, . . . Notice that each term is two times the preceding term. So the
nth term = 2× (n− 1)st term = 2× 2× (n− 2)nd term = · · · etc. The nth term of the

sequence is 2n.

26. 1, 8, 27, 64, 125, . . . Here, each term is a perfect cube. The nth term of the sequence is n3.

27. 1
2 ,− 1

3 ,
1
4 ,− 1

5 ,
1
6 , . . . Notice that every even term appears with a minus sign. So we need a

factor of (−1)n+1 to appear in the nth term of the sequence, which is (−1)n+1 1

n+ 1
.

28. 1,−2, 3,−4, 5, . . . Notice that every even term appears with a minus sign. So we need a

factor of (−1)n+1 to appear in the nth term of the sequence, which is (−1)n+1n.

29. 1
2 ,

2
3 ,

3
4 ,

4
5 , . . . Each term has both numerator and denominator increasing, with

denominator being 1 more than the numerator. So the nth term of the sequence is
n

n+ 1
.

30. 1
2 ,

4
3 ,

9
4 ,

16
5 , . . . The numerators are all perfect squares, while the denominators are just the

consecutive positive integers plus 1. So the nth term of the sequence is
n2

n+ 1
.

31. 1, 1, 2, 6, 24, 120, 720, . . . The rapidly increasing sequence indicates that the factorial could

be involved. The nth term of the sequence (n− 1)! generates this sequence because

(1− 1)! = 0! = 1; (2− 1)! = 1! = 1; (3− 1)! = 2! = 2, and so on.

32. 1, 1, 12 ,
1
6 ,

1
24 ,

1
120 , . . . The rapidly increasing denominators could mean the factorial appears

there. The nth term of the sequence
1

(n− 1)!
generates this sequence because

1
(1−1)! =

1
0! =

1
1 = 1; 1

(2−1)! =
1
1! = 1; 1

(3−1)! =
1
2 , and so on.

33. The nth term of the sequence is sn = 3
n . We have

lim
n→∞

sn = lim
n→∞

3

n
= 3 · lim

n→∞
1

n
= 3 · 0 = 0,

where the constant multiple property of convergent sequences was used. The limit of the

sequence is 0.

34. The nth term of the sequence is sn = − 2
n . We have

lim
n→∞

sn = lim
n→∞

− 2

n
= (−2) · lim

n→∞
1

n
= (−2) · 0 = 0,

where the constant multiple property of convergent sequences was used. The limit of the

sequence is 0.

35. The nth term of the sequence is sn = 1− 1
n . We have

lim
n→∞

sn = lim
n→∞

(

1− 1

n

)

= lim
n→∞

1− lim
n→∞

1

n
= 1− 0 = 1,
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where the sum and difference property of convergent sequences was used. The limit of the

sequence is 1.

36. The nth term of the sequence is sn = 1
n + 4. We have

lim
n→∞

sn = lim
n→∞

(
1

n
+ 4

)

= lim
n→∞

1

n
+ lim

n→∞
4 = 0 + 4 = 4,

where the sum and difference property of convergent sequences was used. The limit of the

sequence is 4.

37. The nth term of the sequence is sn = 4n+2
n = 4 + 2

n . We have

lim
n→∞

sn = lim
n→∞

(

4 +
2

n

)

= lim
n→∞

4 + lim
n→∞

2

n
= lim

n→∞
4 + 2 · lim

n→∞
1

n
= 4 + 2 · 0 = 4,

where the sum and difference and constant multiple properties of convergent sequences were

used. The limit of the sequence is 4.

38. The nth term of the sequence is sn = 2n+1
n = 2 + 1

n . We have

lim
n→∞

sn = lim
n→∞

(

2 +
1

n

)

= lim
n→∞

2 + lim
n→∞

1

n
= 2 + 0 = 2,

where the sum and difference property of convergent sequences was used. The limit of the

sequence is 2.

39. The nth term of the sequence is sn =
(
2−n
n2

)4
=
(

2
n2 − 1

n

)4
. We have

lim
n→∞

sn = lim
n→∞

(
2
n2 − 1

n

)4
=
[

lim
n→∞

(
2
n2 − 1

n

)]4

=
[

lim
n→∞

2
n2 − lim

n→∞
1
n

]4

=
[

2 · lim
n→∞

1
n2 − lim

n→∞
1
n

]4

= [2 · 0− 0]4 = 0, where the power, sum and difference, and constant

multiple properties of convergent sequences were used. The limit of the sequence is 0.

40. The nth term of the sequence is sn =
(

n3−2n
n3

)2

=
(
1− 2

n2

)2
. We have

lim
n→∞

sn = lim
n→∞

(
1− 2

n2

)2
=
[

lim
n→∞

(
1− 2

n2

)]2

=
[

lim
n→∞

1− lim
n→∞

2
n2

]2

=
[

lim
n→∞

1− 2 · lim
n→∞

1
n2

]2

= [1− 2 · 0]2 = 12 = 1, where the power, sum and difference, and

constant multiple properties of convergent sequences were used. The limit of the sequence is 1.

41. The nth term of the sequence is sn =
√

n+1
n2 =

√
1
n + 1

n2 . We have

lim
n→∞

sn = lim
n→∞

√

1

n
+

1

n2
=

[

lim
n→∞

(
1

n
+

1

n2

)] 1
2

=

[

lim
n→∞

1

n
+ lim

n→∞
1

n2

] 1
2

= [0 + 0]
1
2 = 0,

where the power and sum and difference properties of convergent sequences were used. The

limit of the sequence is 0.

42. The nth term of the sequence is sn = 3

√

8− 1
n =

(
8− 1

n

) 1
3 . We have

lim
n→∞

sn = lim
n→∞

(

8− 1

n

) 1
3

=

[

lim
n→∞

(

8− 1

n

)] 1
3

=

[

lim
n→∞

8− lim
n→∞

1

n

] 1
3

= [8− 0]
1
3 = 2,
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where the power and sum and difference properties of convergent sequences were used. The

limit of the sequence is 2.

43. The nth term of the sequence is sn =
(
1− 1

n

) (
1− 1

n2

)
. We have

lim
n→∞

(

1− 1

n

)(

1− 1

n2

)

= lim
n→∞

(

1− 1

n

)

· lim
n→∞

(

1− 1

n2

)

=

(

1− lim
n→∞

1

n

)

·
(

1− lim
n→∞

1

n2

)

= (1 − 0)(1− 0) = 1,

where the product and sum and difference properties of convergent sequences were used. The

limit of the sequence is 1.

44. The nth term of the sequence is sn =
(
1− 1

n

) (
1− 1

n2

) (
1− 1

n3

)
. We have

lim
n→∞

(

1− 1

n

)(

1− 1

n2

)(

1− 1

n3

)

= lim
n→∞

(

1− 1

n

)

· lim
n→∞

(

1− 1

n2

)

· lim
n→∞

(

1− 1

n3

)

=

(

1− lim
n→∞

1

n

)

·
(

1− lim
n→∞

1

n2

)

·
(

1− lim
n→∞

1

n3

)

= (1− 0)(1− 0)(1− 0) = 1,

where the product and sum and difference properties of convergent sequences were used. The

limit of the sequence is 1.

45. Consider a sequence {sn} with sn = n+1
3n = 1

3 + 1
3n . This sequence converges because

lim
n→∞

sn = lim
n→∞

(
1

3
+

1

3n

)

= lim
n→∞

1

3
+ lim

n→∞
1

3n
= lim

n→∞
1

3
+

1

3
· lim
n→∞

1

n
=

1

3
+ 0 =

1

3
,

where the sum and difference and constant multiple properties of convergent sequences were
used. Then by the theorem on p.637, since the function f(x) = lnx is continuous at x = 1

3 , the

sequence {f(sn)} converges, and limit of the sequence {f(sn)} =
{
ln
(
n+1
3n

)}
is ln

(
1

3

)

.

46. Consider a sequence {sn} with sn = n2+2
2n2+3 . This sequence converges because

lim
n→∞

sn = lim
n→∞

n2 + 2

2n2 + 3
= lim

n→∞

1 + 2
n2

2 + 3
n2

=
lim
n→∞

(
1 + 2

n2

)

lim
n→∞

(
2 + 3

n2

)

=
lim
n→∞

1 + lim
n→∞

2
n2

lim
n→∞

2 + lim
n→∞

3
n2

=
lim
n→∞

1 + 2 · lim
n→∞

1
n2

lim
n→∞

2 + 3 · lim
n→∞

1
n2

=
1 + 2 · 0
2 + 3 · 0 =

1

2
,

where the quotient, sum and difference, and constant multiple properties of convergent
sequences were used. The function f(x) = lnx is continuous at x = 1

2 . By the theorem on p.

637, the sequence {f(sn)} converges, and the limit of the sequence {f(sn)} =
{

ln
(

n2+2
2n2+3

)}

is

ln

(
1

2

)

.
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47. Consider the sequence {sn} with sn = 4
n − 2. This sequence converges because

lim
n→∞

sn = lim
n→∞

(
4

n
− 2

)

= lim
n→∞

4

n
− lim

n→∞
2 = 4 · lim

n→∞
1

n
− lim

n→∞
2 = 4 · 0− 2 = −2,

where the sum and difference and constant multiple properties of convergent sequences were
used. The function f(x) = ex is continuous at x = −2. By the theorem on p. 637, the sequence

{f(sn)} converges, and the limit of the sequence {f(sn)} =
{
e(4/n)−2

}
is e−2.

48. Consider the sequence {sn} with sn = 3 + 6
n . This sequence converges because

lim
n→∞

sn = lim
n→∞

(

3 +
6

n

)

= lim
n→∞

3 + lim
n→∞

6

n
= lim

n→∞
3 + 6 · lim

n→∞
1

n
= 3 + 6 · 0 = 3,

where the sum and difference and constant multiple properties of convergent sequences were
used. The function f(x) = ex is continuous at x = 3. By the theorem on p.637, the sequence

{f(sn)} converges, and the limit of the sequence {f(sn)} =
{
e3+(6/n)

}
is e3.

49. Consider the sequence {sn} with sn = 1
n . This sequence converges because

lim
n→∞

sn = lim
n→∞

1
n = 0. The function f(x) = sinx is continuous at x = 0. By the theorem on

p.637, the sequence {f(sn)} converges, and the limit of the sequence {f(sn)} =
{
sin
(
1
n

)}
will

be sin(0) = 0.

50. Consider the sequence {sn} with sn = 1
n . This sequence converges because

lim
n→∞

sn = lim
n→∞

1
n = 0. The function f(x) = cosx is continuous at x = 0. By the theorem on

p.637, the sequence {f(sn)} converges, and the limit of the sequence {f(sn)} =
{
cos
(
1
n

)}
will

be cos(0) = 1.

51. The function f(x) = x2−4
x2+x−2 is a related function of the sequence

{
n2−4

n2+n−2

}

. Since

lim
x→∞

f(x) = lim
x→∞

x2 − 4

x2 + x− 2
= lim

x→∞

1− 4
x2

1 + 1
x − 2

x2

=
lim
x→∞

(
1− 4

x2

)

lim
x→∞

(
1 + 1

x − 2
x2

) =
lim
x→∞

1− lim
x→∞

4
x2

lim
x→∞

1 + lim
x→∞

1
x − lim

x→∞
2
x2

=
1− 0

1 + 0− 0
= 1,

the sequence
{

n2−4
n2+n−2

}

also converges and its limit is 1.

52. The function f(x) = x+2
x2+6x+8 is a related function of the sequence

{
n+2

n2+6n+8

}

. Since

lim
x→∞

f(x) = lim
x→∞

x+ 2

x2 + 6x+ 8
= lim

x→∞

1
x + 2

x2

1 + 6
x + 8

x2

=
lim
x→∞

(
1
x + 2

x2

)

lim
x→∞

(
1 + 6

x + 8
x2

) =
lim
x→∞

1
x + lim

x→∞
2
x2

lim
x→∞

1 + lim
x→∞

6
x + lim

x→∞
8
x2

=
0+ 0

1 + 0 + 0
= 0,

the sequence
{

n+2
n2+6n+8

}

also converges and its limit is 0.
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53. We write the nth term of the sequence {sn} =
{

n2

2n+1 − n2

2n−1

}

as

sn =
n2

2n+ 1
− n2

2n− 1
=

n2[(2n− 1)− (2n+ 1)]

(2n)2 − 12
=

n2(−2)

4n2 − 1
= − 2n2

4n2 − 1
.

The function f(x) = − 2x2

4x2−1 is a related function of the sequence {sn}. Since

lim
x→∞

f(x) = lim
x→∞

− 2x2

4x2 − 1
= lim

x→∞
−2

4− 1
x2

=
lim
x→∞

(−2)

lim
x→∞

(
4− 1

x2

) =
lim
x→∞

(−2)

lim
x→∞

4− lim
x→∞

1
x2

=
−2

4− 0
= −1

2
,

the sequence {sn} =
{

n2

2n+1 − n2

2n−1

}

also converges and its limit is −1

2
.

54. The function f(x) = 6x4−5
7x4+3 is a related function of the sequence

{
6n4−5
7n4+3

}

. Since

lim
x→∞

f(x) = lim
x→∞

6x4 − 5

7x4 + 3
= lim

x→∞

6− 5
x4

7 + 3
x4

=
lim
x→∞

(
6− 5

x4

)

lim
x→∞

(
7 + 3

x4

) =
lim
x→∞

6− lim
x→∞

5
x4

lim
x→∞

7 + lim
x→∞

3
x4

=
6− 0

7 + 0
=

6

7
,

the sequence
{

6n4−5
7n4+3

}

also converges and its limit is
6

7
.

55. The function f(x) =
√
x+2√
x+5

is a related function of the sequence
{√

n+2√
n+5

}

. Since

lim
x→∞

f(x) = lim
x→∞

√
x+ 2√
x+ 5

= lim
x→∞

1 + 2√
x

1 + 5√
x

=
lim
x→∞

(

1 + 2√
x

)

lim
x→∞

(

1 + 5√
x

) =
lim
x→∞

1 + lim
x→∞

2√
x

lim
x→∞

1 + lim
x→∞

5√
x

=
1 + 0

1 + 0
= 1,

the sequence
{√

n+2√
n+5

}

also converges and its limit is 1.

56. The function f(x) =
√
x

ex is a related function of the sequence
{√

n
en

}

. Using L’Hôpital’s

rule, since

lim
x→∞

f(x) = lim
x→∞

√
x

ex
= lim

x→∞

1
2
√
x

ex
= lim

x→∞
1

2
√
xex

= 0,

the sequence
{√

n
en

}

also converges and its limit is 0.

57. The function f(x) = x2

3x is a related function of the sequence
{

n2

3n

}

. Using L’Hôpital’s rule,

since

lim
x→∞

f(x) = lim
x→∞

x2

3x
= lim

x→∞
2x

3xln3
= lim

x→∞
2

3x(ln3)2
= 0,

the sequence
{

n2

3n

}

also converges and its limit is 0.
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58. The function f(x) = (x−1)2

ex is a related function of the sequence
{

(n−1)2

en

}

. Using

L’Hôpital’s rule, since

lim
x→∞

f(x) = lim
x→∞

(x− 1)2

ex
= lim

x→∞
2(x− 1)

ex
= lim

x→∞
2

ex
= 0,

the sequence
{

(n−1)2

en

}

also converges and its limit is 0.

59. To see if the sequence {sn} =
{

(−1)n

3n2

}

converges, consider the absolute value of the nth

term:

|sn| =
∣
∣
∣
∣

(−1)n

3n2

∣
∣
∣
∣
≤ 1

3n2
.

That means − 1
3n2 ≤ (−1)n

3n2 ≤ 1
3n2 . The sequence {sn} is bounded below by the sequence

{an} =
{
− 1

3n2

}
and bounded above by the sequence {bn} =

{
1

3n2

}
. Since an ≤ sn ≤ bn for all

n, and lim
n→∞

an = lim
n→∞

−1
3n2 = (− 1

3 ) · lim
n→∞

1
n2 = − 1

3 · 0 = 0 and

lim
n→∞

bn = lim
n→∞

1
3n2 = 1

3 · lim
n→∞

1
n2 = 1

3 · 0 = 0, then by the Squeeze Theorem, the sequence

{sn} =
{

(−1)n

3n2

}

converges, and its limit is 0.

60. To see if the sequence {sn} =
{

(−1)n√
n

}

converges, consider the absolute value of the nth

term:

|sn| =
∣
∣
∣
∣

(−1)n√
n

∣
∣
∣
∣
≤ 1√

n
.

That means − 1√
n
≤ (−1)n√

n
≤ 1√

n
. The sequence {sn} is bounded below by the sequence

{an} =
{

− 1√
n

}

and bounded above by the sequence {bn} =
{

1√
n

}

. Since an ≤ sn ≤ bn for all

n, and lim
n→∞

an = lim
n→∞

−1√
n
= 0 and lim

n→∞
bn = lim

n→∞
1√
n
= 0, then by the Squeeze Theorem, the

sequence {sn} =
{

(−1)n√
n

}

converges, and its limit is 0.

61. To see if the sequence {sn} =
{

sinn
n

}
converges, consider the absolute value of the nth

term:

|sn| =
∣
∣
∣
∣

sin n

n

∣
∣
∣
∣
≤ 1

n
.

That is, − 1
n ≤ sinn

n ≤ 1
n . The sequence {sn} is bounded below by the sequence {an} =

{
− 1

n

}

and bounded above by the sequence {bn} =
{

1
n

}
. Since an ≤ sn ≤ bn for all n, and

lim
n→∞

an = lim
n→∞

− 1
n = 0 and lim

n→∞
bn = lim

n→∞
1
n = 0, then by the Squeeze Theorem, the sequence

{sn} =
{
sinn
n

}
converges, and its limit is 0.

62. To see if the sequence {sn} =
{

cosn
n

}
converges, consider the absolute value of the nth

term:

|sn| =
∣
∣
∣
cos n

n

∣
∣
∣ ≤ 1

n
.

That is, − 1
n ≤ cosn

n ≤ 1
n . The sequence {sn} is bounded below by the sequence {an} =

{
− 1

n

}

and bounded above by the sequence {bn} =
{

1
n

}
. Since an ≤ sn ≤ bn for all n, and
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lim
n→∞

an = lim
n→∞

−1
n = 0 and lim

n→∞
bn = lim

n→∞
1
n = 0, then by the Squeeze Theorem, the sequence

{sn} =
{

cosn
n

}
converges, and its limit is 0.

63. The sequence {sn} = {cos(πn)} oscillates between −1 and +1 for odd n or even n
respectively. There is no single number that the terms of the sequence approach as n → ∞. So

the sequence {sn} = {cos(πn)} diverges.

64. The sequence {sn} =
{
cos
(
π
2n
)}

oscillates between 0,−1 or + 1 depending on whether n is
odd, a multiple of 2, or a multiple of 4, respectively. There is no single number that the terms

of the sequence approach as n → ∞. So the sequence {sn} =
{
cos
(
π
2n
)}

diverges.

65. The sequence is {sn} = {√n}. The terms of the sequence are 1,
√
2,
√
3,
√
4, . . . Given any

positive number M > 1, we choose a positive integer N > M2 > 1. Then whenever n > N > 1,
we have

sn =
√
n >

√
N > M.

That is, the sequence {sn} = {√n} diverges to infinity.

66. The sequence is {sn} =
{
n2
}
. The terms of the sequence are 1, 4, 9, 16, . . . Given any

positive number M > 1, we choose a positive integer N >
√
M > 1. Then whenever

n > N > 1, we have
sn = n2 > N2 > M.

That is, the sequence {sn} =
{
n2
}

diverges to infinity.

67. The sequence {sn} =
{(

− 1
3

)n}
converges to the limit of 0 because −1 < − 1

3 < 1.

68. The sequence {sn} =
{(

1
3

)n}
converges to the limit of 0 because −1 < 1

3 < 1.

69. The sequence {sn} =
{(

5
4

)n}
diverges to infinity because 5

4 > 1.

70. The sequence {sn} =
{(

π
2

)n}
diverges to infinity because π

2 > 1.

71. The sequence is {sn} =
{

n+(−1)n

n

}

. The terms of the sequence are 0, 32 ,
2
3 ,

5
4 ,

4
5 , . . . The

sequence appears to approach the limit L = 1 by oscillating on either side of 1. Let ǫ > 0. Then

|sn − L| =
∣
∣
∣
∣

n+ (−1)n

n
− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

(−1)n

n

∣
∣
∣
∣
=

1

n
.

We have |sn − L| < ǫ if n > [| 1ǫ |] = N . This establishes that the sequence converges to the

limit 1. (Note: [|x|] means the integer part of x.)

72. The sequence is {sn} =
{

1
n + (−1)n

}
. The terms of the sequence are

0, 12 + 1 = 3
2 ,

1
3 − 1 = − 2

3 ,
1
4 + 1 = 5

4 ,
1
5 − 1 = − 4

5 , . . . The terms of the sequence oscillate
between positive and negative numbers, with the positive terms tending to the limit of 1 from
above, and the negative terms tending to a limit of −1 from above. Since there is no single
number that the terms of the sequence approach as n → ∞, the sequence {sn} =

{
1
n + (−1)n

}

diverges.
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73. The sequence {sn} =
{

lnn
n

}
. The sequence has limit

lim
n→∞

sn = lim
n→∞

lnn

n
= lim

n→∞

1
x

1
= 0,

using L’Hôpital rule. This proves the sequence is convergent. By the theorem in the middle of

p.640, the sequence being convergent is bounded, that is, it is bounded both from above and
from below.

74. The sequence is {sn} =
{
sinn
n

}
. We have the following bound

|sn| =
∣
∣
∣
∣

sinn

n

∣
∣
∣
∣
≤ 1

n

which means − 1
n ≤ sinn

n ≤ 1
n . The sequence {sn} is bounded below by the sequence

{
− 1

n

}
and

bounded above by the sequence
{

1
n

}
. As n → ∞, both these bounding sequences converge to

0. This means the sequence {sn} =
{
sinn
n

}
is convergent to the same limit by the Squeeze

Theorem. By the theorem in the middle of p.640, the sequence being convergent is bounded,

that is, it is bounded both from above and from below.

75. The sequence is {sn} =
{
n+ 1

n

}
. As n → ∞, 1

n → 0, but n grows without limit. So there
is no upper bound. However, a lower bound for the sequence is 2 (the value of sn for n = 1), in
that all terms of the sequence exceed 2. So the sequence {sn} =

{
n+ 1

n

}
is bounded only from

below.

76. The sequence {sn} =
{

3
n+1

}

is bounded from below by 0 (the limit of sn as n → ∞), and

bounded from above by 3
2 (the value of sn for n = 1, since the sequence is decreasing). So the

sequence {sn} =
{

3
n+1

}

is bounded both from above and from below.

77. The sequence {sn} =
{

n2

n+1

}

is bounded from below by 1
2 (the value of sn for n = 1), but

it is not bounded from above since

lim
n→∞

sn = lim
n→∞

n2

n+ 1
= lim

x→∞
x2

x+ 1
= lim

x→∞
2x

1
= ∞,

by using L’Hôpital’s rule on a related function of the sequence. So the sequence {sn} =
{

n2

n+1

}

is bounded only from below.

78. The sequence {sn} =
{

2n

n2

}
is bounded from below. The terms of the sequence are

2
1 ,

4
4 = 1, 89 ,

16
16 = 1, 3225 , . . . Note that the lower bound of the sequence is 1. It cannot be less

than 1, since 2n ≥ n2 for all values of n. That this sequence has no upper bound is seen by
examining

lim
n→∞

sn = lim
n→∞

2n

n2
= lim

x→∞
2x

x2
= lim

x→∞
2x(ln2)

2x
= lim

x→∞
2x(ln2)2

2
= ∞,

by using L’Hôpital’s rule on a related function of the sequence. So the sequence {sn} =
{

2n

n2

}
is

bounded only from below.

79. The terms of the sequence {sn} =
{(

− 1
2

)n}
are − 1

2 ,
1
4 ,− 1

8 ,
1
16 , . . . The sequence is bounded

below by − 1
2 and is bounded above by 0, since limn→∞

(
− 1

2

)n
= 0, because −1 ≤ − 1

2 ≤ 1. So

the sequence {sn} =
{(

− 1
2

)n}
is bounded both from above and from below.
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80. The terms of sequence {sn} = {√n} are 1,
√
2,
√
3, . . . The sequence is bounded from

below by 1 but grows without limit as n → ∞ (as was shown in Problem 65), and is not

bounded from above. So the sequence {sn} = {√n} is bounded only from below.

81. The first three terms of the sequence {sn} =
{

3n

(n+1)3

}

are s1 = 0.375, s2 ≈ 0.333,

s3 ≈ 0.422. Since s1 > s2, but s2 < s3, the sequence is not monotonic. To see if it eventually
increases, use the Algebraic Ratio Test on the sequence. We have

sn+1

sn
=

3n+1/(n+ 2)3

3n/(n+ 1)3
= 3 ·

(
n+ 1

n+ 2

)3

> 1

when
(

n+1
n+2

)3

> 1
3 or n+1

n+2 > 1
3
√
3
. That is

3
√
3n+

3
√
3 > n+ 2

(
3
√
3− 1)n > 2− 2

√
3

n >
2− 3

√
3

3
√
3− 1

=
0.5577...

0.4422...
> 1.

So for n ≥ 2 the sequence {sn} =
{

3n

(n+1)3

}

will be a nonmonotonic and an eventually

increasing one.

82. We use the Algebraic Difference Test on the sequence {sn} =
{
2n+1

n

}
. We have

sn+1 − sn =
2n+ 3

n+ 1
− 2n+ 1

n
=

2n2 + 3n− 2n2 − 3n− 1

n(n+ 1)
= − 1

n(n+ 1)
< 0,

whenever n ≥ 1. This means the sequence {sn} =
{
2n+1

n

}
is a decreasing one for n ≥ 1.

83. The sequence is
{

lnn√
n

}

. A related function of the sequence is f(x) = lnx√
x
. Compute the

derivative:

f ′(x) =

√
x · (lnx)′ − lnx · (√x)′

(
√
x)2

=

√
x · 1

x − lnx · 1
2
√
x

x
=

1

x3/2

[

1− lnx

2

]

< 0

when 1− ln x
2 < 0, or lnx > 2 or x > e2 = 7.389.... So the sequence

{
lnn√

n

}

is an eventually

decreasing one for n ≥ 8. This means that for n < 8, the sequence is increasing, so it is

nonmonotonic.

84. We use the Algebraic Ratio Test on the sequence {sn} =
{√

n+1
n

}

. We have

sn+1

sn
=

√
n+ 2/(n+ 1)√

n+ 1/n
=

√
n+ 2√
n+ 1

· n

(n+ 1)
< 1

whenever
√
n+ 2(n) <

√
n+ 1(n+ 1)

(n+ 2)n2 <(n+ 1)(n+ 1)2

n3 + 2n2 <n3 + 3n2 + 3n+ 1

0 <n2 + 3n+ 1.
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This happens whenever n ≥ 1. So the sequence {sn} =
{√

n+1
n

}

is a decreasing one for

n ≥ 1, and is monotonic as well.

85. The sequence is {sn} =
{(

1
3

)n}
. We use the Algebraic Ratio Test:

sn+1

sn
=

(1/3)n+1

(1/3)
n =

1

3
< 1.

So the sequence {sn} =
{(

1
3

)n}
is a decreasing one for n ≥ 1, and is monotonic as well.

86. The sequence is {sn} =
{

n2

5n

}

. We use the Algebraic Ratio Test:

sn+1

sn
=

(n+ 1)2/5n+1

n2/5n
=

(n+ 1)25n

5n+1n2
=

1

5

(

1 +
1

n

)2

< 1

whenever

(

1 +
1

n

)2

< 5

1 +
1

n
<

√
5

1

n
<

√
5− 1

n >
1√
5− 1

=

√
5 + 1

4
= 0.809...

So the sequence {sn} =
{

n2

5n

}

is a decreasing one for n ≥ 1, and it is also monotonic.

87. We use the Algebraic Ratio Test on the sequence {sn} =
{

n!
3n

}
. We have:

sn+1

sn
=

(n+ 1)!

n!
· 3n

3n+1
=

1

3
· (n+ 1) ≥ 1

whenever n+ 1 ≥ 3, or n ≥ 2. So the sequence {sn} =
{

n!
3n

}
is an eventually nondecreasing

one for n ≥ 2. Since the sequence increases for n < 2, it is nonmonotonic.

88. We use the Algebraic Ratio Test on the sequence {sn} =
{

n!
n2

}
. We have:

sn+1

sn
=

(n+ 1)!

n!
· n2

(n+ 1)2
= n+ 1 · n2

(n+ 1)2
=

n2

n+ 1
> 1

if n2 > n+ 1. This happens whenever n2 − n− 1 > 0 or n > 1+
√
5

2 = 1.618.... So the sequence

{sn} =
{

n!
n2

}
is an increasing one for n ≥ 2. Since the sequence is decreasing for n < 2, it is

nonmonotonic.

89. The sequence {sn} = {ne−n} is bounded from below by zero, since its terms are positive
for all n. Examine the derivative of a related function f(x) = xe−x of the sequence :

f ′(x) = e−x − xe−x = e−x(1− x) < 0
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if x > 1. This shows the sequence is a decreasing one for all n ≥ 1. Since the sequence is
bounded from below and is decreasing, it will converge.

90. The sequence is {sn} = {tan−1n}. Since tan−1 n < π
2 for any positive integer n, the

sequence is bounded from above by π
2 . Consider a related function of the sequence

f(x) = tan−1x. Since f ′(x) = 1
1+x2 > 0 when x > 0, this shows the sequence is increasing for

n ≥ 1. Since the sequence is increasing and is bounded from above, it will converge.

91. The sequence is {sn} =
{

n
n+1

}

. Since n < n+ 1 for all n ≥ 1 the sequence is bounded

from above by 1. Using the Algebraic Ratio Test,

sn+1

sn
=

n+ 1

n+ 2
· n+ 1

n
> 1

provided

(n+ 1)2 > n(n+ 2)

n2 + 2n+ 1 > n2 + 2n

1 > 0.

So the sequence is always increasing for any n ≥ 1. Since the sequence is bounded from above
and is increasing, it will converge.

92. The sequence is {sn} =
{

n
n2+1

}

. The sequence is bounded from below by 0 since the

terms of the sequence are positive for all n. Consider a related function of the sequence,
f(x) = x

x2+1 . Now its derivative

f ′(x) =
(x2 + 1)x′ − x(x2 + 1)′

(x2 + 1)2
=

x2 + 1− 2x2

(x2 + 1)2
=

1− x2

(x2 + 1)2
≤ 0

for x ≥ 1. Since a related function of the sequence is nonincreasing for x ≥ 1 this shows the
sequence is nonincreasing for n ≥ 1. Since the sequence is bounded from below and is
nonincreasing, it will converge.

93. The sequence {sn} =
{
2− 1

n

}
is bounded from above by 2 since 1

n < 1 for all values of n.
Also, this sequence is increasing since the Algebraic Difference Test gives

sn+1 − sn = 2− 1

n+ 1
− 2 +

1

n
=

1

n
− 1

n+ 1
=

n+ 1− n

n(n+ 1)
=

1

n(n+ 1)
> 0

for n ≥ 1. Since the sequence is bounded from above and is increasing, it will converge.

94. The sequence {sn} =
{

n
2n

}
is bounded from below by 0 since its terms are positive for all

n. To show the sequence is monotonic, we use the Algebraic Ratio Test:

sn+1

sn
=

n+ 1

2n+1
· 2

n

n
=

1

2

(

1 +
1

n

)

≤ 1

whenever 1 + 1
n ≤ 2, or 1

n ≤ 1, or n ≥ 1. This shows the sequence is nonincreasing for n ≥ 1.
Since the sequence is bounded from below and is nonincreasing, it will converge.

95. The sequence {sn} =
{

3
n + 6

}
is bounded from below by 6 since 3

n > 0 for all n. To check
the monotonicity of the sequence, we use the Algebraic Difference Test:

sn+1 − sn =
3

n+ 1
+ 6− 3

n
− 6 = − 3

n(n+ 1)
< 0
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whenever n ≥ 1. This shows the sequence is decreasing. Since the sequence is decreasing and is
bounded from below, it will converge. Next, compute

lim
n→∞

sn = lim
n→∞

(
3

n
+ 6

)

= lim
n→∞

3

n
+ lim

n→∞
6 = 0 + 6 = 6,

where the sum and difference property of convergent sequences was used. So the limit to which

the sequence will converge is 6.

96. The sequence {sn} =
{
2− 4

n

}
is bounded from above by 2 since 4

n > 0 for all n. To check
the monotonicity of the sequence, we use the Algebraic Difference Test:

sn+1 − sn = 2− 4

n+ 1
− 2 +

4

n
=

4

n(n+ 1)
> 0

for n ≥ 1. This shows the sequence is an increasing one. Since the sequence is bounded from
above by 2 and increasing, it will converge. Next, compute

lim
n→∞

sn = lim
n→∞

(

2− 4

n

)

= lim
n→∞

2− 4 · lim
n→∞

1

n
= 2− 4 · 0 = 2,

where the sum and difference and the constant multiple properties of convergent sequences

have been used. So the limit to which the sequence will converge is 2.

97. The sequence is {sn} =
{
ln
(
n+1
3n

)}
. The sequence {an} =

{
n+1
3n

}
=
{
1
3 + 1

3n

}
is bounded

from below by 1
3 since 1

3n > 0 for all n. Also, the sequence {an} is decreasing as can be seen by
the Algebraic Difference Test:

an+1 − an =
1

3
+

1

3(n+ 1)
− 1

3
− 1

3n
= − 1

3n(n+ 1)
< 0

for n ≥ 1. So the sequence {an}, being bounded from below and decreasing, converges. To find
the limit of the sequence {an}, we compute:

lim
n→∞

an = lim
n→∞

(
1

3
+

1

3n

)

= lim
n→∞

1

3
+ lim

n→∞
1

3n
=

1

3
+ 0 =

1

3
,

where the sum and difference property of convergent sequences has been used. Since
f(x) = lnx is continuous at x = 1

3 , then by the theorem on p.637, the sequence {f(an)} = {sn}
will also converge , and to the limit of ln

(
1
3

)
= − ln 3.

98. The sequence is {sn} =
{
cos
(
nπ + π

2

)}
. For any value of n, the value of sn = 0. This

means the sequence is bounded from below, is nonincreasing, and so it converges to the limit

of 0.

99. The sequence {sn} = {(−1)n
√
n} has terms −1,

√
2,−

√
3,
√
4,−

√
5, . . . As n → ∞, the

sequence oscillates between increasing positive and negative terms without bound. So the

sequence diverges.

100. The sequence is {sn} =
{

(−1)n

2n

}

. Consider

|sn| =
∣
∣
∣
∣

(−1)n

2n

∣
∣
∣
∣
≤ 1

2n

that is,− 1

2n
≤ (−1)n

2n
≤ 1

2n
.



8.1 Sequences 8-15

If {an} =
{
− 1

2n

}
and {bn} =

{
1
2n

}
, we have an ≤ sn ≤ bn. Also, {an} and {bn} are convergent

sequences because 0 is an upper bound for the increasing sequence {an} and 0 is a lower bound
for the decreasing sequence {bn}. By the Squeeze Theorem, this shows that the sequence

{sn} =
{

(−1)n

2n

}

also converges and to the same limit of 0.

101. The sequence {sn} =
{
3n+1
4n

}
=
{(

3
4

)n
+ 1

4n

}
is bounded from below by 0 since the nth

term is positive for all n. To check monotonicity, we use the Algebraic Difference Test:

sn+1 − sn =
3n+1 + 1

4n+1
− 3n + 1

4n
=

3 · 3n + 1− 4 · 3n − 4

4n+1
=

−3n − 3

4n+1
< 0

for n ≥ 1. This means the sequence is decreasing. Since the sequence {sn} =
{
3n+1
4n

}
is

bounded from below and decreasing, it converges. To find the limit, compute:

lim
n→∞

sn = lim
n→∞

(
3

4

)n

+ lim
n→∞

1

4n
= 0 + 0 = 0,

since −1 ≤ 3
4 ≤ 1. So the sequence converges to a limit of 0.

102. The sequence is {sn} =
{
n+ sin 1

n

}
. As limn→∞ n = ∞, the sequence will diverge.

103. The sequence {sn} =
{

ln(n+1)
n+1

}

is bounded from below by 0 since ln(n+ 1) > 0 for all

n ≥ 1. A related function of the sequence is f(x) = ln(x+1)
x+1 . Now since

f ′(x) =
(x+ 1) 1

x+1 − ln(x+ 1) · 1
(x + 1)2

=
1− ln(x+ 1)

(x + 1)2
< 0

for x > e− 1, it means the function is decreasing, and so the sequence is decreasing as well for
n ≥ 2. Since the sequence is bounded from below and decreasing, it converges . To find the

limit, compute:

lim
n→∞

sn = lim
n→∞

ln(n+ 1)

n+ 1
= lim

x→∞
ln(x+ 1)

x+ 1
= lim

x→∞

1
x+1

1
= 0

using L’Hôpital’s rule. So the sequence converges to a limit of 0.

104. A related function of the sequence {sn} =
{

ln(n+1)√
n

}

is f(x) = ln(x+1)√
x

. By the Theorem

on p.637, we have

lim
n→∞

sn = lim
x→∞

f(x) = lim
x→∞

ln(x+ 1)√
x

= lim
x→∞

1
x+1
1

2
√
x

= lim
x→∞

2
√
x

x+ 1
= lim

x→∞

2 · 1√
x

1
= 0,

using L’Hôpital’s rule. So the sequence converges to a limit of 0.

105. The sequence {sn} = {0.5n} converges to a limit of 0 , since −1 < 0.5 < 1.

106. The sequence {sn} = {(−2)n} diverges , since −2 < −1.

107. The sequence {sn} =
{
cos π

n

}
is bounded from above by 1 since

∣
∣cos π

n

∣
∣ ≤ 1. A related

function of the sequence is f(x) = cos π
x . Since

f ′(x) = − sin
π

x
·
(

− π

x2

)

=
π

x2
sin

π

x
> 0
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for x > 1, the function is increasing, which means the sequence is increasing for n ≥ 1. Since
the sequence is bounded above and increasing, it converges. To find the limit, compute:

lim
n→∞

sn = lim
n→∞

cos
π

n
= cos 0 = 1.

So the sequence converges to a limit of 1.

108. The sequence {sn} =
{
sin π

n

}
is bounded from below by 0 since sin π

n > 0 for all n ≥ 1. A
related function of the sequence is f(x) = sin π

x . Since

f ′(x) = cos
π

x
·
(

− π

x2

)

= − π

x2
cos

π

x
< 0

for x > 2, the function is decreasing, which means the sequence is decreasing for n ≥ 2. Since
the sequence {sn} =

{
sin π

n

}
is bounded below and decreasing, it converges. To find the

limit, compute:

lim
n→∞

sn = lim
n→∞

sin
π

n
= sin 0 = 0.

So the sequence converges to a limit of 0.

109. The sequence is {sn} =
{
cos
(

n
en

)}
. Consider the sequence {bn} =

{
n
en

}
. The sequence

{bn} is bounded from below by 0 since its terms are positive for all n ≥ 1. A related function of
the sequence {bn} is f(x) = x

ex . We have

f ′(x) =
ex − xex

e2x
=

ex(1− x)

e2x
< 0

if x > 1, which shows the function f(x) is decreasing. So the sequence {bn} is decreasing for
n > 1. This establishes that the sequence {bn} converges since it is bounded from below and is
decreasing. To find the limit of the sequence {bn}, compute:

lim
n→∞

bn = lim
x→∞

f(x) = lim
x→∞

x

ex
= lim

x→∞
1

ex
= 0,

using L’Hôpital’s rule. Since g(x) = cosx is continuous at x = 0, from the theorem on p.636, it
follows that the sequence {g(bn)} = {sn} =

{
cos
(

n
en

)}
also converges , to the value

cos 0 = 1.

110. The sequence is {sn} =
{

sin
(

(n+1)3

en

)}

. Consider the sequence {bn} =
{

(n+1)3

en

}

. The

sequence {bn} is bounded from below by 0 since its terms are positive for all n ≥ 1. A related

function of the sequence {bn} is f(x) = (x+1)3

ex . We have

f ′(x) =
ex · 3(x+ 1)2 − (x + 1)3 · ex

e2x
=

ex(x+ 1)2[3 − (x+ 1)]

e2x
≤ 0

whenever x ≥ 2, which shows the function f(x) is a nonincreasing function. So {bn} is a
nonincreasing sequence for n ≥ 2. This establishes that the sequence {bn} converges, since it is
bounded from below and nonincreasing. To find the limit of the sequence {bn}, compute:

lim
n→∞

bn = lim
x→∞

f(x) = lim
x→∞

(x+ 1)3

ex
= lim

x→∞
3(x+ 1)2

ex
= lim

x→∞
3 · 2(x+ 1)

ex
= lim

x→∞
3 · 2 · 1
ex

= 0,

using L’Hôpital’s rule. Since g(x) = sinx is continuous at x = 0, from the theorem on p.636,

the sequence {g(bn)} = {sn} =
{

sin
(

(n+1)3

en

)}

also converges , with a limit sin 0 = 0.
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111. The sequence is {sn} =
{
e1/n

}
. Consider the sequence {bn} =

{
1
n

}
. The sequence {bn} is

bounded from below by 0 since its terms are positive for all n ≥ 1. Since

bn+1

bn
=

n

n+ 1
< 1

when n ≥ 1, the sequence {bn} is decreasing according to the Algebraic Ratio Test. Because
the sequence {bn} is bounded frrom below and decreasing, it converges. To find the limit of the
sequence {bn}, compute:

lim
n→∞

bn = lim
n→∞

1

n
= 0.

Now the function f(x) = ex is continuous at x = 0. So by the theorem on p.636, this means the

sequence {f(bn)} = {sn} =
{
e1/n

}
also converges , to a limit e0 = 1.

112. The sequence is {sn} =
{

en

n

}
. Consider a related function of the sequence, f(x) = ex

x .
We have using L’Hôpital’s rule:

lim
n→∞

sn = lim
x→∞

f(x) = lim
x→∞

ex

x
= lim

x→∞
ex

1
= ∞.

This means the sequence {sn} =
{

en

n

}
diverges.

113. The sequence {sn} =
{
1 +

(
1
2

)n}
is bounded from below by 1, since

(
1
2

)n
> 0 for all

n ≥ 1. Using the Algebraic Difference Test, we have

sn+1 − sn = 1 +
1

2n+1
− 1− 1

2n
=

1

2 · 2n − 1

2n
= − 1

2 · 2n = − 1

2n+1
< 0

for n ≥ 1. This shows the sequence is a decreasing one. Since the sequence {sn} =
{
1 +

(
1
2

)n}

is bounded from below and decreasing, it converges. To find the limit, compute:

lim
n→∞

sn = lim
n→∞

[

1 +

(
1

2

)n]

= lim
n→∞

1 + lim
n→∞

(
1

2

)n

= 1 + 0 = 1,

since −1 < 1
2 < 1. So the sequence converges to a limit of 1.

114. The sequence {sn} =
{
1−

(
1
2

)n}
is bounded from above by 1, since

(
1
2

)n
> 0 for all

n ≥ 1. Using the Algebraic Difference Test, we have

sn+1 − sn = 1− 1

2n+1
− 1 +

1

2n
= − 1

2 · 2n +
1

2n
=

1

2 · 2n =
1

2n+1
> 0

for n ≥ 1. This shows the sequence is an increasing one. Since the sequence {sn} =
{
1−

(
1
2

)n}

is bounded from above and increasing, it converges. To find the limit, compute:

lim
n→∞

sn = lim
n→∞

[

1−
(
1

2

)n]

= lim
n→∞

1− lim
n→∞

(
1

2

)n

= 1− 0 = 1,

since −1 < 1
2 < 1. So the sequence converges to a limit of 1.
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Applications and Extensions

115. A related function of the sequence sn = (lnn)2

n is f(x) = (ln x)2

x .

If lim
x→∞

f(x) = L then lim
x→∞

sn = L.

lim
x→∞

sn = lim
x→∞

(lnx)
2

x

This is in an indeterminate form of ∞
∞ so L’Hôpital’s Rule is applicable as follows.

lim
x→∞

(lnx)2

x
= lim

x→∞
2(lnx)

x
= lim

x→∞
2

x
= 0

lim
n→∞

(lnn)
2

n
= 0

116. A related function of the sequence sn =
√
n ln n+1

n is f(x) =
√
x ln

(
x+1
x

)
.

If lim
x→∞

f(x) = L then lim
x→∞

sn = L.

lim
x→∞

sn = lim
x→∞

[√
x ln

(
x+ 1

x

)]

= lim
x→∞

ln
(
x+1
x

)

1√
x

= lim
x→∞

ln
(
1 + 1

x

)

1√
x

This is in an indeterminate form of 0
0 so L’Hôpital’s Rule is applicable as follows.

lim
x→∞

ln
(
1 + 1

x

)

1√
x

= lim
x→∞

1
1+ 1

x

· −1
x2

−1
2 · x−3/2

= lim
x→∞

−2 · 1
1+ 1

x

x1/2
= −2 lim

x→∞
1

(
1 + 1

x

)
· x1/2

= 0

lim
x→∞

√
n ln

n+ 1

n
= 0

Below is a graph of f(x) =
√
x ln

(
x+1
x

)
. Note the behavior of the graph: as the x-values

approach infinity, the y-values approach the asymptote at y = 0.

Below is a numerical analysis of lim
x→∞

[√
x ln

(
x+1
x

)]
. Note that as x values increase to large

values,
√
x ln

(
x+1
x

)
becomes extremely small, approaching 0.
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117. The sequence {sn} =
{

n2 tan−1 n
n2+1

}

is bounded from above since

n2 tan−1 n

n2 + 1
< tan−1 n <

π

2

for all n ≥ 1. A related function of the sequence is f(x) = x2 tan−1 x
x2+1 . Since

f ′(x) =
(x2 + 1)[2x tan−1 x+ x2

1+x2 ]− x2 tan−1 x · 2x
(x2 + 1)2

=
2x tan−1 x+ x2

(x2 + 1)2
> 0

for x > 1, the function is increasing, which means the sequence {sn} is increasing for n ≥ 1.
Since the sequence is bounded from above and increasing, it converges.

118. The sequence {sn} =
{
n sin 1

n

}
has an upper bound of 1 since

∣
∣ sinn

n

∣
∣ ≤ 1

n . A related

function of the sequence is f(x) = x sin 1
x . We have

f ′(x) = sin
1

x
+ x · cos 1

x
·
(

− 1

x2

)

= sin
1

x
− 1

x
cos

1

x
> 0

whenever tan 1
x > 1

x . This inequality is seen to be satisfied for all x ≥ 1 as follows: Let

g(y) = tan y − y. Then g′(y) = sec2 y − 1 ≥ 0 when 1
cos2 y ≥ 1 or cos2 y ≤ 1, which is true for all

y ≥ 0. This shows that g(y) is an increasing function for all y ∈ [0, π
2 ). Since g(0) = 0, this

means that g(y) ≥ 0 for all y ∈ [0, π2 ), that is, tan y ≥ y. If y = 1
x , then this means that

g(x) = tan 1
x − 1

x is increasing (at least) in the interval x ∈ [1,∞), and since

g(1) = tan 1− 1 ≈ 0.557 > 0, it follows that g(x) > 0, or tan 1
x > 1

x for x ∈ [1,∞). That is, the
function f(x) is increasing, and the sequence in turn is increasing for n ≥ 1. Since the sequence
{sn} =

{
n sin 1

n

}
is bounded from above and increasing, it converges.

Alternative Solution: We invoke the Theorem on p.637, and compute the limit on a related
function f(x) = x sin 1

x as follows:

lim
n→∞

sn = lim
x→∞

f(x) = lim
x→∞

x sin
1

x
= lim

y→0

1

y
sin y = 1,

where y = 1
x , and using the standard limit result that lim

y→0

sin y
y = 1. Since a related function of

the sequence converges to a finite limit, it means the sequence also converges (and converges

to the same limit).

119. The sequence is {sn} =
{

n+sinn
n+cos(4n)

}

. Consider lim
n→∞

sinn
n . Since

∣
∣ sinn

n

∣
∣ ≤ 1

n , we have

− 1
n ≤ sinn

n ≤ 1
n . Since lim

n→∞
± 1

n = 0, by the Squeeze theorem, lim
n→∞

sinn
n = 0. Similarly, since

∣
∣
∣
cos(4n)

n

∣
∣
∣ ≤ 1

n , we have − 1
n ≤ cos(4n)

n ≤ 1
n , and since lim

n→∞
± 1

n = 0, by the Squeeze theorem,

lim
n→∞

cos(4n)
n = 0. We have

lim
n→∞

sn = lim
n→∞

n+ sinn

n+ cos(4n)
= lim

n→∞

1 + sinn
n

1 + cos(4n)
n

=
1 + lim

n→∞
sinn
n

1 + lim
n→∞

cos(4n)
n

=
1 + 0

1 + 0
= 1.

The terms of the sequence oscillate on either side of 1, while this calculation shows that the
sequence converges to a limit of 1.
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120. The sequence is {sn} =
{

n2

2n+1 sin
1
n

}

. A related function of the sequence is

f(x) = x2

2x+1 sin
1
x . We have

lim
n→∞

sn = lim
x→∞

f(x) = lim
x→∞

x2

2x+ 1
sin

1

x

= lim
x→∞

x

2x+ 1

sin 1
x

1
x

= lim
y→0

1

2 + y

sin y

y
(Use y = 1

x)

= lim
y→0

1

2 + y
· lim
y→0

sin y

y
=

1

2
· 1 =

1

2
.

So the sequence {sn} =
{

n2

2n+1 sin
1
n

}

converges to a limit of 1
2 .

121. The sequence is {sn} = {lnn− ln(n+ 1)} =
{

ln n
n+1

}

. The sequence {bn} =
{

n
n+1

}

is

bounded from above by 1 since n
n+1 < 1 for all n ≥ 1.The sequence {bn} is increasing by the

Algebraic Ratio Test:
bn+1

bn
=

n+ 1

n+ 2

n+ 1

n
=

n2 + 2n+ 1

n2 + 2n
> 1

for n ≥ 1. So the sequence {bn}, being both bounded from above and increasing, is convergent.
To find the limit of the sequence {bn}, compute:

lim
n→∞

bn = lim
n→∞

n

n+ 1
= lim

n→∞
1

1 + 1
n

=
1

1 + 0
= 1.

Since f(x) = lnx is a continuous function at x = 1, by the theorem on p.636, the sequence

{f(bn)} = {sn} = {lnn− ln(n+ 1)} =
{

ln n
n+1

}

converges to the limit ln 1 = 0.

122. The sequence is {sn} =
{

lnn2 + ln 1
n2+1

}

=
{

ln
(

n2

n2+1

)}

. The sequence {bn} =
{

n2

n2+1

}

is bounded from above by 1 since n2

n2+1 < 1 for all n ≥ 1. The sequence {bn} is increasing by
the Algebraic Ratio Test:

bn+1

bn
=

(n+ 1)2

(n+ 1)2 + 1
· (n

2 + 1)

n2
=

n2(n+ 1)2 + (n+ 1)2

n2[(n+ 1)2 + 1]
=

n2(n+ 1)2 + n2 + 2n+ 1

n2(n+ 1)2 + n2
> 1

for n ≥ 1. So the sequence {bn}, being both bounded from above and increasing, is convergent.
To find the limit of the sequence {bn}, compute:

lim
n→∞

bn = lim
n→∞

n2

n2 + 1
= lim

n→∞
1

1 + 1
n2

=
1

1 + 0
= 1.

Since f(x) = lnx is continuous at x = 1, by the theorem on p.636, the sequence

{f(bn)} = {sn} =
{

lnn2 + ln 1
n2+1

}

converges to the limit ln 1 = 0.

123. The sequence is {sn} =
{

n2
√
n2+1

}

. Since

lim
n→∞

sn = lim
n→∞

n2

√
n2 + 1

= lim
n→∞

n
√

1 + 1
n2

= ∞,

this sequence diverges.
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124. The sequence is {sn} =
{

5n

(n+1)2

}

. Using the L’Hôpital rule on a related function of the

sequence we have:

lim
n→∞

sn = lim
n→∞

5n

(n+ 1)2
= lim

x→∞
5x

(x+ 1)2
= lim

x→∞
5x ln 5

2(x+ 1)
= lim

x→∞
5x(ln 5)2

2
= ∞.

This sequence diverges.

125. The sequence is {sn} =
{

2n

(2)(4)(6)···(2n)

}

=
{

2n

2n(1·2·3···n)

}

=
{

1
n!

}
. It is bounded from

below by 0 since 1
n! > 0 for all n ≥ 1. Using the Algebraic Ratio Test, we have

sn+1

sn
=

n!

(n+ 1)!
=

n!

(n+ 1)n!
=

1

n+ 1
< 1

for n ≥ 1. This shows the sequence is decreasing. Since the sequence {sn} =
{

2n

(2)(4)(6)···(2n)

}

is

bounded from below and decreasing, it will converge.

126. The sequence is {sn} =
{

3n+1

(3)(6)(9)···(3n)

}

=
{

3n+1

3n·n!

}

=
{

3
n!

}
. It is bounded from below by

0 since 3
n! > 0 for all n ≥ 1.Using the algebraic ratio test, we have

sn+1

sn
=

n!

(n+ 1)!
=

n!

(n+ 1)n!
=

1

n+ 1
< 1

for n ≥ 1. This shows the sequence is decreasing. Since the sequence {sn} =
{

3n+1

(3)(6)(9)···(3n)

}

is

bounded from below and decreasing, it will converge.

127. Let f(x) = x2 + x cos x+ 1. Completing the square yields

f(x) =
(

x+
cosx

2

)2

+ 1− cos2 x

4

so that

f(x) ≥ 1− cos2 x

4
≥ 3

4
> 0

since
(
x+ cosx

2

)2 ≥ 0 and cos2 x ≤ 1 for all x. Moreover,

f ′(x) = 2x− x sinx+ cosx

= x(2 − sinx) + cosx

≥ x+ cosx since 2− sinx ≥ 1 because | sinx| ≤ 1;

≥ x− 1 since − 1 ≤ cosx ≤ 1;

> 0

for x > 1. This shows that f(x) is a positive and increasing function of x for x > 1. It follows
that

g(x) =
1

f(x)
=

1

x2 + x cosx+ 1

is a positive and decreasing function (because g′(x) = − 1
f(x)2 · f ′(x) < 0 since f ′(x) > 0) for

x > 1. As g(x) is a related function of the sequence {sn} =
{

1
n2+n cosn+1

}

, the sequence {sn}
is decreasing and bounded from below by 0, so it converges.

128. (a) The first eight terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21 .

(b) We verify that the nth term given satisfies the recursive definition of the Fibonacci
sequence:
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1.

u1 =
(1 +

√
5)1 − (1−

√
5)1

21
√
5

=
(1 +

√
5)− (1−

√
5)

2
√
5

=
2
√
5

2
√
5
= 1.

2.

u2 =
(1 +

√
5)2 − (1 −

√
5)2

22
√
5

=
(1 + 2

√
5 + 5)− (1− 2

√
5 + 5)

4
√
5

=
4
√
5

4
√
5
= 1.

3.

un+2 − un =
(1 +

√
5)n+2 − (1−

√
5)n+2

2n+2
√
5

− (1 +
√
5)n − (1−

√
5)n

2n
√
5

=
(1 +

√
5)2(1 +

√
5)n − (1 −

√
5)2(1−

√
5)n

4(2n
√
5)

− (1 +
√
5)n − (1−

√
5)n

2n
√
5

=
(1 + 5 + 2

√
5)(1 +

√
5)n − (1 + 5− 2

√
5)(1 −

√
5)n

4(2n
√
5)

− (1 +
√
5)n − (1−

√
5)n

2n
√
5

=
(3 +

√
5)(1 +

√
5)n − (3−

√
5)(1 −

√
5)n

2(2n
√
5)

− (1 +
√
5)n − (1−

√
5)n

2n
√
5

=
(3 +

√
5)(1 +

√
5)n − (3−

√
5)(1 −

√
5)n − 2(1 +

√
5)n + 2(1−

√
5)n

2(2n
√
5)

=
(3− 2 +

√
5)(1 +

√
5)n − (3− 2−

√
5)(1 −

√
5)n

2n+1
√
5

=
(1 +

√
5)n+1 − (1−

√
5)n+1

2n+1
√
5

= un+1.

That is, un+2 = un+1 + un. This means that the nth term of the Fibonacci sequence is given

by un =
(1+

√
5)n−(1−

√
5)n

2n
√
5

, since we have verified that it satisfies the recursive definition of the

Fibonacci sequence.

129. The fish population in Mirror Lake is pn = rpn−1 + h. We have

p1 = rp0 + h;

p2 = rp1 + h = r(rp0 + h) + h

= r2p0 + rh+ h;

p3 = rp2 + h = r(r2p0 + rh+ h) + h

= r3p0 + (r2 + r + 1)h; · · · and so on.

The pattern is such that

pn = rnp0 + (1 + r + r2 + · · ·+ rn−1)h.

Let Sn = 1 + r + r2 + · · ·+ rn−1. Then rSn = r + r2 + r3 + · · ·+ rn. Subtracting, we have
rSn − Sn = rn − 1, or Sn = rn−1

r−1 . So, the fish population for p0 = 3000 is

pn = 3000rn +

(
rn − 1

r − 1

)

h.

As n → ∞, rn → 0 since 0 < r < 1. We have

lim
n→∞

pn = p0 lim
n→∞

rn +

(
1− limn→∞ rn

1− r

)

h = 0 +

(
1− 0

1− r

)

h =
h

1− r
.

So the sequence converges.
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130. (a) After one time constant, the charge remaining Q1 = Q0

e1 = Q0e
−1. After two time

constants, the charge remaining Q2 = Q0

e2 = Q0e
−2. So after n time constants, the charge

remaining is Qn = Q0e
−n.

(b) The sequence {Qn} is bounded from below by 0 since the charge Qn is positive for all

n ≥ 1, and the sequence is decreasing as seen by the Algebraic Ratio Test:

Qn+1

Qn
=

Q0e
−n+1

Q0e−n
=

1

e
< 1.

Since the sequence {Qn} is bounded from below and is decreasing, it converges. Since the

sequence converges, we compute the limit: lim
n→∞

Qn = lim
n→∞

Q0e
−n = 0.

131. (a) Intensity after the first reflection I1 = (0.95)I0. Intensity after the second reflection
I2 = (0.95)I1 = (0.95)(0.95)I0 = (0.95)2I0. So, proceeding this way, the intensity after n

reflections will be In = (0.95)nI0.

(b) We require In ≤ (0.02)I0 for the intensity after n reflections to have decreased by at least
98%. So

In ≤ (0.02)I0

n log(0.95) ≤ log(0.02)

n ≥ log(0.02)

log(0.95)
≈ 76.3

(Note: The last inequality was reversed because for numbers less than 1, the log function is
negative, so we are dividing by a negative number, which reverses inequalities.) We want at

least 77 reflections.

132. (a) Let r be the average number of neutrons released per fission event. Each of these
neutrons causes another fission event, each releasing on average r neutrons, for a total of r2

neutrons on average after the second fission event. So after n fission events, rn neutrons on
average are released. For r = 2.5, the sequence that describes the average number of neutrons

after n fission events is {rn} = {(2.5)n}.

(b) Since r = 2.5 > 1, lim
n→∞

rn = ∞, so the sequence diverges.

(c) The number of fission events in the fission chain reaction of Uranium-235 increases without
bound, leading to a nuclear reactor meltdown or an explosion in a nuclear bomb.

133. A related function of the sequence sn =
(
1 + 2

n

)n
is f(x) =

(
1 + 2

x

)x
.

If lim
x→∞

f(x) = L then lim
n→∞

sn = L.

Because lim
x→∞

(
1 + 2

x

)
= 1 and lim

x→∞
x = ∞, the expression

(
1 + 2

x

)x
is an indeterminate form

at ∞ of the type 1∞. Let y =
(
1 + 2

x

)x
.

Then ln y = ln
(
1 + 2

x

)x
= x ln

(
1 + 2

x

)
, which is an indeterminate form at ∞ of the type 0 · ∞.

Rewrite x ln
(
1 + 2

x

)
as

ln (1+ 2
x)

1
x

which is now an indeterminate form at ∞ of the type 0
0 .
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Using L’Hôpital’s Rule,

lim
x→∞

(ln y) = lim
x→∞

[

x ln

(

1 +
2

x

)]

= lim
x→∞

ln
(
1 + 2

x

)

1
x

= lim
x→∞

d
dx

[
ln
(
1 + 2

x

)]

d
dx

(
1
x

)

= lim
x→∞

(
1

1+ 2
x

)(
− 2

x2

)

−1
x2

= lim
x→∞

2

1 + 2
x

=
2

1
= 2

Finally, because lim
x→∞

(ln y) = 2, it follows that

lim
x→∞

y = lim
x→∞

(

1− 4

x

)x

= e2

So, lim
n→∞

(
1− 4

n

)n
= e2 .

134. A related function of the sequence sn =
(
1− 4

n

)n
is f(x) =

(
1− 4

x

)x
.

If lim
x→∞

f(x) = L then lim
x→∞

sn = L.

Because lim
x→∞

(
1− 4

x

)
= 1 and lim

x→∞
x = ∞, the expression

(
1− 4

x

)x
is an indeterminate form

at ∞ of the type 1∞. Let y =
(
1− 4

x

)x
.

Then ln y = ln
(
1− 4

x

)x
= x ln

(
1− 4

x

)
, which is an indeterminate form at ∞ of the type 0 · ∞.

Rewrite x ln
(
1− 4

x

)
as

ln (1− 4
x )

1
x

which is now an indeterminate form at ∞ of the type 0
0 .

Using L’Hôpital’s Rule,

lim
x→∞

(ln y) = lim
x→∞

[

x ln

(

1− 4

x

)]

= lim
x→∞

ln
(
1− 4

x

)

1
x

= lim
x→∞

d
dx

[
ln
(
1− 4

x

)]

d
dx

(
1
x

)

= lim
x→∞

(
1

1− 4
x

)

· 4
x2

−1
x2

= lim
x→∞

−4

1− 4
x

=
−4

1
= −4

Finally, because lim
x→∞

(ln y) = −4, it follows that

lim
x→∞

y = lim
x→∞

(

1− 4

x

)x

= e−4

So lim
n→∞

(
1− 4

n

)n
= e−4 .

135. A related function of the sequence sn =
(
1 + 1

n

)3n
is f(x) =

(
1 + 1

x

)3x
.

If lim
x→∞

f(x) = L then lim
n→∞

sn = L.

Because lim
x→∞

(
1 + 1

x

)
= 1 and lim

x→∞
3x = ∞, the expression

(
1 + 1

x

)3x
is an indeterminate form

at ∞ of the type 1∞. Let y =
(
1 + 1

x

)3x
.

Then ln y = ln
(
1 + 1

x

)3x
= 3x ln

(
1 + 1

x

)
, which is an indeterminate form at ∞ of the type

0 · ∞. Rewrite 3x ln
(
1 + 1

x

)
as 3

ln (1+ 2
x )

1
x

which is now an indeterminate form at ∞ of the

type 0
0 .
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Using L’Hôpital’s Rule,

lim
x→∞

(ln y) = lim
x→∞

[

3x ln

(

1 +
1

x

)]

= 3 lim
x→∞

ln
(
1 + 1

x

)

1
x

= 3 lim
x→∞

d
dx

[
ln
(
1 + 1

x

)]

d
dx

(
1
x

)

= 3 lim
x→∞

(
1

1+ 1
x

)(
− 1

x2

)

−1
x2

= 3 lim
x→∞

1

1 + 1
x

= 3

Finally, because lim
x→∞

(ln y) = 3, it follows that

lim
x→∞

y = lim
x→∞

(

1− 4

x

)x

= e3

So, lim
n→∞

(
1− 4

n

)n
= e3 .

136. A related function of the sequence sn =
(
1 + 1

n

)−2n
is f(x) =

(
1 + 1

x

)−2x
.

If lim
x→∞

f(x) = L then lim
x→∞

sn = L.

Because lim
x→∞

(
1 + 1

x

)
= 1 and lim

x→∞
2x = ∞, the expression

(
1 + 1

x

)−2x
is an indeterminate

form at ∞ of the type 1∞. Let y =
(
1 + 1

x

)−2x
.

Then ln y = ln
(
1 + 1

x

)−2x
= −2x ln

(
1 + 1

x

)
, which is an indeterminate form at ∞ of the type

0 · ∞. Rewrite −2x ln
(
1 + 1

x

)
as

ln (1+ 1
x )

−2
x

which is now an indeterminate form at ∞ of the

type 0
0 .

Using L’Hôpital’s Rule,

lim
x→∞

(ln y) = lim
x→∞

[

−2x ln

(

1 +
1

x

)]

= lim
x→∞

ln
(
1 + 1

x

)

−2
x

= lim
x→∞

d
dx

[
ln
(
1 + 1

x

)]

d
dx

(−2
x

)

= lim
x→∞

(
1

1+ 1
x

)

· −1
x2

2
x2

= lim
x→∞

−2

1 + 1
x

=
−2

1
= −2

Finally, because lim
x→∞

(ln y) = −2, it follows that

lim
x→∞

y = lim
x→∞

(

1 +
1

x

)−2x

= e−2

So, lim
n→∞

(
1 + 1

n

)2n
= e−2.

Also, by reference, consider the conclusion of exercise 103 in Section 4.5 which shows that
lim
x→∞

(
1 + a

x

)x
= ex. Consequently, here

lim
x→∞

(

1 +
1

x

)−2x

= lim
x→∞

[(

1 +
1

x

)x]−2

=
(
e1
)−2

= e−2 .

137. To use the Squeeze Theorem, we need to find an and bn such that an ≤ (−1)
n 1
n! ≤ bn.

We know that

(−1)
n 1

n!
≤
∣
∣
∣
∣
(−1)

n 1

n!

∣
∣
∣
∣
= |(−1)n|

∣
∣
∣
∣

1

n!

∣
∣
∣
∣
=

∣
∣
∣
∣

1

n!

∣
∣
∣
∣
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Thus,

− 1

n!
≤ (−1)

n 1

n!
≤ 1

n!

Since lim
x→∞

(
− 1

n!

)
= lim

n→∞
1
n! = 0, lim

n→∞

[
(−1)

n 1
n!

]
= 0.

Challenge Problems

138. We need to show that when 0 < r < 1, lim
n→∞

rn = 0. Let r = 1
1+p , where p > 0.

Expanding by the Binomial Theorem,

|r|n =
1

|(1 + p)n| =
1

∣
∣
∣1 + np+ n(n−1)

2 p2 + · · ·+ pn
∣
∣
∣

<
1

np
.

This means − 1
np < rn < 1

np . Since lim
n→∞

(

− 1
np

)

= 0 = lim
n→∞

(
1
np

)

, by the Squeeze Theorem, we

have lim
n→∞

rn = 0, which was to be proved.

139. Suppose −1 < r < 0, and let s = −r. Then 0 < s < 1. Moreover

rn = (−1)nsn

so
−sn ≤ rn ≤ sn

for all n. From Problem 138, lim
n→∞

sn = 0, therefore lim
n→∞

rn = 0 by the Squeeze Theorem.

140. We need to show that if r > 1, then lim
n→∞

rn = ∞. Let r = 1 + p, where p > 0. Then, by

the Binomial Theorem, we have

rn = (1 + p)n = 1 + np+
n(n− 1)

2
p2 + · · ·+ pn > np,

or rn > np. Since lim
n→∞

np = ∞ if p > 0, it follows than lim
n→∞

rn = ∞, which was to be proved.

141. If r < −1, then r = 1 + p means that p < −2. If n is even, then rn > 0, and rn > n|p|,
from the calculation of the previous problem 140. If n is odd, then rn < 0 and rn < −n|p|. As
n → ∞, rn oscillates without bound between large positive and negative values, so lim

n→∞
rn

does not exist for r < −1, as was to be shown.

142. Recall that a function f is continuous at x0 = L if for every ǫ > 0, there is a δ > 0 such
that 0 < |x− L| < δ implies |f(x)− f(L)| < ǫ. Let {sn} be a sequence with a limit L. Then
lim
n→∞

sn = L means that for every ǫ′ > 0. there exists an n > N such that |sn −L| < ǫ′. Choose

x to be sn. Set δ = ǫ′. Then for 0 < |sn − L| < ǫ′, continuity of f means for n > N ,
|f(x)− f(L)| < ǫ. But this means that lim

n→∞
f(sn) = f(L), which was to be shown.

143. We have |sn| = |sn − L+ L| ≤ |sn − L|+ |L|, using the Triangle Inequality. Similarly,
|L| = |L− sn + sn| ≤ |L− sn|+ |sn| = |sn − L|+ |sn|. Together these can be written as
||sn| − |L|| ≤ |sn − L|. If |sn − L| < ǫ for n > N , then ||sn| − |L|| ≤ |sn − L| < ǫ. This means
that lim

n→∞
|sn| = |L|.

The converse is not true. For example, the sequence {|(−1)n|} converges to 1, while the
sequence {(−1)n} is nonconvergent as its terms oscillate between −1 and +1.

144. Suppose the limit of a sequence is not unique. Then we would have lim
n→∞

sn = L1, and

lim
n→∞

sn = L2. Then we have:

lim
n→∞

(sn − sn) = lim
n→∞

sn − lim
n→∞

sn

lim
n→∞

0 = 0 = L1 − L2

or, L1 = L2.
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This proves that the limit of a convergent sequence is indeed unique, since our calculation
shows L1 = L2.

145. The definition of a limit at infinity of a function f(x) is: lim
x→∞

f(x) = L if for every ǫ > 0,

there is an N such that |f(x)− L| < ǫ for x > N .

The definition of a limit of a sequence {sn} is: lim
n→∞

sn = L if for every ǫ > 0 there is an N

such that |sn − L| < ǫ for n > N .

The definitions appear identical, even though in the case of functions, the choice of N is not
necessarily an integer as it is in the case of sequences.

146. (a) A related function of the sequence {lnn} is f(x) = lnx. Since f ′(x) = 1
x > 0 for

x > 0, the related function of the sequence is increasing, which means the sequence {lnn} is
increasing for n ≥ 1.

(b) Using the algebraic ratio test, we have ln(n+1)
lnn > 1, since lnn is an increasing function of n.

This shows that the sequence {lnn} is unbounded from above.

(c) The sequence {lnn} is an increasing sequence that is unbounded from above, and so it will
diverge.

(d) We need an N such that N > e20 ≈ 4.852× 108. So the smallest N so that lnN > 20 is
N = e20 + 1.

(e) The zoomed-in graph of lnx for large values of x appears below:

2200 2400 2600 2800 3000

7.7

7.8

7.9

8.0

Ln(x)

(f) The graph suggests that the function y = lnx increases as x increases, hence the sequence
{lnn} will diverge without bound as well, confirming the result in (c).

147. (a) For a, b > 0,

a+ b

2
−
√
ab =

1

2
(a− 2

√
ab+ b) =

1

2
(
√
a−

√
b)2 > 0.

So a+b
2 >

√
ab. If an+1 = an+bn

2 and bn+1 =
√
anbn, then using the result we have proved,

namely an+bn
2 >

√
anbn for all n, we have an+1 > bn+1 for all n, or, equivalently, an > bn for all

n. Beacuse of this, we can write an+1 = an+bn
2 < an+an

2 = an, i.e., an+1 < an. So by the
Algebraic Difference Test, the sequence {an} decreases.

Now an > bn also implies bn+1 =
√
anbn >

√
bnbn = bn, i.e., bn+1 > bn. So by the algebraic

ratio test, the sequence {bn} increases. We have, since {an} is decreasing
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an < an−1 < an−2 < · · · < a1 and since {bn} is increasing, bn < bn+1 < bn+2 < · · · . Combining
this with bn < an, or equivalently, bn+1 < an+1, we have:

b1 < b2 < · · · < bn < bn+1 < an+1 < an < · · · < a1

for all n, and, in particular, bn < bn+1 < a1 for all n.

(b) From the chain of inequalities that appear above, it follows that b1 < an+1 < an for all n.

(c) Let’s first prove
√
a−

√
b < a− b when a > b > 0:

√
a−

√
b < a− b

is the same as
√
a− a <

√
b− b

√
a(1−

√
a) <

√
b(1−

√
b).

Squaring, a(1 + a− 2
√
a) < b(1 + b− 2

√
b)

< a(1 + a− 2
√
b), since b < a

a(1 + a)− 2a
√
a < a(1 + a)− 2a

√
b

−2a
√
a < −2a

√
b

a
√
a > a

√
b

√
a >

√
b

a > b

which is the case, ending the proof. Consider

0 < an+1−bn+1 =
an + bn

2
−
√

anbn =
1

2
(an−2

√

anbn+bn) =
1

2
(
√
an−

√

bn) <
1

2
(an−bn) < · · · < a1 − b1

2n

by repeating the process n times, and using the result proved above in the form√
an −

√
bn < an − bn since bn < an. This shows that 0 < an+1 − bn+1 < a1−b1

2n .

(d) The result of part (c) shows that as n → ∞, the difference between an+1 and bn+1, gets

arbitrarily small. Since lim
n→∞

a1−b1
2n = (a1 − b1) lim

n→∞

(
1
2

)n
= 0, since −1 < 1

2 < 1, and

lim
n→∞

0 = 0, by the Squeeze Theorem, we have lim
n→∞

(an+1 − bn+1) = 0, which means that

lim
n→∞

an = lim
n→∞

bn, as required to be proved. (Note that each limit separately exists because

the sequence {an} is bounded from below by 0 and is decreasing, so it converges to some limit;
the sequence {bn} is bounded from above by a1—see the string of inequalities in part (a)— and
is increasing, so it also converges to some limit.)

148. sn = 2n−14n

n! . Using the algebraic ratio test, we have

sn+1

sn
=

2n4n+1

(n+ 1)!

n!

2n−14n
=

2 · 4
n+ 1

=
8

n+ 1
≤ 1

for n ≥ 7. This shows the sequence {sn} is nonincreasing. Since each term of the sequence is
positive, sn > 0 for n ≥ 1, the sequence {sn} is bounded from below. Since the sequence {sn}
is nonincreasing and bounded from below, it converges.

149. sn = n!
3n·4n . Using the algebraic ratio test, we have

sn+1

sn
=

(n+ 1)!

3n+1 · 4n+1

3n · 4n
n!

=
n+ 1

12
≥ 1
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for n ≥ 11. The sequence is nondecreasing, so there is no upper bound. So the sequence

diverges.

150. To see if the sequence {sn} is monotonic, we find the ratio sn+1

sn
.

sn+1

sn
=

(n+1)!
3n+1+8(n+1)

n!
3n+8n

=
(n+ 1)!

n!

3n + 8n

3n+1 + 8(n+ 1)
= (n+ 1)

3n + 8n

3n+1 + 8(n+ 1)
.

Using L’Hôpital’s rule on a related function of the fractional term,

lim
n→∞

3n + 8n

3n+1 + 8(n+ 1)
= lim

x→∞
3x + 8x

3x+1 + 8(x+ 1)
= lim

x→∞
(ln3)3x + 8

(ln3)3x+1 + 8

= lim
x→∞

(ln3)23x

(ln3)23x+1
= lim

x→∞
3x

3x+1
=

1

3
.

For large n, we have lim
n→∞

sn+1

sn
= lim

n→∞
(n+1)

3 = ∞. The increasing sequence {sn} is not

bounded from above, so it will diverge.

151. The sequence is {sn} =
{
(3n + 5n)1/n

}
=
{

5
(
1 +

(
3
5

)n)1/n
}

. The sequence is bounded

from below by 5 since
(
3
5

)n
> 0 and

(
1 +

(
3
5

)n)1/n
> 1. (The nth root of a number greater

than 1 is greater than 1.) A related function of the sequence is f(x) = 5
(
1 +

(
3
5

)x)1/x
. Note

that f(x) > 0 when x > 0. Taking the logarithm of both sides and differentiating with respect
to x, we get

ln f = ln 5 +
1

x
ln

(

1 +

(
3

5

)x)

;

f ′

f
= 0− 1

x2
ln

(

1 +

(
3

5

x))

+
1

x
· 1
(
1 +

(
3
5

)x) ·
(
3

5

)x

· ln
(
3

5

)

< 0

whenever x > 0 since ln
(
3
5

)
< 0. Since f(x) > 0, we have shown that f ′(x) < 0, or the function

is decreasing for x > 0. This means the sequence is decreasing for n ≥ 1. Since the sequence is
bounded from below and is decreasing, it converges, as was to be shown.

152. (a) Let a1 and N be positive numbers. Then

an+1 =
1

2

(

an +
N

an

)

=
a2n +N

2an
> 0

for all n ≥ 1. Since
a2n − 2an

√
n+N = (an −N)2 ≥ 0,

it follows that

a2n +N ≥ 2an
√
n, or

a2n +N

2an
≥

√
N.

So we have

an+1 =
a2n +N

2an
≥

√
N for n ≥ 1,

that is, an ≥
√
N for n ≥ 2. By the Algebraic Ratio Test, we get

an+1

an
=

1

2

(

1 +
N

a2n

)

≤ 1

2

(

1 +
N

N

)

= 1
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for n ≥ 2 since an ≥
√
N for n ≥ 2. We have shown that the sequence {an} is a nonincreasing

sequence that is bounded from below, so it converges. Suppose the limit of the sequence is L.
Taking the limit as n → ∞ of both sides of the equation

an+1 =
1

2

(

an +
N

an

)

yields L = 1
2

(
L+ N

L

)
or 2L2 = L2 +N , or L =

√
N .

(b) We want to approximate
√
28, so N = 28. Let a1 = 1 (Any other value may be chosen, in

which case the answers will vary for a3, but for a6, the answers will be much closer if not

identical to three decimal places.) Then a2 = 1
2

[

a1 +
28
a1

]

= 1
2 [1 + 28] = 29

2 . Then

a3 = 1
2

[
29
2 + 28

(29/2)

]

= 1
2

[
29
2 + 56

29

]
= 29

4 + 28
29 ≈ 8.216. Next, a3 = 1

2

[
8.216 + 28

8.216

]
≈ 5.812;

a4 = 1
2

[
5.812 + 28

5.812

]
≈ 5.315; a5 = 1

2

[
5.315 + 28

5.315

]
≈ 5.292; a6 = 1

2

[
5.292 + 28

5.292

]
≈ 5.292.

To three decimal places, we have using a calculator,
√
28 ≈ 5.292. We see that a6 is 100%

accurate and a3 is about 91% accurate.

153. The given sequence can be rewritten as

{sn} =
{

1·3·5···(2n−1)
2·4·6···2n

}

=
{

1·2·3·4·5····(2n−2)·(2n−1)
(2·4·6···(2n−2))2(2n)

}

=
{

(2n−1)!
(2n−1(1·2·3···(n−1)))2·2n

}

=
{

(2n−1)!
22n−2·(n−1)!(n−1)!·2n

}

=
{

(2n−1)!
22n−1n!(n−1)!

}

. Using the algebraic ratio test, we have

sn+1

sn
=

(2n+ 1)!

22n+1(n+ 1)!n!
· 2

2n−1n!(n− 1)!

(2n− 1)!
=

(2n+ 1)(2n)(2n− 1)!(n− 1)!22n−1

(2n− 1)!(n+ 1)n(n− 1)!2222n−1
=

2n+ 1

2n+ 2
< 1

for n ≥ 1 which means the sequence {sn} is decreasing. Since the sequence is decreasing, the
upper bound on the terms of the sequence is s1 = 1

2 . So the sequence is bounded below by 0

and above by 1
2 . Hence the sequence is both monotonic and bounded as needed to be shown.

154. Expanding
(
1 + 1

n

)n
using the Binomial Theorem, we obtain

(

1 +
1

n

)
n

=
(n

0

)

+
(n

1

)(
1

n

)1

+
(n

2

)(
1

n

)2

+ · · ·+
(n

k

)(
1

n

)
k

+ · · ·+
(n

n

)(
1

n

)
n

= 1+ n

(
1

n

)

+
n(n− 1)

2!

(
1

n

)2

+ · · ·+ n(n− 1)(n− 2) · · · (n− k + 1)

k!

(
1

n

)
k

+ · · ·+
(
1

n

)
n

︸ ︷︷ ︸

n+1terms

.

Simplifying, we have

(

1 +
1

n

)n

= 1 + 1 +
1
(
1− 1

n

)

2!
+ · · ·+ 1

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− k−1

n

)

k!
+

· · ·+ 1
(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

)

n!
. (1)

Next, we expand
(

1 + 1
n+1

)n+1

:

(

1 +
1

n+ 1

)n+1

=
(n+ 1

0

)

+
(n+ 1

1

)(
1

n+ 1

)1

+
(n+ 1

2

)(
1

n+ 1

)2

+ · · ·+
(n+ 1

n+ 1

)(
1

n+ 1

)n+1

= 1 + 1 +
1
(

1− 1
n+1

)

2!
+

1
(

1− 1
n+1

)(

1− 2
n+1

)

3!
+ · · ·+

1
(

1− 1
n+1

)(

1− 2
n+1

)

· · ·
(

1− n−1
n+1

)

n!
︸ ︷︷ ︸

n+1terms

+
1
(

1− 1
n+1

)(

1− 2
n+1

)

· · ·
(

1− n

n+1

)

(n+ 1)!
. (2)
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We make two observations from equations (1) and (2):

• After the first two terms, each term of (2) is greater than the corresponding term of (1).

• The expansion of (2) has one more positive term than the expansion of (1).

So this demonstrates that
(

1 +
1

n

)n

<

(

1 +
1

n+ 1

)n+1

which means the sequence
{(

1 + 1
n

)n}
is increasing.

To show that the sequence
{(

1 + 1
n

)n}
is bounded from above, we first note that

(

1 +
1

n

)n

= 1 + 1 +
1
(
1− 1

n

)

2!
+ · · ·+ 1

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

)

n!

< 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
. (3)

Now, for n ≥ 2, we have

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1 = n(n− 1)(n− 2) · · · 3 · 2 ≥ 2 · 2 · 2 · · · 2 · 2
︸ ︷︷ ︸

n−1terms

= 2n−1,

that is,
1

n!
≤ 1

2n−1

for n ≥ 2. Going back to inequality (3), we have

(

1 +
1

n

)n

< 1 +

(

1 +
1

2!
+

3!

+
· · ·+ 1

n!

)

≤ 1 +

(

1 +
1

2
+

1

22
+

1

23
+ · · ·+ 1

2n−1

)

. (4)

Let

Sn = 1+
1

2
+

1

22
+

1

23
+ · · ·+ 1

2n−1
. (5)

Then, multiplying through by 1
2 , we get

1

2
Sn =

1

2
+

1

22
+

1

23
+ · · ·+ 1

2n−1
+

1

2n
. (6)

Subtracting (6) from (5) gives

Sn − 1

2
Sn =

1

2
Sn = 1− 1

2n
,

so that

Sn =
1−

(
1
2

)n

1
2

= 2

[

1−
(
1

2

)n]

< 2.

We continue the estimation of the inequality (4):

(

1 +
1

n

)n

< 1 + Sn < 1 + 2 = 3,

which proves that the sequence
{(

1 + 1
n

)n}
is bounded from above.
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155. Let the limit of the convergent sequence {sn} be S. The nth term of the arithmetic mean
sequence {an} is an = 1

n [s1 + s2 + · · ·+ sn]. Let ǫ > 0. Since sn is convergent to the limit S,
then there exists an N such that for all n ≥ N |sn − S| < ǫ

2 . Then we have

|an − S| =
∣
∣
∣
∣
∣

1

n

n∑

k=1

(sk)− S

∣
∣
∣
∣
∣
=

1

n

∣
∣
∣
∣
∣

n∑

k=1

(sk)− ns

∣
∣
∣
∣
∣
=

1

n

∣
∣
∣
∣
∣

n∑

k=1

(sk − S)

∣
∣
∣
∣
∣

≤ 1

n

N∑

k=1

|sk − S|+ 1

n

n∑

k=N+1

|sk − S|

Since for n ≥ N , |sn − S| < ǫ
2 , the sum in the second term satisfies

n∑

k=N+1

|sk − S| < n ǫ
2 . Let

N∑

k=1

|sk − S| = M . Choose n ≥ max{N, 2ǫM}. Then we have |an − S| < ǫ
2 + ǫ

2 = ǫ, proving the

result that the sequence of arithmetic means {an} converges, and converges to the same limit
as the original sequence {sn}.

156. (a) From the figure below, which shows a circle of radius R circumscribing a regular
polygon of n sides, we see that area of the triangle with the angle α = π

n indicated is

A△ = 1
2base× height = 1

2 ·R sinα · R cosα. Area of the polygon,

An = 2n ·A△ = 2n · 1
2R

2 sinα cosα = n
2R

2 sin 2α, or An =
n

2
R2 sin

(
2π

n

)

.

A

B

O

(b) We have, as the number of sides of the polygon grows without limit,

lim
n→∞

An = lim
n→∞

n

2
R2 sin

(
2π

n

)

= lim
n→∞

πR2 sin
(
2π
n

)

2π
n

= πR2 lim
y→0

sin y

y
= πR2,

where the substitution of y = 2π
n was made, and the standard result lim

y→0

sin y
y = 1 was used.

This shows that as the polygon’s sides increase, its area approaches that of the circumscribing
circle.
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157. (a) From the figure below, which shows a circle of radius r inscribed in a polygon of n
sides, we have α = π

n . Now, the area of the △ ABO,

A△ = 1
2base× height = 1

2r · r tanα = 1
2r

2 tan
(
π
n

)
. The area of the polygon,

An = 2n×A△ = nr2 tan
(π

n

)

.

A

B

O

(b) As the number of sides of the polygon increases without limit, we have:

lim
n→∞

An = lim
n→∞

nr2 tan
π

n
= πr2 lim

n→∞

tan π
n

π
n

= πr2 lim
y→0

tan y

y
= πr2,

where the substitution of y = π
n was made, and the standard result lim

y→0

tan y
y = 1 was used.

This shows that as the polygon’s sides increase, its area approaches that of the inscribed circle.

158. (a) From the figure below, which shows a circle of radius R circumscribing a regular
polygon of n sides, we see that the length of the segment AB is 2R sinα = 2

(
R sin

(
π
n

))
. The

polygon has n sides, so its perimeter will be n times the length of the segment AB, or

Pn = 2nR sin
(π

n

)

.

A

B

O

(b)As the number of sides is increased without limit, we expect the perimeter of inscribed
polygon to approach the circumference of the circle.

lim
n→∞

Pn = lim
n→∞

2nR sin
(π

n

)

= 2πR lim
n→∞

sin
(
π
n

)

π
n

= 2πR lim
y→0

sin y

y
= 2πR,

where the substitution of y = π
n was made, and the standard result lim

y→0

sin y
y = 1 was used.
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159. According to the definition of a convergent sequence (p.645) a sequence {sl} converges to
a real number L if, for any number ǫ > 0, there is a positive integer N so that |sl − L| < ǫ for
all integers l > N . Consider the absolute value of the difference of sn and sm:

|sn − sm| = |sn − L+ L− sm| ≤ |sn − L|+ |L− sm|,
where we have used the triangle inequality. Since both sequences {sn} and {sm} converge to

the same limit L, applying the definition, we can find positive integers N1 and N2 such that for
any number ǫ > 0, |sn − L| < ǫ/2 for all n > N1 and |sm − L| < ǫ/2 for all m > N2. Then,
since |L− sm| = |sm − L|, we have

|sn − sm| ≤ |sn − L|+ |sm − L| < ǫ

2
+

ǫ

2
= ǫ,

i.e., |sn − sm| < ǫ, for n,m > N where N is the larger of {N1, N2}. This shows that every
convergent sequence must be a Cauchy sequence.

160. (a) The sequence is {sn} =
{
en/(n+2)

}
. Consider the sequence {bn} =

{
n

n+2

}

. This

sequence is bounded from above by 1 since n
n+2 < 1 for all n ≥ 1.Also, the sequence {bn} is

increasing since by the Algebraic Ratio Test:

bn+1

bn
=

(n+ 1)(n+ 2)

(n+ 3)n
=

n2 + 3n+ 2

n2 + 3n
> 1

for all n ≥ 1. So {bn} is a convergent sequence since it is bounded from above and increasing.
To find the limit of the sequence {bn}, compute:

lim
n→∞

bn = lim
n→∞

n

n+ 2
= lim

n→∞
1

1 + 2
n

=
1

1 + 0
= 1.

Since f(x) = ex is continuous at x = 1, by the theorem on p.637, the sequence
{f(bn)} = {sn} =

{
en/(n+2)

}
also converges.

(b) lim
n→∞

en/(n+2) = lim
n→∞

f(bn) = f( lim
n→∞

bn) = f(1) = e1 = e.

(c) As seen by plotting the sequence {sn} =
{
en/(n+2)

}
, the points seem to reach the

asymptotic value of e. See figure below:

5 10 15 20 25 30
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Practice Problems

1. (−1)n+1 (n−1)2

n

CHOICE C
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2. bn =

(−2

3

)n

(n− 3)

b1 =

(−2

3

)1

(1− 3) =
4

3

b2 =

(−2

3

)2

(2− 3) = −4

9

b3 =

(−2

3

)3

(3− 3) = 0

Enough terms have been generated to identify CHOICE B.

3. an = 2
3n+1

. A related function to an = 2
3n+1 is y = 2

3x+1 y′ = −2(3x+ 1)
−2

(3) = −6
(3x+1)2

.

y′ is negative for all x.

So y(x) is a decreasing function for all x, so an = 2
3n+1 is a decreasing sequence. Since

an = 2
3n+1 is a decreasing sequence, a1 = 2

3(1)+1 = 1
2 > an for all n > 1.

So the upper bound for an is 1
2 . The graph of the related function y = 2

3x+1 has a

horizontal asymptote at y = 0. Consequently an = 2
3n+1 is bounded as follows:

0 < an = 2
3n+1 ≤ 1

2 .

CHOICE B

4. The geometric sequence sn = 3xn converges to 0 if −1 < x < 1 and converges to 3 if
x = 1.

Therefore sn = 3xn converges for −1 < x ≤ 1 .

CHOICE A

5.
−1

n3
≤ sinn

n3
≤ 1

n3

sn = sinn
n3 is bounded by an = −1

n3 and bn = 1
n3 .

Since an ≤ sn ≤ bn and both lim
n→∞

(an) = 0 and lim
n→∞

(bn) = 0, then, by the Squeeze

Theorem for sequences, the sequence sn = sinn
n3 converges and lim

n→∞
(sn) = 0 .

The sequence converges .

8.2 Infinite Series

Concepts and Vocabulary

1. (b) :
∞∑

k=1

ak = a1 + a2 + · · ·+ an + · · · is called an infinite series.

2. (d) : Sn =
n∑

k=1

ak is the nth partial sum, and the sequence {Sn} is called the sequence of

partial sums.

3. True: If a series converges then the sequence of partial sums converges. Conversely, if the
sequence of partial sums converges, then the series also converges.
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4. False: The geometric series
∞∑

k=1

ark−1, a 6= 0, converges if |r| < 1, but diverges when |r| = 1.

5. S =
a

1− r
is the sum of the convergent geometric series

∞∑

k=1

ark−1, a 6= 0.

6. False: The limit of the nth term of a series as n → ∞ does not tell us if the series itself will

converge. In this instance, the harmonic series
∞∑

k=1

1
k diverges even though limn→∞

1
n = 0.

Skill Building

7. S4 =
4∑

k=1

(
3
4

)k−1
=
(
3
4

)0
+
(
3
4

)1
+
(
3
4

)2
+
(
3
4

)3
= 1 + 3

4 + 9
16 + 27

64 =
175

64
.

8. S4 =
4∑

k=1

(−1)k+1

3k−1 = (−1)2

30 + (−1)3

31 + (−1)4

32 + (−1)5

33 = 1− 1
3 + 1

9 − 1
27 =

20

27
.

9. S4 =
4∑

k=1

k = 1 + 2 + 3 + 4 = 10.

10. S4 =
4∑

k=1

ln k = ln 1 + ln 2 + ln 3 + ln 4 = ln(1 · 2 · 3 · 4) = ln 24.

11.

Sn =
n∑

k=1

(
1

k+2 − 1
k+3

)

=
(
1
3 − 1

4

)
+
(
1
4 − 1

5

)
+ · · ·+

(
1

n+1 − 1
n+2

)

+
(

1
n+2 − 1

n+3

)

= 1
3 − 1

n+3 .

We have

lim
n→∞

Sn = lim
n→∞

(
1

3
− 1

n+ 3

)

= lim
n→∞

1

3
− lim

n→∞
1

n+ 3
=

1

3
− 0 =

1

3
.

Since the sequence of partial sums converges to 1
3 , this means the sum of the telescoping series

is
1

3
.

12. Sn =
n∑

k=1

[
1
k2 − 1

(k+1)2

]

=
(

1
12 − 1

22

)
+
(

1
22 − 1

32

)
+ · · ·+

(
1

(n−1)2 − 1
n2

)

+
(

1
n2 − 1

(n+1)2

)

=

1− 1
(n+1)2 .

We have

lim
n→∞

Sn = lim
n→∞

(

1− 1

(n+ 1)2

)

= lim
n→∞

1− lim
n→∞

1

(n+ 1)2
= 1− 0 = 1.

Since the sequence of partial sums converges to 1, this means the sum of the telescoping series

is 1.

13.

Sn =
n∑

k=1

(
1

3k+1 − 1
3k

)
=
(

1
32 − 1

3

)
+
(

1
33 − 1

32

)
+ · · ·+

(
1
3n − 1

3n−1

)
+
(

1
3n+1 − 1

3n

)
= 1

3n+1 − 1
3 .

We have

lim
n→∞

Sn = lim
n→∞

(
1

3n+1
− 1

3

)

= lim
n→∞

1

3n+1
− lim

n→∞
1

3
= 0− 1

3
= −1

3
.

Since the sequence of partial sums converges to − 1
3 , this means the sum of the telescoping

series is −1

3
.
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14.

Sn =
n∑

k=1

(
1

4k+1 − 1
4k

)
=
(

1
42 − 1

4

)
+
(

1
43 − 1

42

)
+ · · ·+

(
1
4n − 1

4n−1

)
+
(

1
4n+1 − 1

4n

)
= 1

4n+1 − 1
4 .

We have

lim
n→∞

Sn = lim
n→∞

(
1

4n+1
− 1

4

)

= lim
n→∞

1

4n+1
− lim

n→∞
1

4
= 0− 1

4
= −1

4
.

Since the sequence of partial sums converges to − 1
4 , this means the sum of the telescoping

series is −1

4
.

15. We write the general term as a difference of terms:

Sn =
n∑

k=1

1
4k2−1 =

n∑

k=1

1
2

(
1

2k−1 − 1
2k+1

)

=

1
2

(
1
1 − 1

3

)
+ 1

2

(
1
3 − 1

5

)
+ · · ·+ 1

2

(
1

2n−3 − 1
2n−1

)

+ 1
2

(
1

2n−1 − 1
2n+1

)

= 1
2 − 1

2

(
1

2n+1

)

.

We have

lim
n→∞

Sn = lim
n→∞

(
1

2
− 1

2

(
1

2n− 1

))

= lim
n→∞

1

2
− lim

n→∞
1

2

(
1

2n+ 1

)

=
1

2
− 0 =

1

2
.

Since the sequence of partial sums converges to 1
2 , this means the sum of the telescoping series

is
1

2
.

16. We write the general term as a difference of terms:

Sn =
n∑

k=2

2

k2 − 1
=

n∑

k=2

2

(k − 1)(k + 1)
=

n∑

k=2

(
1

k − 1
+

1

k + 1

)

=

(
1

1
− 1

3

)

+

(
1

2
− 1

4

)

+

(
1

3
− 1

5

)

+

(
1

4
− 1

6

)

+ · · ·+
(

1

n− 4
− 1

n− 2

)

+

(
1

n− 3
− 1

n− 1

)

+

(
1

n− 2
− 1

n

)

+

(
1

n− 1
− 1

n+ 1

)

= 1 +
1

2
+

(

−1

3
+

1

3

)

+

(

−1

4
+

1

4

)

+

(

−1

5
+

1

5

)

+ · · ·+
(

− 1

n− 2
+

1

n− 2

)

+

(

− 1

n− 1
+

1

n− 1

)

− 1

n
− 1

n+ 1

=
3

2
− 1

n
− 1

n+ 1
.

We have

lim
n→∞

Sn = lim
n→∞

(
3

2
− 1

n
− 1

n+ 1

)

=
3

2
.

Since the sequence of partial sums converges to 3
2 , this means that the sum of the telescoping

series converges to
3

2
.

17.
∞∑

k=1

(
√
2)k−1. This has the form of a geometric series

∞∑

k=1

ark−1 with a = 1 and r =
√
2.

The series will diverge since |r| > 1.
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18.
∞∑

k=1

(0.33)k−1. This has the form of a geometric series
∞∑

k=1

ark−1 with a = 1 and r = 0.33.

Since |r| < 1, this series will converge to a sum of a
1−r = 1

1−0.33 = 1
0.67 =

100

67
.

19.
∞∑

k=1

5
(
1
6

)k−1
. This has the form of a geometric series

∞∑

k=1

ark−1 with a = 5 and r = 1
6 .

Since |r| < 1, this series will converge to a sum of 1
1−r = 5

1− 1
6

= 5
5
6

= 6.

20.
∞∑

k=1

4(1.1)k−1. This has the form of a geometric series
∞∑

k=1

ark−1 with a = 4 and r = 1.1.

The series will diverge since |r| > 1.

21.
∞∑

k=0

7
(
1
3

)k
= 7

(
1
3

)0
+

∞∑

k=1

7
(
1
3

)k
= 7 +

∞∑

k=1

7
3

(
1
3

)k−1
. The second term has the form of a

geometric series
∞∑

k=1

ark−1 with a = 7
3 and r = 1

3 . Since |r| < 1, this series will converge to a

sum of a
1−r =

7
3

1− 1
3

= 7/3
2/3 = 7

2 . The original series will converge to a sum of 7 + 7
2 =

21

2
.

22.
∞∑

k=0

(
7
4

)k
=
(
7
4

)0
+

∞∑

k=1

(
7
4

)k
= 1 +

∞∑

k=1

7
4

(
7
4

)k−1
. The second term has the form of a

geometric series
∞∑

k=1

ark−1 with a = 7
4 and r = 7

4 . Since |r| > 1, this series will diverge, which

means the original series will diverge as well.

23.
∞∑

k=1

(−0.38)k−1. This has the form of a geometric series
∞∑

k=1

ark−1 with a = 1 and

r = −0.38. Since |r| < 1, this series will converge to a sum of

a
1−r = 1

1−(−0.38) =
1

1.38 = 100
138 =

50

69
.

24.
∞∑

k=1

(−0.38)k =
∞∑

k=1

(−0.38)(−0.38)k−1. This has the form of a geometric series
∞∑

k=1

ark−1

with a = −0.38 and r = −0.38. Since |r| < 1, this series will converge to a sum of

a
1−r = −0.38

1−(−0.38) = − 0.38
1.38 = − 38

138 = −19

69
.

25.
∞∑

k=0

2k+1

3k
= 20+1

30 +
∞∑

k=1

2 ·
(
2
3

)k
= 2 +

∞∑

k=1

2 ·
(
2
3

) (
2
3

)k−1
= 2 +

∞∑

k=1

4
3

(
2
3

)k−1
.

The second term has the form of a geometric series
∞∑

k=1

ark−1 with a = 4
3 and r = 2

3 . Since

|r| < 1, this series will converge to a sum of a
1−r = 4/3

1− 2
3

= 4/3
1/3 = 4. The original series will

converge to a sum of 2 + 4 = 6.
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26.
∞∑

k=0

5k

6k+1 = 50

60+1 +
∞∑

k=1

5k

6k+1 = 1
6 +

∞∑

k=1

5
62 · 5k−1

6k−1 = 1
6 +

∞∑

k=1

5
36 ·

(
5
6

)k−1
.

The second term has the form of a geometric series
∞∑

k=1

ark−1 with a = 5
36 and r = 5

6 . Since

|r| < 1, this series will converge to a sum of a
1−r = 5/36

1− 5
6

= 5/36
1/6 = 5

6 . The original series

converges to a sum of 1
6 + 5

6 = 1.

27.
∞∑

k=0

1
4k+1 = 1

40+1 +
∞∑

k=1

1
4k+1 = 1

4 +
∞∑

k=1

1
42 ·

(
1
4

)k−1
.

The second term has the form of a geometric series
∞∑

k=1

ark−1 with a = 1
42 and r = 1

4 . Since

|r| < 1, this series will converge to a sum of a
1−r = 1/42

1− 1
4

= 1/16
3/4 = 1

12 . The original series

converges to a sum of 1
4 + 1

12 =
1

3
.

28.
∞∑

k=0

4k+1

3k
= 40+1

30 +
∞∑

k=1

4k+1

3k
= 4 +

∞∑

k=1

42

3

(
4
3

)k−1
.

The second term has the form of a geometric series
∞∑

k=1

ark−1 with a = 42

3 and r = 4
3 . Since

|r| > 1, this series diverges , and so does the original series.

29.
∞∑

k=1

sink−1
(
π
2

)
has the form of a geometric series

∞∑

k=1

ark−1 with a = 1 and r = sin π
2 = 1.

Since |r| = 1, this series diverges.

30.
∞∑

k=1

tank−1
(
π
4

)
has the form of a geometric series

∞∑

k=1

ark−1 with a = 1 and r = tan π
4 = 1.

Since |r| = 1, this series diverges.

31.
∞∑

k=1

(
− 3

2

)k−1
has the form of a geometric series

∞∑

k=1

ark−1 with a = 1 and r = − 3
2 . Since

|r| > 1, this series diverges.

32.
∞∑

k=1

(
− 2

3

)k−1
has the form of a geometric series

∞∑

k=1

ark−1 with a = 1 and r = − 2
3 . Since

|r| < 1, this series will converge to a sum of a
1−r = 1

1−(− 2
3 )

= 1
5/3 =

3

5
.

33. 1 + 1
3 +

1
9 + · · ·+

(
1
3

)n
+ · · · =

∞∑

k=1

(
1
3

)k−1
has the form of a geometric series

∞∑

k=1

ark−1 with

a = 1 and r = 1
3 . Since |r| < 1, this series converges to a sum of a

1−r = 1
1− 1

3

= 1
2/3 =

3

2
.

34. 1+ 1
4 +

1
16 + · · ·+

(
1
4

)n
+ · · · =

∞∑

k=1

(
1
4

)k−1
has the form of a geometric series

∞∑

k=1

ark−1 with

a = 1 and r = 1
4 . Since |r| < 1, this series converges to a sum of a

1−r = 1
1− 1

4

= 1
3/4 =

4

3
.
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35. 1 + 2 + 4 + · · ·+ 2n + · · · =
∞∑

k=1

2k−1 has the form of a geometric series
∞∑

k=1

ark−1 with

a = 1 and r = 2. Since |r| > 1, this series will diverge.

36. 1− 1
2 + 1

4 − 1
8 + · · ·+ (−1)n−1

2n−1 + · · · =
∞∑

k=1

(−1)k−1

2k−1 =
∞∑

k=1

(
− 1

2

)k−1
has the form of a

geometric series
∞∑

k=1

ark−1 with a = 1 and r = − 1
2 . Since |r| < 1, this series converges to a

sum of a
1−r = 1

1−(− 1
2 )

= 1
3/2 =

2

3
.

37.
(
1
7

)2
+
(
1
7

)3
+ · · ·+

(
1
7

)n
+ · · · =

∞∑

k=1

(
1
7

)k−1 − 1− 1
7 .

The first term has the form of a geometric series
∞∑

k=1

ark−1 with a = 1 and r = 1
7 . Since |r| < 1,

this series will converge to a sum of a
1−r = 1

1− 1
7

= 1
6/7 = 7

6 . The original series converges to a

sum of 7
6 − 1− 1

7 =
1

42
.

38.
(
3
4

)5
+
(
3
4

)6
+ · · ·+

(
3
4

)n
+ · · · =

∞∑

k=1

(
3
4

)k−1 − 1− 3
4 −

(
3
4

)2 −
(
3
4

)3 −
(
3
4

)4
.

The first term has the form of a geometric series
∞∑

k=1

ark−1 with a = 1 and r = 3
4 . Since |r| < 1,

this series will converge to a sum of a
1−r = 1

1− 3
4

= 1
1/4 = 4. The original series converges to a

sum of 4− 1− 3
4 −

(
3
4

)2 −
(
3
4

)3 −
(
3
4

)4
= 3− 3

4 − 9
16 − 27

64 − 81
256 =

243

256
.

39. The series can be written
∞∑

k=0

1
k+1 =

∞∑

k′=1

1
k′ , where k′ = k + 1. This is the harmonic series,

which diverges.

40.
∞∑

k=4

k−1 =
∞∑

k=4

1
k =

∞∑

k=1

1
k − 1− 1

2 − 1
3 . The first term is the harmonic series. It diverges ,

and so does the original series.

41.
∞∑

k=1

1
100k =

∞∑

k=1

1
100 ·

(
1

100

)k−1
has the form of a geometric series

∞∑

k=1

ark−1 with a = 1
100 and

r = 1
100 . Since |r| < 1, this series converges to a sum of a

1−r =
1

100

1− 1
100

= 1/100
99/100 =

1

99
.

42.
∞∑

k=1

e−k =
∞∑

k=1

1
ek

=
∞∑

k=1

1
e ·
(
1
e

)k−1
has the form of a geometric series

∞∑

k=1

ark−1 with a = 1
e

and r = 1
e . Since |r| < 1, this series converges to a sum of a

1−r =
1
e

1− 1
e

=
1

e− 1
.

43.
∞∑

k=1

(−10k). The nth partial sum is Sn =
n∑

k=1

(−10k) = (−10)
∞∑

k=1

k = (−10) · n(n+1)
2 , using

the standard formula for the sum of the first n integers. We have

lim
n→∞

Sn = lim
n→∞

(−10)
n(n+ 1)

2
= −∞.

Since the sequence of partial sums {Sn} diverges, the series diverges as well.
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44.
∞∑

k=1

3k
5 . The nth partial sum is Sn =

n∑

k=1

3k
5 = 3

5

∞∑

k=1

k = 3
5 · n(n+1)

2 , using the standard

formula for the sum of the first n integers. We have

lim
n→∞

Sn = lim
n→∞

3

5

n(n+ 1)

2
= ∞.

Since the sequence of partial sums {Sn} diverges, the series diverges as well.

45.
∞∑

k=1

cosk−1
(
2π
3

)
has the form of a geometric series

∞∑

k=1

ark−1 with a = 1 and

r = cos 2π
3 = − 1

2 . Since |r| < 1, this series will converge to a sum of

a
1−r = 1

1−(− 1
2 )

= 1
3
2

=
2

3
.

46.
∞∑

k=1

sink−1
(
π
6

)
has the form of a geometric series

∞∑

k=1

ark−1 with a = 1 and r = sin π
6 = 1

2 .

Since |r| < 1, this series will converge to a sum of a
1−r = 1

1− 1
2

= 1
1
2

= 2.

47.
∞∑

k=1

tank(π
4 )

k =
∞∑

k=1

1
k , since tan π

4 = 1. This is a harmonic series and so it diverges.

48.
∞∑

k=1

sink(π
2 )

k =
∞∑

k=1

1
k , since sin π

2 = 1. This is a harmonic series and so it diverges.

49.
∞∑

k=1

cos(πk) = cosπ + cos 2π + cos 3π + · · ·+ cosnπ + · · · Now, cosπ = −1, cos 2π = 1,

cos 3π = −1, etc. In general, cosnπ = (−1)n. So the series can be written
∞∑

k=1

(−1)k =
∞∑

k=1

(−1)(−1)k−1, which has the form of a geometric series
∞∑

k=1

ark−1 with a = −1

and r = −1. Since |r| = 1, this series diverges.

50.
∞∑

k=1

sin
(
πk
2

)
= sin π

2 + sinπ + sin 3π
2 + sin 2π + · · · . Now, sin π

2 = 1, sinπ = 0, sin 3π
2 = −1,

sin 2π = 0, etc. We see that the partial sums Sn =
n∑

k=1

sin
(
πk
2

)
will alternate between the

values of +1 and 0, depending on the value of n. The sequence of partial sums is
{Sn} = {1, 1, 0, 0, 1, 1, 0, 0, · · ·}. Since the limit of the sequence of partial sums does not exist,

the series diverges.

51.
∞∑

k=1

2−k3k+1 =
∞∑

k=1

3k+1

2k
=

∞∑

k=1

32·3k−1

2·2k−1 =
∞∑

k=1

9
2

(
3
2

)k−1
has the form of a geometric series

∞∑

k=1

ark−1 with a = 9
2 and r = 3

2 . Since |r| > 1, this series diverges.

52.
∞∑

k=1

31−k21+k =
∞∑

k=1

2k+1

3k−1 =
∞∑

k=1

22 ·
(
2
3

)k−1
has the form of a geometric series

∞∑

k=1

ark−1

with a = 22 = 4 and r = 2
3 . Since |r| < 1, this series will converge to a sum of

a
1−r = 4

1− 2
3

= 4
1
3

= 12.
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53.
∞∑

k=1

(
− 1

3

)k
=

∞∑

k=1

(
− 1

3

) (
− 1

3

)k−1
has the form of a geometric series

∞∑

k=1

ark−1 with a = − 1
3

and r = − 1
3 . Since |r| < 1, this series converges to a sum of a

1−r =
− 1

3

1−(− 1
3 )

= −1/3
4/3 = −1

4
.

54.
∞∑

k=1

π
3k =

∞∑

k=1

π
3 ·
(
1
3

)k−1
has the form of a geometric series

∞∑

k=1

ark−1 with a = π
3 and r = 1

3 .

Since |r| < 1, this series converges to a sum of a
1−r =

π
3

1− 1
3

= π/3
2/3 =

π

2
.

55.
∞∑

k=1

ln k
k+1 =

∞∑

k=1

(ln k − ln(k + 1)) . The nth partial sum is

Sn =

n∑

k=1

(ln k − ln(k + 1)) = (ln 1− ln 2) + (ln 2− ln 3) + · · ·+ (ln(n− 1)− lnn) + (lnn− ln(n+ 1))

= ln 1− ln(n+ 1) = − ln(n+ 1).

We have
lim
n→∞

Sn = lim
n→∞

[− ln(n+ 1)] = −∞.

Since the limit of the partial sums diverges, the sequence {Sn} is a divergent sequence. This in

turn means that the original series is divergent.

56.
∞∑

k=1

[

e2k
−1 − e2(k+1)−1

]

. The nth partial sum is

Sn =

n∑

k=1

(

e2k
−1 − e2(k+1)−1

)

=
(

e2/1 − e2/2
)

+
(

e2/2 − e2/3
)

+ · · ·+
(

e2/(n−1) − e2/n
)

+
(

e2/n − e2/(n+1)
)

= e2 − e2/(n+1).

We have

lim
n→∞

Sn = lim
n→∞

n∑

k=1

(

e2k
−1 − e2(k+1)−1

)

= lim
n→∞

e2− lim
n→∞

e2/(n+1) = e2−elimn→∞ 2/(n+1) = e2−e0 = e2−1.

Since the limit of partial sums {Sn} converges to a limit, the series converges to the same

limit e2 − 1.

57.
∞∑

k=1

(

sin 1
k − sin 1

k+1

)

. The nth partial sum is

Sn =

n∑

k=1

(

sin
1

k
− sin

1

k + 1

)

=

(

sin
1

1
− sin

1

2

)

+

(

sin
1

2
− sin

1

3

)

+ · · ·+
(

sin
1

n− 1
− sin

1

n

)

+

(

sin
1

n
− sin

1

n+ 1

)

= sin 1− sin
1

n+ 1
.

We have

lim
n→∞

Sn = lim
n→∞

(

sin 1− sin
1

n+ 1

)

= lim
n→∞

sin 1− lim
n→∞

sin
1

n+ 1
= sin 1− sin

(

lim
n→∞

1

n+ 1

)

= sin 1− sin 0 = sin 1.
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Since the limit of partial sums {Sn} converges to a limit, the series converges to the same

limit sin 1.

58.
∞∑

k=1

(

tan 1
k − tan 1

k+1

)

. The nth partial sum is

Sn =

n∑

k=1

(

tan
1

k
− tan

1

k + 1

)

=

(

tan
1

1
− tan

1

2

)

+

(

tan
1

2
− tan

1

3

)

+ · · ·+
(

tan
1

n− 1
− tan

1

n

)

+

(

tan
1

n
− tan

1

n+ 1

)

= tan 1− tan
1

n+ 1
.

We have

lim
n→∞

Sn = lim
n→∞

(

tan 1− tan
1

n+ 1

)

= lim
n→∞

tan 1− lim
n→∞

tan
1

n+ 1
= tan 1− tan

(

lim
n→∞

1

n+ 1

)

= tan1− tan 0 = tan 1.

Since the limit of partial sums {Sn} converges to a limit, the series converges to the same

limit tan 1.

59. Write the given decimal as follows:

0.5555 · · · = 0.5 + 0.05 + 0.005 + · · · = 5

10
+

5

100
+

5

1000
+ · · ·

=
5

10

(

1 +
1

10
+

1

100
+ · · ·

)

=

∞∑

k=1

5

10

(
1

10

)k−1

.

This is a geometric series
∞∑

k=1

ark−1 with a = 5
10 and r = 1

10 . Since |r| < 1, this series converges

to a sum of a
1−r =

5
10

1− 1
10

= 5/10
9/10 = 5

9 . So the decimal written as a rational number is

0.5555 · · · = 5

9
.

60. Write the given decimal as follows:

0.727272 · · · = 0.72 + 0.0072 + 0.000072+ · · · = 72

100
+

72

10000
+

72

1000000
+ · · ·

=
72

100

(

1 +
1

100
+

1

10000
+ · · ·

)

=

∞∑

k=1

72

100

(
1

100

)k−1

.

This is a geometric series
∞∑

k=1

ark−1 with a = 72
100 and r = 1

100 . Since |r| < 1, this series

converges to a sum of a
1−r =

72
100

1− 1
100

= 72/100
99/100 = 72

99 = 8
11 . So the decimal written as a rational

number is 0.727272 · · · = 8

11
.
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61. Write the given decimal as follows:

4.28555 · · · = 4.28 + 0.00555 · · ·= 4.28 + 0.005 + 0.0005 + 0.00005+ · · ·

= 4.28 +
5

1000
+

5

10000
+

5

100000
+ · · · = 4.28 +

5

1000

(

1 +
1

10
+

1

100
+ · · ·

)

= 4.28 +
∞∑

k=1

5

1000

(
1

10

)k−1

.

The second term is a geometric series
∞∑

k=1

ark−1 with a = 5
1000 and r = 1

10 . Since |r| < 1, this

series converges to a sum of a
1−r =

5
1000

1− 1
10

= 5/1000
9/10 = 5

900 . So the original series sums to the

value of the decimal in rational form, which is 4.28 + 5
900 = 428

100 + 5
900 =

3857

900
.

62. Write the given decimal as follows:

7.162162162 · · ·= 7 + 0.162162162 · · ·= 7 + 0.162 + 0.000162+ 0.000000162+ · · ·

= 7 +
162

1, 000
+

162

1, 000, 000
+

162

1, 000, 000, 000
+ · · ·

= 7 +
162

1000

(

1 +
1

1, 000
+

1

1, 000, 000
+ · · ·

)

= 7 +

∞∑

k=1

162

1000

(
1

1000

)k−1

.

The second term is a geometric series
∞∑

k=1

ark−1 with a = 162
1000 and r = 1

1000 . Since |r| < 1, this

series converges to a sum of a
1−r =

162
1000

1− 1
1000

= 162/1000
999/1000 = 162

999 . So the original series sums to the

value of the decimal in rational form, which is 7 + 162
999 =

265

37
.

Applications and Extensions

63. Let the original height from which the ball is dropped be h0. The height attained after
the first bounce h1 = h0 · r, where r = fraction of the original height. The height attained after
the second bounce h2 = h1 · r = (h0r)r = h0r

2. Proceeding in this fashion, we can say that the
height attained after the nth bounce will be hn = h0r

n.
The total vertical distance traveled by the ball, remembering that each bounce has an upward
vertical travel followed by a downward vertical travel, is given by

H = h0 + 2h1 + 2h2 + 2h3 + · · ·+ 2hn + · · ·
= h0 + 2(h0r + h0r

2 + h0r
3 + · · ·+ h0r

n + · · · )
= h0 + 2h0r(1 + r + r2 + · · ·+ rn−1 + · · · )

= h0 + 2h0r ·
∞∑

k=1

rk−1.

Since the process of bouncing is not an elastic collision for the ball in question, we have |r| < 1,

so that the second term is a convergent geometric series of the form
∞∑

k=1

ark−1 which sums to
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a
1−r , with a = 1, so the sum will be 1

1−r . So the total vertical distance traversed by the
bouncing ball is

H = h0 + 2h0r · 1
1−r = h0

[

1 + 2r
1−r

]

= h0

(
1+r
1−r

)

= 18ft
(

1+ 2
3

1− 2
3

)

= 18·(5/3)
1/3 ft = 90ft.

64. (a) Let the initial dollar amount on January 1, 2020, be A1 = A0. The amount on
January 2 will be A2 = rA1 = rA0, where r = the fraction of the original amount given on
January 1. On January 3, the amount received will be r(rA2) = r2A0, and so forth. The total

amount received A = A0 + rA0 + r2A0 + · · · = A0(1 + r + r2 + · · · ) =
∞∑

k=1

A0r
k−1. If |r| < 1,

this is a convergent geometric series with sum A0

1−r . So the total amount received

A = A0

1−r = $1000
1− 1

9

= $1000
1/10 = $10, 000.

(b) We want the amount received on the nth day to be less than one cent = $0.01. So

An = rn−1A0 < $0.01 gives rn−1 < $0.01
$1000 = 10−5. Taking the log10 of both sides, remembering

that log10 r is an increasing function of r, we have

(n− 1) log10 r < −5 log10 10

n− 1 > − 5

log10 r

n− 1 > − 5

log10
9
10

=
−5

−0.04576
≈ 109.27,

(where the inequality has been reversed since |r| < 1 gives negative values for log10 r), or
n− 1 = 110 days, so n = 111 days. Now, 2020 is a leap year, so February 2020 has 29 days.
January has 31 days, March has 31, for a total of 29 + 31 + 31 = 91 days. So a total time

period of 111 days after (and including) January 1 would fall on April 20, 2020. On, and after

this day, the amount paid out will be less than 1 cent.

65. (a) The population of rainbow trout in Mirror Lake in year n of the restocking program is

pn = 3000rn + h
n∑

k=1

rk−1. As n → ∞, the manager can expect the steady rainbow trout

population to be

p = lim
n→∞

pn = lim
n→∞

3000rn + h lim
n→∞

n∑

k=1

rk−1 = 3000 lim
n→∞

rn + h

∞∑

k=1

rk−1.

Since |r| < 1. we have lim
n→∞

rn = 0. Also the second term is a convergent geometric series with

sum h
1−r . So the steady population of rainbow trout is p = 3000 · 0 + h

1−r =
h

1− r
.

(b) We require p = 4000 with r = 0.5. This means h = p(1− r) = 4000(1− 0.5) = 2000 is the
number of fish to be added anually to obtain the steady population.

66. The multiplier for a marginal propensity to consume of 90% is
∞∑

k=1

(0.90)k−1 = 1
1−0.9 = 1

0.1 = 10.

67. (a) The expression for stock pricing can be written as

Price = P + P 1+i
1+r + P

(
1+i
1+r

)2

+ P
(

1+i
1+r

)3

+ · · · =
∞∑

k=1

P
(

1+i
1+r

)k−1

= P

1−( 1+i
1+r )

=
P (1 + r)

r − i
.
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(Here, we have used the fact that in most normal circumstances, the annual rate of return r%

will always be greater than the annual dividend increase i%, which means
∣
∣
∣
1+i
1+r

∣
∣
∣ < 1, and so

the geometric series will converge to the sum we found rather than diverge.)

(b) If r = 9% the annual rate of return on a stock, P = $4.00 what the stock currently pays in
annual dividends, and i = 3% the annual increase in dividend, then the highest stock price the

investor should pay will be about P (1+r)
r−i = $4(1+9)

9−3 = $4(10)
6 = $6.67.

68. Area of the Koch snowflake is

A = 1 + 3

(
1

9

)

+ 12

(
1

9

)2

+ 48

(
1

9

)3

+ 192

(
1

9

)4

+ · · ·

= 1 +
3

9

[

1 + 4 · 1
9
+ 16 ·

(
1

9

)2

+ 64 ·
(
1

9

)3

+ · · ·
]

= 1 +
1

3

[

1 +
4

9
+

(
4

9

)2

+

(
4

9

)3

+ · · ·
]

= 1 +
1

3

∞∑

k=1

(
4

9

)k−1

= 1 +
1

3
· 1

1− 4
9

= 1 +
1

3
· 9

9− 4
= 1 +

3

5

=
8

5
square units.

69. Let the length of the race track be L. Let the tortoise be given a lead of d < L. If Achilles’
speed is vA and the tortoise’s speed is vT , then we are given that vA − vT = v, a (positive)
constant. If the tortoise starts off at t = 0, then the time elapsed before Achilles starts is
∆t = d

vT
. The time taken by Achilles to cover half the distance separating them would be

t1 = d
2vA

. By this time, the tortoise has moved out further by a distance = vT t1 = vT
2vA

d. The

new remaining distance between them = d
2 + vT

2vA
d = d

2 + vA−v
vA

d
2 = d− v

vA
d
2 = d1, say.

The time taken by Achilles to cover half this new distance is t2 = d1

2vA
. The tortoise will by then

have moved out further by a distance = vT
2vA

d1. The new remaining distance separating them,

d2 = d1 −
v

vA

d1
2

= d1

(

1− v

2vA

)

= d

(

1− v

2vA

)(

1− v

2vA

)

= d

(

1− v

2vA

)2

.

After n such halvings, the distance separating them dn = d
(

1− v
2vA

)n

. Since

r = 1− v

2vA
< 1, we have

lim
n→∞

dn = lim
n→∞

drn = d lim
n→∞

rn = 0.

This demonstrates that Achilles will eventually catch up with the tortoise, since the distance
separating them tends to 0. In fact, we need to next show that this process takes a finite
amount of time.
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The total time for catching up after a time ∆t has elapsed (this is the lead time given to the
tortoise) is

T = t1 + t2 + · · ·+ tn + · · ·

=
d

2vA
+

d1
2vA

+
d2
2vA

+ · · ·+ dn−1

2vA
+ · · ·

=
d

2vA
+ r

d

2vA
+ r2

d

2vA
+ · · ·

=
d

2vA
(1 + r + r2 + · · · )

=
d

2vA

∞∑

k=1

rk−1 =
d

2vA

(
1

1− r

)

=
d

2vA




1

1−
(

1− v
2vA

)



 =
d

2vA

(

1
v

2vA

)

=
d

v
.

This is exactly as we would expect, the time taken by Achilles to overtake the tortoise is just
the original distance separating them divided by the relative difference in speeds. So we see by
using a series argument that Achilles will catch up with the tortoise in a finite time.

Next, we show using a series argument that the total distance covered by Achilles in catching
up with the tortoise is also finite. The total distance is

D =
d

2
+

d1
2

+
d2
2

+ · · ·

=
d

2
+

rd

2
+

r2d

2
+ · · ·

=
1

2
d(1 + r + r2 + · · · )

=
1

2
d

∞∑

k=1

rk−1 =
1

2
d · 1

1− r
=

1

2
d ·




1

1−
(

1− v
2vA

)



 =
vA
v
d

=
vA

vA − vT
d.

Since vT > 0, this distance is bigger than d, as we would expect. If the speeds are such that
D < L, then Achilles may even overtake the tortoise and win the race!

70. Probability of winning

= 1
2 + 1

8 + 1
32 + · · ·+ 1

22n−1 + · · · =
∞∑

k=1

1
22k−1 =

∞∑

k=1

1
2

1
22k−2 =

∞∑

k=1

1
2

(
1
4

)k−1
.

This is a geometric series
∞∑

k=1

ark−1 with a = 1
2 and r = 1

4 , which, since |r| < 1, will converge to

a sum of a
1−r =

1
2

1− 1
4

= 1/2
3/4 =

2

3
.

71. (a) Amount of pig and cattle feces produced prior to cleaning on the first day T (1) = p.
After the cleaning at the end of the first day, amount of feces left over =
(1− e)T (1) = (1− e)p. Amount of feces produced on the second day, prior to cleaning,
T (2) = p+ (1− e)p. After the end of the second day’s cleaning, amount of feces left over =
(1− e)T (2) = (1− e)[p+ (1− e)p] = (1− e)p+ (1 − e)2p. Then, amount of feces produced on
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the third day, prior to cleaning, T (3) = p+ (1 − e)p+ (1− e)2p. Continuing this way, the total
amount of accumulated fecal matter on the nth day prior to cleaning will be

T (n) = p+ (1− e)p+ (1− e)2p+ · · ·+ (1− e)n−1p = p
n∑

k=1

(1− e)k−1.

(b) T = lim
n→∞

T (n) = lim
n→∞

p
n∑

k=1

(1− e)k−1 =
∞∑

k=1

(1− e)k−1 = p · 1
1−(1−e) =

p

e
, since the series

is a converging geometric series of the type
∞∑

k=1

rk−1 with |r| = |1− e| < 1.

(c) From part (b) we see that T = p
e . If we require that T ≤ L, then we would have T (n) ≤ L

for all n, since n < ∞ and T (n) is a monotonic increasing function of n. Now the condition
T ≤ L leads to p

e ≤ L, or e ≥ p
L . This shows that the minimum efficiency of cleaning is

emin =
p

L
.

(d) We have emin = p
L = 120 kg

180 kg =
2

3
. At e = 4

5 , we have

T (365) ≈ T (∞) = p
e = 120 kg

4/5 = 150 kg.

72. Write

0.9999 · · · = 0.9 + 0.09 + 0.009 + 0.0009 + · · ·

=
9

10
+

9

100
+

9

1000
+

9

10000
+ · · ·

=
9

10

(

1 +
1

10
+

1

100
+

1

1000
+ · · ·

)

=
9

10

∞∑

k=1

(
1

10

)k−1

=
9

10
· 1

1− 1
10

=
9

10
· 1

9
10

= 1,

that is 0.9999 · · · = 1, as was needed to be demonstrated.

73. The right hand side is a geometric series:
∞∑

k=1

1
xk−1 =

∞∑

k=1

(
1
x

)k−1
. If |x| > 1, then

∣
∣ 1
x

∣
∣ < 1,

so this series will converge to a sum of 1
1− 1

x

= x
x−1 . So we have shown that x

x−1 =
∞∑

k=1

1
xk−1 for

|x| > 1.

74. The right hand side is a geometric series:
∞∑

k=0

(−1)kxk =
∞∑

k=1

(−1)k−1xk−1 =
∞∑

k=1

(−x)k−1.

Since |r| = | − x| = |x| < 1, this geometric series will converge to a sum of 1
1−r = 1

1−(−x) =
1

1+x .

So we have shown that 1
1+x =

∞∑

k=0

(−1)kxk for |x| < 1.

75. Since there is no closed form expression for the partial sums of the harmonic series, we

have to proceed by trial and error calculating the partial sums. The partial sum Sn =
n∑

k=1

1
k for

n = 10 is 2.929, and for n = 11 it is 3.020. So n = 11 is the smallest number for which
n∑

k=1

1
k ≥ 3.
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76. Since there is no closed form expression for the partial sums of the harmonic series, we

have to proceed by trial and error calculating the partial sums. The partial sum Sn =
n∑

k=1

1
k for

n = 30 is 3.995, and for n = 31 it is 4.027. So n = 31 is the smallest number for which
n∑

k=1

1
k ≥ 4.

77. The given series can be rewritten as follows:
∞∑

k=1

√
k+1−

√
k√

k(k+1)
=

∞∑

k=1

(
1√
k
− 1√

k+1

)

. Consider

the nth partial sum of the series:

Sn =

n∑

k=1

(
1√
k
− 1√

k + 1

)

=

(
1√
1
− 1√

2

)

+

(
1√
2
− 1√

3

)

+ · · ·+
(

1√
n− 1

− 1√
n

)

+

(
1√
n
− 1√

n+ 1

)

= 1− 1√
n+ 1

.

We have

lim
n→∞

Sn = lim
n→∞

(

1− 1√
n+ 1

)

= lim
n→∞

1− lim
n→∞

1√
n+ 1

= 1− 0 = 1.

Since the sequence of partial sums converges, the series converges as well, and has the sum

1.

78. The given series can be rewritten as follows:
∞∑

k=1

1
k(k+2) =

∞∑

k=1

(
1
2k − 1

2(k+2)

)

, using partial

fractions. Consider the nth partial sum of the series:

Sn =

n∑

k=1

(
1

2k
− 1

2(k + 2)

)

=

n∑

k=1

1

2

(
1

k
− 1

k + 2

)

=
1

2

(
1

1
− 1

3

)

+
1

2

(
1

2
− 1

4

)

+
1

2

(
1

3
− 1

5

)

+ · · ·+

+
1

2

(
1

n− 2
− 1

n

)

+
1

2

(
1

n− 1
− 1

n+ 1

)

+
1

2

(
1

n
− 1

n+ 2

)

=
1

2

(

1 +
1

2
− 1

n+ 1
− 1

n+ 2

)

=
1

2

(
3

2
− 1

n+ 1
− 1

n+ 2

)

.

We have

lim
n→∞

Sn = lim
n→∞

1

2

(
3

2
− 1

n+ 1
− 1

n+ 2

)

= lim
n→∞

3

4
− lim

n→∞
1

2(n+ 1)
− lim

n→∞
1

2(n+ 2)
=

3

4
− 0− 0 =

3

4
.

Since the sequence of partial sums converges, the series converges as well, and has the sum
3

4
.
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79. The given series can be rewritten using the techniques of partial fraction decomposition as
follows:

∞∑

k=1

1

k(k + 1)(k + 2)
=

∞∑

k=1

1

2k
− 1

k + 1
+

1

2(k + 2)
=

∞∑

k=1

1

2

(
1

k
− 2

k + 1
+

1

k + 2

)

.

Consider the nth partial sum of the series:

Sn =

n∑

k=1

1

2

(
1

k
− 2

k + 1
+

1

k + 2

)

=

n∑

k=1

1

2

(
1

k
− 1

k + 1

)

−
n∑

k=1

1

2

(
1

k + 1
− 1

k + 2

)

=

{
1

2

(
1

1
− 1

2

)

+
1

2

(
1

2
− 1

3

)

+ · · ·+ 1

2

(
1

n− 1
− 1

n

)

+
1

2

(
1

n
− 1

n+ 1

)}

−
{
1

2

(
1

2
− 1

3

)

+
1

2

(
1

3
− 1

4

)

+ · · ·+ 1

2

(
1

n
− 1

n+ 1

)

+
1

2

(
1

n+ 1
− 1

n+ 2

)}

=

{
1

2

(
1

1

)

− 1

2

(
1

n+ 1

)}

−
{
1

2

(
1

2

)

− 1

2

(
1

n+ 2

)}

=
1

4
− 1

2(n+ 1)
+

1

2(n+ 2)
.

We have

lim
n→∞

Sn = lim
n→∞

(
1

4
− 1

2(n+ 1)
+

1

2(n+ 2)

)

= lim
n→∞

1

4
− lim

n→∞
1

2(n+ 1)
+ lim

n→∞
1

2(n+ 2)
=

1

4
−0+0 =

1

4
.

Since the sequence of partial sums converges, the series converges as well, and has the sum
1

4
.

80. The given series can be rewritten using the techniques of partial fraction decomposition as
follows:

∞∑

k=1

1

k(k + 1)(k + 2)(k + 3)
=

∞∑

k=1

1

6k
− 1

2(k + 1)
+

1

2(k + 2)
− 1

6(k + 3)

=

∞∑

k=1

1

6k
− 3

6(k + 1)
+

3

6(k + 2)
− 1

6(k + 3)
.

Consider the nth partial sum of the series:

Sn =

n∑

k=1

1

6

(
1

k
− 1

k + 1

)

− 1

3

(
1

k + 1
− 1

k + 2

)

+
1

6

(
1

k + 2
− 1

k + 3

)

=

{
1

6

(
1

1
− 1

2

)

+
1

6

(
1

2
− 1

3

)

+ · · ·+ 1

6

(
1

n− 1
− 1

n

)

+
1

6

(
1

n
− 1

n+ 1

)}

−
{
1

3

(
1

2
− 1

3

)

+
1

3

(
1

3
− 1

4

)

+ · · ·+ 1

3

(
1

n
− 1

n+ 1

)

+
1

3

(
1

n+ 1
− 1

n+ 2

)}

+

{
1

6

(
1

3
− 1

4

)

+
1

6

(
1

4
− 1

5

)

+ · · ·+ 1

6

(
1

n+ 1
− 1

n+ 2

)

+
1

6

(
1

n+ 2
− 1

n+ 3

)}

=

{
1

6

(
1

1

)

− 1

6

(
1

n+ 1

)}

−
{
1

3

(
1

2

)

− 1

3

(
1

n+ 2

)}

+

{
1

6

(
1

3

)

− 1

6

(
1

n+ 3

)}

=
1

6
− 1

6
+

1

18
− 1

6(n+ 1)
+

1

3(n+ 2)
− 1

6(n+ 3)

=
1

18
− 1

6(n+ 1)
+

1

3(n+ 2)
− 1

6(n+ 3)
.



8.2 Infinite Series 8-51

We have

lim
n→∞

Sn = lim
n→∞

(
1

18
− 1

6(n+ 1)
+

1

3(n+ 2)
− 1

6(n+ 3)

)

= lim
n→∞

1

18
− lim

n→∞
1

6(n+ 1)
+ lim

n→∞
1

3(n+ 2)
− lim

n→∞
1

6(n+ 3)

=
1

18
− 0 + 0− 0 =

1

18
.

Since the sequence of partial sums converges, the series converges as well, and has the sum
1

18
.

81. We use the following result from the theory of partial fractions:

F (k) = 1
m
∏

i=1

(k+ai)
=

m∑

i=1

Ai

k+ai
, where Ai = (k + ai)F (k)|k=−ai . To prove this, multiply both sides

by
m∏

i=1

(k + ai). Then we get

1 =

m∑

i=1

Ai

(k + ai)

m∏

i=1

(k + ai)

= A1(k + a2)(k + a3) · · · (k + am) +A2(k + a1)(k + a3) · · · (k + am)+

A3(k + a1)(k + a2)(k + a4) · · · (k + am)+

· · ·+Am−1(k + a1) · · · (k + am−2)(k + am) +Am(k + a1) · · · (k + am−1).

Note that each set of factors multiplying the coefficient Ai is missing the term (k + ai). So for
instance, when we set k = −a1, all terms vanish except the term multiplying A1:

1 = A1(−a1 + a2)(−a1 + a3) · · · (−a1 + am)

or,

A1 =
1

(−a1 + a2)(−a1 + a3) · · · (−a1 + am)
= (k + a1)F (k)|k=−a1

where F (k) = 1
m
∏

i=1

(k+ai)
. Similarly, for k = −a2, we obtain A2 = (k+ a2)F (k)|k=−a2 , etc, and in

general, for k = −ai, we have Ai = (k + ai)F (k)|k=−ai , which proves the stated result.

Let F (k) = 1
k(k+1)(k+2)···(k+a) . Since a1 = 0, a2 = 1, a3 = 2, · · · , ai = i− 1, · · · , am = a, we get

A1 = 1
a! , A2 = − a

a! , A3 = (−1)2 a(a−1)
2a! , and so on. In general, for 1 ≤ i ≤ m,

Ai =
(−1)i−1

(i−1)!
a(a−1)···(a−i+2)

a! .

For example, in Problem 79, we had the case a = 2. We have A1 = 1
2! =

1
2 , A2 = − 2

2! = −1,

and A3 = (−1)2 2(2−1)
2·2! = 1

2 . The partial fraction decomposition and the partial sum were:

1

k(k + 1)(k + 2)
=

A1

k
+

A2

k + 1
+

A3

k + 2

=
1

2
· 1
k
− 1

k + 1
+

1

2
· 1

k + 2

=
1

2!

(
1

k
− 2

k + 1
+

1

k + 2

)

=
1

2!

(
1

k
− 1

k + 1

)

− 1

2!

(
1

k + 1
− 1

k + 2

)

Sn =

n∑

k=1

1

k(k + 1)(k + 2)
=

1

2 · 2! −
1

2(n+ 1)
+

1

2(n+ 2)
.
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In Problem 80, we had the case a = 3, so A1 = 1
3! =

1
6 , A2 = − 3

3! = − 1
2 , A3 = (−1)2 3(3−1)

2·3! = 1
2 ,

and A4 = (−1)3 3(3−1)(3−2)
3!·3! = − 1

6 . The partial fraction decomposition and the partial sum were

1

k(k + 1)(k + 2)(k + 3)
=

A1

k
+

A2

k + 1
+

A3

k + 2
+

A4

k + 3

=
1

6
· 1
k
− 1

2
· 1

k + 1
+

1

2
· 1

k + 2
− 1

6
· 1

k + 3

=
1

3!

(
1

k
− 3

k + 1
+

3

k + 2
− 1

k + 3

)

=
1

3!

(
1

k
− 1

k + 1

)

− 1

3

(
1

k + 1
− 1

k + 2

)

+
1

6

(
1

k + 2
− 1

k + 3

)

Sn =

n∑

k=1

1

k(k + 1)(k + 2)(k + 3)
=

1

3 · 3! −
1

6(n+ 1)
+

1

3(n+ 2)
− 1

6(n+ 3)
.

For the general case of a, we get, as in the previous two problems, a series of terms multiplying
the coefficients Ai. When they are added as telescoping series of the partial sum Sn, the result
will have a term 1

a·a! without any n−dependence, while all the surviving terms will have the

form αiAi

n+ai
where αi are whole numbers coming from the distribution of terms in the

telescoping series. That is, we will obtain:

1

k(k + 1)(k + 2) · · · (k + a)
=

A1

k
+

A2

k + 1
+

A3

k + 2
+

A4

k + 3
+ · · ·+ Ai

k + i− 1
+ · · ·+ Am

k + a

=
1

a!
· 1
k
− a

a!
· 1

k + 1
+ (−1)2

a(a − 1)

2!a!
· 1

k + 2
+ (−1)3

a(a − 1)(a − 2)

3!a!
· 1

k + 3

+ · · ·+ (−1)i−1 a(a − 1) · · · (a − i)

(i − 1)!a!
· 1

k + i− 1
+ · · ·+ (−1)a−1 1

a!
· 1

k + a

=
1

a!

(
1

k
− a

k + 1
+

a(a − 1)

2!(k + 2)
− a(a − 1)(a − 2)

3!(k + 3)
+ · · ·

)

+
1

a!

(

· · ·+ (−1)i−1 a(a − 1) · · · (a − i)

(i− 1)!(k + i− 1)
+ · · ·+ (−1)a−1 1

k + a

)

=
1

a!

(
1

k
− 1

k + 1

)

− a− 1

a!

(
1

k + 1
− 1

k + 2

)

+ · · ·+ (−1)a−1

a!

(
1

k + a− 1
− 1

k + a

)

Sn =
n∑

k=1

1

k(k + 1)(k + 2) · · · (k + a)
=

1

a · a!
+

a∑

k=1

αiAi

n+ k
.

In the limit, as n → ∞, we get lim
n→∞

Sn =
1

a · a! , which is also the sum of the series.

82. The right hand side of x
2+2x = x+ x2 + x3 + · · · can be written as

∞∑

k=1

x · xk−1. This is a

geometric series of the form
∞∑

k=1

ark−1 with a = x and r = x. The series has a convergent sum,

a
1−r = x

1−x for |r| = |x| < 1. So the equation becomes:

x

2(1 + x)
=

x

1− x

1− x = 2 + 2x

3x = −1,

or x = −1

3
.
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83. A convergent geometric series of the form
∞∑

k=1

ark−1, |r| < 1, has the sum a
1−r . If a is

rational, then a = p
q , where p and q are integers that have no common factors, and q 6= 0;

similarly, if r is rational, then r = s
t < 1, where s and t are integers with no common factors,

and t 6= 0. Then, we have

Sum =
a

1− r
=

p
q

1− s
t

=
pt

q(t− s)
.

Since pt and q(t− s) are integers, the ratio is a rational number as well, with q(t− s) 6= 0, since
s
t < 1 (possibly with common factors, which can be canceled out to simplify the result).

84. Sn = a+ ar + ar2 + · · ·+ arn−1. When r = 1, Sn = a+ a+ · · ·+ a (n times) = na. On

the other hand, since for r 6= 1, Sn = a(rn−1)
r−1 , we have

lim
r→1

Sn = lim
r→1

a(rn − 1)

r − 1
= a lim

r→1

nrn−1

1
= an = na,

by using L’Hôpital’s rule. So the results of using either the series directly for r = 1, or applying
a limiting procedure to the partial sum formula, agree with each other.

Challenge Problems

85. Since γ = limn→∞
(
1 + 1

2 + · · ·+ 1
n − lnn

)
and the harmonic series

∞∑

k=1

1
k diverges very

slowly, we would expect the limit above to converge very slowly as well. Using Sn =
n∑

k=1

1
k gives

γn ≈ Sn − lnn as an approximation to γ. Using the given values of the partial sums, we have:

n = 10 : S10 = 2.92897; γ10 ≈ S10 − ln 10 ≈ 0.62638.

n = 20 : S20 = 3.59744; γ20 ≈ S20 − ln 20 ≈ 0.60171.

n = 50 : S50 = 4.49921; γ50 ≈ S50 − ln 50 ≈ 0.58719.

n = 100 : S100 = 5.18738; γ100 ≈ S100 − ln 100 ≈ 0.58221.

As expected, the rate of convergence of the limit defining γ is very slow as well.

86. Using (see solution to Problem 85) γn ≈
n∑

k=1

1
k − lnn, we have γ109 ≈

109∑

k=1

1
k − ln 109, or

109∑

k=1

1
k ≈ γ109 + ln 109. Using γ109 ≈ γ ≈ 0.5772, we have, to four decimal places,

109∑

k=1

1
k ≈ 21.3005.

87. If a real number has a repeating decimal, the repeating part can be expressed as a
geometric series. Such a real number may be represented as

R = x.yz · · ·abc · · ·abc · · ·abc · · ·
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(x is the whole number part) where, if the repeated units abc · · · start in (say) the nth decimal
place, and have a string length r, we can write:

R = x.yz · · ·+ abc · · · × 10−n+1−r + abc · · · × 10−n+1−2r + abc · · · × 10−n+1−3r + · · ·
=

xyz · · ·
10n−1

+ abc · · · × 10−n+1−r
(
1 + 10−r + 10−2r + · · ·

)

=
xyz · · ·
10n−1

+
abc · · ·
10n−1+r

∞∑

k=1

(
10−r

)k−1

=
xyz · · ·
10n−1

+
abc · · ·
10n−1+r

(
1

1− 10−r

)

=
xyz · · ·
10n−1

+
abc · · ·

10n−1(10r − 1)
,

which, being a sum of rational numbers, is a rational number.

Conversely, any rational number is of the form p
q , where p and q are integers with q 6= 0 with

no common factors. Then performing long division produces a remainder of with either 0
which will terminate the long division, or result a repeating block of numbers because there
can only be at most q − 1 different remainders. The moment you get a remainder that is
non-zero, the rest of the long division will proceed as it had when the same remainder had
earlier occured, causing a repeating pattern to emerge in the quotient. So we have shown that
a real number has a repeating decimal if and only if it is a rational number.

88. (a) Since sn ≥ 0 for all n ≥ 1, the sequence of partial sums {Sn} is a nondecreasing
sequence, and so if {Sn} is bounded, then it converges, because a bounded monotonic sequence

converges. This in turn means that the series
∞∑

k=1

sk converges. Conversely, if the original series

converges, then the partial sums also converge, so by the theorem on p.640, the sequence {Sn}
must also be bounded.

(b) Write the harmonic series as 1 + 1
2 +

(
1
3 + 1

4

)
+
(
1
5 + 1

6 + 1
7 + 1

8

)
+
(
1
9 + · · ·+ 1

16

)
+ · · · .

Each of the bracketed terms is > 1
2 . The partial sums form an unbounded sequence since, for

instance, S1 = 1, S2 = S20 = 1 + 1
2 ; S4 = S22 > 1 + 1

2 + 1
2 = 1 + 1

2 · 2;
S8 = S23 > 1 + 1

2 +
1
2 +

1
2 = 1+ 1

2 · 3; S16 = S24 > 1 + 1
2 + 1

2 +
1
2 +

1
2 = 1+ 1

2 · 4; and in general,

S2n ≥ 1 +
n∑

k=0

1
2 = 1 + 1

2 · n. This shows that the partial sums S2n are unbounded, since

lim
n→∞

S2n ≥ lim
n→∞

(
1 + 1

2 · n
)
= ∞, which means the sequence {S2n} will diverge, so the series

will diverge as well.

AP
R©

Practice Problems

1.
∞∑

k=1

1

(k + 1)(k + 2)

Use Partial Fraction Decomposition:

1

(k + 1)(k + 2)
=

A

k + 1
+

B

k + 2

1 = A(k + 2) +B(k + 1)

Let k = −2

1 = −B

B = −1
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Let k = −1
A = 1

1

(k + 1)(k + 2)
=

1

k + 1
− 1

k + 2

Sn =

n∑

k=1

1

(k + 1)(k + 2)

=

n∑

k=1

(
1

k + 1
− 1

k + 2

)

=

(
1

2
− 1

3

)

+

(
1

3
− 1

4

)

+

(
1

4
− 1

5

)

+

(
1

5
− 1

6

)

+ · · ·+
(
1

n
− 1

n+ 1

)

+

(
1

n+ 1
− 1

n+ 2

)

=
1

2
+

(

−1

3
+

1

3

)

+

(

−1

4
+

1

4

)

+

(

−1

5
+

1

5

)

+ · · ·+
(

− 1

n+ 1
+

1

n+ 1

)

− 1

n+ 2

=
1

2
− 1

n+ 2
∞∑

k=1

1

(k + 1)(k + 2)
= lim

n→∞
Sn = lim

n→∞

(
1

2
− 1

n+ 2

)

=
1

2

CHOICE C

2.

∞∑

k=1

7

3k−1
=

∞∑

k=1

7

3k(3−1)
= 21

∞∑

k=1

1

3k
= 21

∞∑

k=1

(
1

3

)k

= 21 ·
1

3

1− 1

3

= 21 · 1
2
=

21

2

CHOICE C

3. 0.121212... = 0.12 + 0.0012 + 0.000012+ · · ·
= 12

[

0.01 + (0.01)
2
+ (0.01)

3
+ · · ·

]

=
0.12

1− 0.01
=

0.12

0.99
=

12

99
=

4

33

CHOICE A

4. Analyze each choice in turn:

I.
∞∑

k=1

(√
2
)k−1

=
∞∑

k=1

(√
2
)k

√
2

=
1√
2

∞∑

k=1

(√
2
)k

This is a geometric series with R =
√
2 > 0.

Therefore

∞∑

k=1

(√
2
)k−1

diverges.
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II.
∞∑

k=1

−
(

3

4k

)

= −3

∞∑

k=1

(
1

4k

)

= −3

∞∑

k=1

(
1

4

)k

This is a Convergent Geometric Series since 0 < R =
1

4
< 1.

III.
∞∑

k=1

1

k
is a p-series with p = 1, also known as the harmonic series, which diverges.

Therefore I and III diverge .

CHOICE B

5.
∞∑

k=1

7k−2

8k+1
=

∞∑

k=1

7k
(
7−2
)

8k(8)
=

1

392

∞∑

k=1

(
7

8

)k

This is a Geometric Series with R =
7

8
< 1.

1

392

∞∑

k=1

(
7

8

)k

=
1

392
·

7

8

1− 7

8

=
1

392
· 7 =

1

56

Therefore
∞∑

k=1

7k−2

8k+1
converges to

1

56
.

CHOICE B

6. (a) 100 + 90 + 90 +
9

10
· 90 + 9

10
· 90 + 9

10
·
(

9

10
· 90
)

+
9

10
·
(

9

10
· 90
)

+ . . .

= 100 + 2

[

90

(
9

10

)0

+ 90

(
9

10

)1

+ 90

(
9

10

)2

+ . . .

]

= 100 + 2
∞∑

k=1

90

(
9

10

)k−1

(b) 100 + 2
∞∑

k=1

90

(
9

10

)k−1

= 100 + 2 · 90

1− 9

10

= 100 + 2 · 900 = 1900 cm

(c) 1900 cm (19 m) is the total distance that the object hanging from the spring moves
up and down between being released and coming to rest.

8.3 Properties of Series; Series with Positive Terms;
the Integral Test

Concepts and Vocabulary

1. (a) If the series
∞∑

k=1

ak converges then lim
n→∞

an = 0.

2. False: For example, lim
n→∞

1
n = 0 but

∞∑

k=1

ak =
∞∑

k=1

1
k diverges (Harmonic series).
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3. True: Since lim
n→∞

an = lim
n→∞

n3 = ∞. The series cannot converge.

4. True: Any finite number of terms in a series do not determine convergence.

5. False: For example,
∞∑

k=1

(
1
k − 1

k+1

)

converges as it is a telescoping series (the sum is 1),

whereas
∞∑

k=1

1
k and

∞∑

k=1

1
k+1 = 1

2 + 1
3 + 1

4 + · · · both separately diverge, being the harmonic

series and the harmonic series from the second term forward, respectively.

6. True: If a series is convergent to S then a scalar multiple of each term yields a convergent
series of sum cS.

7. True: This is the basis of the integral test of convergence.

8. False: If the terms are all positive, then the sequence of partial sums will be an increasing
sequence, and if this sequence is not bounded, the series will be divergent.

9. The p−series
∞∑

k=1

1
kp converges if p > 1 and diverges if 0 < p ≤ 1.

10. Converges.
∞∑

k=1

1
k3/2 is a p-series

∞∑

k=1

1
kp , p > 1, which converges.

11. Diverges.
∞∑

k=1

ak =
∞∑

k=1

1
k−1/2 =

∞∑

k=1

k1/2. We have lim
n→∞

an = lim
n→∞

n1/2 = ∞ 6= 0. So by

the Divergence Test, the series diverges.

12. False: The upper bound must be 1 + 1
p−1 ; the lower bound is correct.

Skill Building

13. The series is
∞∑

k=1

16. We have lim
n→∞

an = 16 6= 0. So by the Divergence Test, the series

diverges.

14. The series is
∞∑

k=1

k+9
k . We have lim

n→∞
an = lim

n→∞

(
1 + 9

n

)
= 1 6= 0. So by the Divergence

Test, the series diverges .

15. The series is
∞∑

k=1

ln k. We have lim
n→∞

an = lim
n→∞

lnn = ∞ 6= 0. So by the Divergence Test,

the series diverges.

16. The series is
∞∑

k=1

ek. We have lim
n→∞

an = lim
n→∞

en = ∞ 6= 0. So by the Divergence Test, the

series diverges.

17. The series is
∞∑

k=1

k2

k2+4 . We have lim
n→∞

an = lim
n→∞

n2

n2+4 = lim
n→∞

1
1+ 4

n2
= 1

1+0 = 1 6= 0. So by

the Divergence Test, the series diverges.
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18. The series is
∞∑

k=1

k2+3√
k
. We have

lim
n→∞

an = lim
n→∞

n2+3√
n

= lim
n→∞

n3/2 + 3 lim
n→∞

1√
n
= lim

n→∞
n3/2 + 0 = ∞ 6= 0. So by the Divergence

Test, the series diverges.

19. The series is
∞∑

k=1

ak =
∞∑

k=1

1
k1.01 . The function f(x) = 1

x1.01 is defined on [1,∞) and is

continuous, positive, and decreasing for all x ≥ 1. Also, ak = f(k) for all positive integers
k ≥ 1. Using the integral test, we find

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

dx

x1.01
= lim

b→∞

[
x−1.01+1

−1.01 + 1

]b

1

= − 1

0.01
lim
b→∞

[
b−0.01 − 1−0.01

]
= − 1

0.01
[0− 1]

= 100.

Since the improper integral I converges, by the integral test the series converges as well.

20. The series is
∞∑

k=1

ak =
∞∑

k=1

1
k0.9 . The function f(x) = 1

x0.9 is defined on [1,∞) and is

continuous, positive, and decreasing for all x ≥ 1. Also, ak = f(k) for all positive integers
k ≥ 1. Using the integral test, we find

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

dx

x0.9
= lim

b→∞

[
x−0.9+1

−0.9 + 1

]b

1

=
1

0.1
lim
b→∞

[
b0.1 − 10.1

]
= ∞.

Since the improper integral I diverges, by the integral test the series diverges as well.

21. The function f(x) =
√
ln x
x is continuous, positive and decreasing on the interval (e1/2,∞)

because f ′(x) =
1

2
√

ln x
−
√
lnx

x2 = 1−2 ln x

2x2
√
ln x

< 0 for e1/2 > 0.

Also, ak = f(k) for all positive integers k.

Thus, we can use the Integral Test:

∫ ∞

e1/2

√
lnx

x
dx = lim

b→∞

∫ b

e1/2

√
lnx

x
dx = lim

b→∞

[

2

3
(lnx)

3/2

∣
∣
∣
∣

b

e1/2

]

= lim
b→∞

[

2

3
(ln b)

3/2 − 2

3

(
1

2

)3/2
]

= ∞

Therefore the series diverges on the interval (e1/2, ∞), so the infinite sum
∞∑

k=1

√
ln k
k diverges .

22. The series is
∞∑

k=2

ak =
∞∑

k=2

1
k
√
ln k

. The function f(x) = 1
x
√
ln x

is defined on [2,∞) and is

continuous, positive, and decreasing for all x ≥ 2. To see f(x) is decreasing, consider

g(x) = 1
f(x) = x

√
lnx. It suffices to show that g(x) is increasing and has a nonzero derivative

on [2,∞). We have

g′(x) = 1 ·
√
lnx+ x · 1

2
√
lnx

· 1
x
=

√
lnx+

1√
lnx

> 0 for x ≥ 2.
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Also, ak = f(k) for all positive integers k ≥ 2. Using the integral test, we find

I =
∫∞
2 f(x) dx = lim

b→∞

∫ b

2
dx

x
√
lnx

. Let u = lnx. Then du = dx
x . We have

I =

∫ ∞

2

f(x) dx = lim
b→∞

∫ ln b

ln 2

du√
u
= lim

b→∞

[

u− 1
2+1

− 1
2 + 1

]ln b

ln 2

= 2 lim
b→∞

√
u
∣
∣
∣

ln b

ln 2
= 2 lim

b→∞

(√
ln b−

√
ln 2
)

= ∞.

Since the improper integral I diverges, by the integral test the series diverges as well.

23. The series is
∞∑

k=1

ak =
∞∑

k=1

ke−k2

. The function f(x) = xe−x2

is defined on [1,∞) and is

continuous, positive, and decreasing for all x ≥ 1 since

f ′(x) = 1 · e−x2

+ xe−x2

(−2x) = e−x2

(1− 2x2) < 0 for x ≥ 1.

Also, ak = f(k) for all positive integers k ≥ 1. Using the integral test, we find

I =
∫∞
1 f(x) dx = lim

b→∞

∫ b

1 xe−x2

dx. Let u = e−x2

. Then du = −2xe−x2

dx. We have

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ e−b2

e−1

−1

2
du = −1

2
lim
b→∞

u
∣
∣
∣

e−b2

e−1
= −1

2
lim
b→∞

[

e−b2 − e−1
]

= −1

2

[
0− e−1

]
=

e−1

2
.

Since the improper integral I converges, by the integral test the series converges as well.

24. The series is
∞∑

k=1

ak =
∞∑

k=1

ke−k. The function f(x) = xe−x is defined on [1,∞) and is

continuous, positive, and decreasing for all x ≥ 1, since

f ′(x) = 1 · ex + x(−e−x) = e−x(1− x) ≤ 0 for x ≥ 1.

Also, ak = f(k) for all positive integers k ≥ 1. Using the integral test, we find

I =
∫∞
1

f(x) dx = lim
b→∞

∫ b

1
xe−x dx. Let u = x, dv = e−x dx. Then, du = dx, v = −e−x.

Integrating by parts, we have

I = lim
b→∞

(

−xe−x
∣
∣
∣

b

1
+

∫ b

1

e−x dx

)

= lim
b→∞

(
−be−b + e−1

)
+ lim

b→∞

[
−e−x

]b

1

= − lim
b→∞

b

eb
+

1

e
− lim

b→∞

(
e−b − e−1

)
= − lim

b→∞

1

eb
+

1

e
− 0 +

1

e

= 0 +
1

e
− 0 +

1

e
=

2

e
,

using L’Hôpital’s rule on the first limit in the second line. Since the improper integral I
converges, by the integral test the series converges as well.

25. The series is
∞∑

k=1

ak =
∞∑

k=1

1
k2+1 . The function f(x) = 1

x2+1 is defined on [1,∞) and is

continuous, positive, and decreasing for all x ≥ 1, since f ′(x) = − 1
(x2+1)2 · (2x) < 0 for x ≥ 1.

Also, ak = f(k) for all positive integers k ≥ 1. Using the integral test, we find

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

dx

x2 + 1
= lim

b→∞
tan−1 x

∣
∣
∣

b

1
= lim

b→∞

(
tan−1 b− tan−1 1

)
=

π

2
− π

4
=

π

4
.

Since the improper integral I converges, by the integral test the series converges as well.
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26. The series is
∞∑

k=2

ak =
∞∑

k=2

1
k
√
k2−1

. The function f(x) = 1
x
√
x2−1

is defined on [2,∞) and is

continuous, positive, and decreasing for all x ≥ 2. To see that f(x) is decreasing, consider

g(x) = 1
f(x) = x

√
x2 − 1. It suffices to show that g(x) is increasing and has a nonzero derivative

on [2,∞). We have

g′(x) = 1 ·
√

x2 − 1 + x · 1

2
√
x2 − 1

· (2x) = x2 − 1 + x2

√
x2 − 1

=
2x2 − 1√
x2 − 1

> 0 for x ≥ 2.

Also, ak = f(k) for all positive integers k ≥ 2. Using the integral test, we find

I =
∫∞
2 f(x) dx = lim

b→∞

∫ b

2
dx

x
√
x2−1

. Let x = secu Then dx = secu tanu du. We have

I = lim
b→∞

∫ sec−1 b

sec−1 2

secu tanu du

secu
√
sec2 u− 1

= lim
b→∞

∫ sec−1 b

sec−12

secu tanu du

secu tanu
= lim

b→∞
u
∣
∣
∣

sec−1 b

sec−1 2
= lim

b→∞

(
sec−1 b− sec−1 2

)

=
π

2
− sec−1 2.

Since the improper integral I converges, by the integral test the series converges as well.

27. The series is
∞∑

k=2

ak =
∞∑

k=2

1
k ln k . The function f(x) = 1

x lnx is defined on [2,∞) and is

continuous, positive, and decreasing for all x ≥ 2. To see that f(x) is decreasing, consider
g(x) = 1

f(x) = x ln x. It suffices to show that g(x) is increasing and has a nonzero derivative on

[2,∞). We have

g′(x) = 1 · lnx+ x · 1
x
= lnx+ 1 > 0 for x ≥ 2.

Also, ak = f(k) for all positive integers k ≥ 2. Using the integral test, we find

I =
∫∞
2 f(x) dx = lim

b→∞

∫ b

2
dx

x ln x . Let u = lnx. Then du = dx
x . We have

I = lim
b→∞

∫ ln b

ln 2

du

u
= lim

b→∞
[lnu]

∣
∣
∣

ln b

ln 2
= lim

b→∞
[ln(ln b)− ln(ln 2)] = ∞.

Since the improper integral I diverges, by the integral test the series diverges as well.

28. The series is
∞∑

k=2

ak =
∞∑

k=2

1
k(ln k)3 . The function f(x) = 1

x(lnx)3 is defined on [2,∞) and is

continuous, positive, and decreasing for all x ≥ 2. To see that f(x) is decreasing, consider
g(x) = 1

f(x) = x(ln x)3. It suffices to show that g(x) is increasing and has a nonzero derivative

on [2,∞). We have

g′(x) = 1 · (lnx)3 + x · 3(lnx)2 · 1
x
= (lnx)3 + 3(lnx)2 > 0 for x ≥ 2.

Also, ak = f(k) for all positive integers k ≥ 2. Using the integral test, we find

I =
∫∞
2

f(x) dx = lim
b→∞

∫ b

2
dx

x(lnx)3 . Let u = lnx. Then du = dx
x . We have

I = lim
b→∞

∫ ln b

ln 2

du

u3
= lim

b→∞

[
u−3+1

−3 + 1

]ln b

ln 2

= −1

2
lim
b→∞

[
1

(ln b)2
− 1

(ln 2)2

]

=
1

2

1

(ln 2)2
.

Since the improper integral I converges, by the integral test the series converges as well.
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29. The series
∞∑

k=1

1
k2 is a p-series with p = 2 > 1. So it converges.

30. The series
∞∑

k=1

1
k4 is a p-series with p = 4 > 1. So it converges.

31. The series
∞∑

k=1

1
k1/3 is a p-series with 0 < p = 1

3 < 1. So it diverges.

32. The series
∞∑

k=1

1
k2/3 is a p-series with 0 < p = 2

3 < 1. So it diverges.

33. The series
∞∑

k=1

1
ke is a p-series with p = e > 1. So it converges.

34. The series
∞∑

k=1

1

k
√

2
is a p-series with p =

√
2 > 1, so it converges.

35. 1 + 1
2
√
3
+ 1

3
√
3
+ 1

4
√
4
+ · · · =

∞∑

k=1

1
k
√
k
=

∞∑

k=1

1
k3/2 is a p-series with p = 3

2 > 1. So it

converges.

36. 1 + 1
3√2

+ 1
3√3

+ 1
4√4

+ · · · =
∞∑

k=1

1
3√
k
=

∞∑

k=1

1
k1/3 is a p-series with 0 < p = 1

3 < 1 and so

diverges.

37. 1 + 1
4
√
2
+ 1

9
√
3
+ 1

16
√
4
+ · · · =

∞∑

k=1

1
k2

√
k
=

∞∑

k=1

1
k5/2 is a p-series with p = 5

2 > 1 and so

converges.

38. 1 + 1
8 + 1

27 + 1
64 + · · · =

∞∑

k=1

1
k3 is a p-series with p = 3 > 1 and so converges.

39. The series is
∞∑

k=1

10
k . Since the harmonic series

∞∑

k=1

1
k diverges, the series

∞∑

k=1

10
k diverges

as well since it is a nonzero constant multiple of a divergent series.

40. The series is
∞∑

k=1

2
1+k . Since

∞∑

k=1

1
1+k is just the harmonic series

∞∑

k=2

1
k , which diverges, the

series
∞∑

k=1

2
1+k which is a nonzero constant multiple of a divergent series also diverges .

41. The series is
∞∑

k=1

ak =
∞∑

k=1

k2+1
4k+1 . Since lim

n→∞
an = lim

n→∞
n2+1
4n+1 = lim

n→∞
n+ 1

n

4+ 1
n

= ∞ 6= 0, by the

Divergence Test the series diverges.

42. The series is
∞∑

k=1

ak =
∞∑

k=1

k3

k3+3 . Since lim
n→∞

an = lim
n→∞

n3

n3+3 = lim
n→∞

1
1+ 3

n3
= 1 6= 0, by the

Divergence Test, the series diverges.
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43. The series is
∞∑

k=1

ak =
∞∑

k=1

(
k + 1

k

)
. Since lim

n→∞
an = lim

n→∞

(
n+ 1

n

)
= lim

n→∞
n+ 0 = ∞ 6= 0,

by the Divergence Test, the series diverges.

44. The series is
∞∑

k=1

ak =
∞∑

k=1

(
k − 10

k

)
. We have

lim
n→∞

an = lim
n→∞

(
n− 10

n

)
= lim

n→∞
n− 0 = ∞ 6= 0. So by the Divergence Test the series

diverges.

45. The series is
∞∑

k=1

(
1
3k − 1

4k

)
=

∞∑

k=1

1
12k is a constant multiple of the harmonic series

∞∑

k=1

1
k

which diverges. So the given series also diverges.

46. The series is∞∑

k=1

(
1
3k − 1

4k

)
=

∞∑

k=1

1
3

(
1
3

)k−1 −
∞∑

k=1

1
4

(
1
4

)k−1
=

1
3

1− 1
3

−
1
4

1− 1
4

= 1/3
2/3 − 1/4

3/4 = 1
2 − 1

3 = 1
6 . Here, we

used the fact that each term was a convergent geometric series, and the sum and difference
property of convergent series to simplify the result. So, the series converges.

47. The series is
∞∑

k=1

ak =
∞∑

k=1

sin
(
π
2 k
)
. Since sin

(
π
2 k
)
is +1 for k = 1, 5, 9, · · · ; 0 for

k = 2, 4, 6, · · · ; and −1 for k = 3, 7, 11, · · · , the partial sums Sn =
n∑

k=1

ak will oscillate between 0

and 1 for all n. The sequence of partial sums {Sn} = {1, 1, 0, 0, 1, 1, 0, 0, · · ·} does not converge

to a limit, so the series will diverge.

48. The series is
∞∑

k=1

ak =
∞∑

k=1

secπk. Since secπk is −1 for k = 1, 3, 5, · · · , and +1 for

k = 2, 4, 6, · · · , the partial sums Sn =
n∑

k=1

ak will oscillate between −1 and 0. The series will

diverge because the sequence of partial sums {Sn} = {−1, 0,−1, 0, · · · } does not converge to

a limit.

49. The series is
∞∑

k=3

ak =
∞∑

k=3

k+1
k−2 . We have lim

n→∞
an = lim

n→∞
n+1
n−2 = lim

n→∞
1+ 1

n

1− 2
n

= 1+0
1−0 = 1 6= 0.

So the series diverges.

50. The series is
∞∑

k=5

ak =
∞∑

k=5

2k5+3
k5−4k4 . We have

lim
n→∞

an = lim
n→∞

2n5+3
n5−4n4 = lim

n→∞
2+ 3

n5

1− 4
n

= 2+0
1−0 = 2 6= 0. So the series diverges.

51. The series is
∞∑

k=2

ak =
∞∑

k=2

1
k(ln k)1/2

. The function f(x) = 1
x(ln x)1/2

= 1
x
√
ln x

is defined on

[2,∞) and is continuous, positive, and decreasing for all x ≥ 2. To see that f(x) is decreasing,

consider g(x) = 1
f(x) = x

√
lnx. It suffices to show that g(x) is increasing and has a nonzero

derivative on [2,∞). We have

g′(x) = 1 ·
√
lnx+ x · 1

2
√
lnx

· 1
x
=

√
lnx+

1

2
√
lnx

> 0 for x ≥ 2.



8.3 Properties of Series; Series with Positive Terms; the Integral Test 8-63

Also, ak = f(k) for all positive integers k ≥ 2. Using the integral test, we find

I =
∫∞
2 f(x) dx = lim

b→∞

∫ b

2
dx

x
√
lnx

. Let u = lnx. Then du = dx
x . We have

I = lim
b→∞

∫ ln b

ln 2

du√
u
= lim

b→∞

∫ ln b

ln 2

u− 1
2 du = lim

b→∞

[

u
1
2

1
2

]ln b

ln 2

= 2 lim
b→∞

(√
ln b−

√
ln 2
)

= ∞.

Since the improper integral I diverges, by the integral test the series diverges as well.

52. The series is
∞∑

k=2

ak =
∞∑

k=2

1
k(ln k)2 . The function f(x) = 1

x(lnx)2 is defined on [2,∞) and is

continuous, positive, and decreasing for all x ≥ 2. To see that f(x) is decreasing, consider
g(x) = 1

f(x) = x(ln x)2. It suffices to show that g(x) is increasing and has a nonzero derivative

on [2,∞). We have

g′(x) = 1 · (ln x)2 + x · (2 lnx) · 1
x
= (lnx)2 + 2 lnx > 0 for x ≥ 2.

Also, ak = f(k) for all positive integers k ≥ 2. Using the integral test, we find

I =
∫∞
2 f(x) dx = lim

b→∞

∫ b

2
dx

x(lnx)2 . Let u = lnx. Then du = dx
x . We have

I = lim
b→∞

∫ ln b

ln 2

du

u2
= lim

b→∞

∫ ln b

ln 2

u−2 du = lim
b→∞

[
u−1

−1

]ln b

ln 2

= − lim
b→∞

(
1

ln b
− 1

ln 2

)

= −
(

0− 1

ln 2

)

=
1

ln 2
.

Since the improper integral I converges, by the integral test the series converges as well.

53. The series is
∞∑

k=3

ak =
∞∑

k=3

2k
k2−4 . The function f(x) = 2x

x2−4 is defined on [3,∞) and is

continuous, positive, and decreasing for all x ≥ 3, since

f ′(x) =
(x2 − 4) · 2− 2x · (2x)

(x2 − 1)2
= − 3x2 + 8

(x2 − 1)2
< 0 for x ≥ 3.

Also, ak = f(k) for all positive integers k ≥ 3. Using the integral test, we find

I =
∫∞
3 f(x) dx = lim

b→∞

∫ b

3
2x dx
x2−4 . Let u = x2 − 4. Then du = 2x dx. We have

I = lim
b→∞

∫ b2−4

5

du

u
= lim

b→∞
[lnu]

∣
∣
∣

b2−4

5
= lim

b→∞

(
ln(b2 − 4)− ln 5

)
= ∞.

Since the improper integral I diverges, by the integral test the series diverges.

54. The series
∞∑

k=1

ak =
∞∑

k=1

1
(2k−1)(2k) . The function f(x) = 1

(2x−1)(2x) =
1

2x−1 − 1
2x is defined

on [1,∞) and is continuous, positive, and decreasing for all x ≥ 1. Also, ak = f(k) for all
positive integers k ≥ 1. Using the integral test, we find

I =

∫ ∞

1

f(x) dx = lim
b→∞

(
∫ b

1

dx

2x− 1
− dx

2x

)

= lim
b→∞

[
1

2
ln |2x− 1| − 1

2
ln |x|

]b

1

= lim
b→∞

[
1

2
ln |2b− 1| − 1

2
ln |b|

]

=
1

2
lim
b→∞

ln

∣
∣
∣
∣

2b− 1

b

∣
∣
∣
∣
=

1

2
lim
b→∞

ln

∣
∣
∣
∣

2− 1
b

1

∣
∣
∣
∣

=
1

2
ln lim

b→∞

∣
∣
∣
∣
2− 1

b

∣
∣
∣
∣
=

1

2
ln 2.

Since the improper integral I converges, by the integral test the series converges as well.
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55. The bounds for the sum of a Convergent p-series are, for p > 1, 1
p−1 <

∞∑

k=1

1
kp < 1 + 1

p−1 .

Here, for
∞∑

k=1

1
k2 , the bounds for the sum of the Convergent series are

1

2− 1
<

∞∑

k=1

1

k2
< 1 +

1

2− 1

1 <

∞∑

k=1

1

k2
< 2

56. The bounds for the sum of a Convergent p-series are, for p > 1, 1
p−1 <

∞∑

k=1

1
kp < 1 + 1

p−1 .

Here, for
∞∑

k=1

1
k4 , the bounds for the sum of the Convergent series are

1

4− 1
<

∞∑

k=1

1

k4
< 1 +

1

4− 1

=
1

3
<

∞∑

k=1

1

k4
<

4

3

57. The bounds for the sum of a Convergent p-series are, for p > 1, 1
p−1 <

∞∑

k=1

1
kp < 1 + 1

p−1 .

Here, for
∞∑

k=1

1
ke , the bounds for the sum of the Convergent series are

1

e− 1
<

∞∑

k=1

1

ke
< 1 +

1

e− 1

1

e − 1
<

∞∑

k=1

1

ke
<

e

e − 1

58. The bounds for the sum of a Convergent p-series are, for p > 1, 1
p−1 <

∞∑

k=1

1
kp < 1 + 1

p−1 .

Here, for
∞∑

k=1

1
k
√

2
, the bounds for the sum of the Convergent series are

1√
2− 1

<

∞∑

k=1

1

k
√
2
< 1 +

1√
2− 1

1√
2− 1

·
√
2 + 1√
2 + 1

<

∞∑

k=1

1

k
√
2
< 1 +

1√
2− 1

·
√
2 + 1√
2 + 1

1 +
√
2

2− 1
<

∞∑

k=1

1

k
√
2
< 1 +

1 +
√
2

2− 1

1 +
√
2 <

∞∑

k=1

1

k
√
2
< 2 +

√
2
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59. 1 +
1

2
√
2
+

1

3
√
3
+

1

4
√
4
+ . . . =

1

12
√
1
+

1

22
√
2
+

1

32
√
3
+

1

42
√
4
+ . . .

The general term is 1

k
√
k
and thus the series is

∞∑

k=1

1

k
√
k
=

∞∑

k=1

(
1

k3/2

)

The bounds for the sum of a Convergent p-series are, for p > 1, 1
p−1 <

∞∑

k=1

1
kp < 1 + 1

p−1 .

Here, for
∞∑

k=1

1
k3/2 , the bounds for the sum of the Convergent series are

1
3
2 − 1

<

∞∑

k=1

1

k3/2
< 1 +

1
3
2 − 1

2 <

∞∑

k=1

1

k3/2
< 3

60. 1+
1

4
√
2
+

1

9
√
3
+

1

16
√
4
+ . . . =

1

12
√
1
+

1

22
√
2
+

1

32
√
3
+

1

42
√
4
+ . . .+

1

k2
√
k
=

∞∑

k=1

(
1

k5/2

)

The bounds for the sum of a Convergent p-series are, for p > 1, 1
p−1 <

∞∑

k=1

1
kp < 1 + 1

p−1 .

Here, for
∞∑

k=1

1
k5/2 , the bounds for the sum of the Convergent series are

1
5
2 − 1

<

∞∑

k=1

1

k5/2
< 1 +

1
5
2 − 1

1
3
2

<

∞∑

k=1

1

k5/2
< 1 +

1
3
2

=
2

3
<

∞∑

k=1

1

k5/2
<

5

3

61. Consider f(x) = xe−x2

f ′(x) = 1 · e−x2

+ xe−x2

(−2x)

= e−x2(
1− 2x2

)

f ′(x) is negative on the interval [1,∞). Therefore f is decreasing on the interval [1,∞).
Observe that f(x) is positive on the interval [1,∞). If f is differentiable at x = c, then f is

continuous at x = c. f(x) = xe−x2

is differentiable for all x on the interval [1,∞).

Since f is continuous, positive, and decreasing on [1,∞) and since ak = f(k) for all positive
integers k, therefore if the improper integral

∫∞
1 f(x) dx converges then the sum of the series is

bounded by
∫ ∞

1

f(x) dx <

∞∑

k=1

ak < a1 +

∫ ∞

1

f(x) dx.
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Here,

∫ ∞

1

xe−x2

dx = lim
b→∞

∫ b

1

xe−x2

dx = lim
b→∞

[

e−x2

−2

]b

1

= lim
b→∞

[

e−b2

−2
− e−1

−2

]

= lim
b→∞

[
1

−2eb2
+

1

2e

]

=
1

2e
.

Therefore,

∫ ∞

1

x2e−3x3

dx <

∞∑

k=1

k2e−3k3

< a1 +

∫ ∞

1

x2e−3x3

dx

1

2e
<

∞∑

k=1

k2e−3k3

< e−1 +
1

2e

1

2e
<

∞∑

k=1

k2e−3k3

<
1

e
+

1

2e

1

2e
<

∞∑

k=1

ke−k2

<
3

2e

62. Consider f(x) = x2e−3x3

f ′(x) = 2xe−3x3

+ x2e−3x3(−9x2
)

= xe−3x3(
2− 9x3

)

f ′(x) is negative on the interval [1,∞). Therefore f(x) is decreasing on the interval [1,∞).
Observe that f(x) is positive on the interval [1,∞). If f is differentiable at x = c, then f is

continuous at x = c. f(x) = x2e−3x3

is differentiable for all x on the interval [1,∞).

Since f is continuous, positive, and decreasing on [1,∞) and since ak = f(k) for all positive
integers k, therefore if the improper integral

∫∞
1

f(x) dx converges then the sum of the series is
bounded by

∫ ∞

1

f(x) dx <

∞∑

k=1

ak < a1 +

∫ ∞

1

f(x) dx.

Here,

∫ ∞

1

x2e−3x3

dx = lim
b→∞

∫ b

1

x2e−3x3

dx = lim
b→∞

[

e−3x3

−9

]b

1

= lim
b→∞

[

e−3b3

−9
− e−3

−9

]

= lim
b→∞

[
1

−9e3b3
− 1

−9(e3)

]

=
1

9e3
.
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Therefore,

∫ ∞

1

x2e−3x3

dx <

∞∑

k=1

k2e−3k3

< a1 +

∫ ∞

1

x2e−3x3

dx

1

9e3
<

∞∑

k=1

k2e−3k3

< e−3 +
1

9e3

1

9e3
<

∞∑

k=1

k2e−3k3

<
1

e3
+

1

9e3

1

9e3
<

∞∑

k=1

k2e−3k3

<
10

9e3

63. Consider f(x) = 1
x2+9 =

(
x2 + 9

)−1

f ′(x) = −1
(
x2 + 9

)−2
(2x) =

−2x

(x2 + 9)
2

f ′(x) is negative on the interval [1,∞). Therefore f is decreasing on the interval [1,∞).
Observe that f(x) is positive on the interval [1,∞). If f is differentiable at x = c, then f is
continuous at x = c. f(x) = 1

4x2+9 is differentiable for all x on the interval [1,∞).

Since f is continuous, positive, and decreasing on [1,∞) and since ak = f(k) for all positive
integers k, therefore if the improper integral

∫∞
1

f(x) dx converges then the sum of the series is
bounded by

∫ ∞

1

f(x) dx <
∞∑

k=1

ak < a1 +

∫ ∞

1

f(x) dx.

Here,

∫ ∞

1

1

x2 + 9
dx = lim

b→∞

∫ b

1

1

x2 + 9
dx = lim

b→∞

[
1

3
tan−1x

3

]b

1

=
1

3
lim
b→∞

(

tan−1 b

3
− tan−1 1

3

)

=
1

3

(
π

2
− tan−1 1

3

)

=
π

6
− 1

3
tan−1 1

3

Therefore,

∫ ∞

1

1

x2 + 9
dx <

∞∑

k=1

1

k2 + 9
<

1

10
+

∫ ∞

1

1

x2 + 9
dx

π

6
− 1

3
tan−1 1

3
<

∞∑

k=1

1

4k2 + 1
<

1

10
+

π

6
− 1

3
tan−1 1

3

64. Consider f(x) = 1
4x2+1 =

(
4x2 + 1

)−1

f ′(x) = −1
(
4x2 + 1

)−2
(8x) =

−8x

(4x2 + 1)
2

f ′(x) is negative on the interval [1,∞). Therefore f(x) is decreasing on the interval [1,∞).
Observe that f(x) is positive on the interval [1,∞). If f is differentiable at x = c, then f is
continuous at x = c. f(x) = 1

4x2+1 is differentiable for all x on the interval [1,∞).



8-68 Chapter 8 Infinite Series

Since f is continuous, positive, and decreasing on [1,∞) and since ak = f(k) for all positive
integers k, therefore if the improper integral

∫∞
1

f(x) dx converges then the sum of the series is
bounded by

∫ ∞

1

f(x) dx <
∞∑

k=1

ak < a1 +

∫ ∞

1

f(x) dx.

Here,

∫ ∞

1

1

4x2 + 1
dx = lim

b→∞

∫ b

1

1

4x2 + 1
dx = lim

b→∞

[
1

2
tan−1(2x)

]b

1

=
1

2
lim
b→∞

[
tan−1(2b)− tan−1 2

]
=

1

2

(π

2
− tan−1 2

)

=
π

4
− tan−1 2

4

Therefore,

∫ ∞

1

1

4x2 + 1
dx <

∞∑

k=1

1

4k2 + 1
<

1

5
+

∫ ∞

1

1

4x2 + 1
dx

π

4
− tan−1 2

2
<

∞∑

k=1

1

4k2 + 1
<

1

5
+

π

4
− tan−1 2

2

65. The series is
∞∑

k=2

ak =
∞∑

k=2

1
k(ln k)p . The function f(x) = 1

x(lnx)p is defined on [2,∞) and is

continuous, positive, and decreasing for all x ≥ 2. To check whether f(x) is decreasing,
consider g(x) = 1

f(x) = x(ln x)p. It suffices to show that g(x) is increasing and has a nonzero

derivative on [2,∞). We have

g′(x) = 1 · (lnx)p + x · p(lnx)p−1 · 1
x
= (lnx)p + p(lnx)p−1 > 0.

This final condition is satisfied for all p > 0 and for x in the interval [2,∞), so we conclude
that the function f(x) must be decreasing on [2,∞). Also we have ak = f(k) for all positive

integers k ≥ 2. To use the Integral Test evaluate I =
∫∞
2 f(x) dx = lim

b→∞

∫ b

2
dx

x(lnx)p . Let

u = lnx. Then du = dx
x . We have, for p 6= 1,

I = lim
b→∞

∫ ln b

ln 2

du

up
= lim

b→∞

∫ ln b

ln 2

u−p du = lim
b→∞

[
u−p+1

−p+ 1

]ln b

ln 2

=
1

1− p
lim
b→∞

(
1

(ln b)p−1
− 1

(ln 2)p−1

)

.

This improper integral converges if and only if p > 1, and diverges for p < 1, so the series
converges, by the Integral Test, for p > 1, and diverges for p < 1.
Next, consider the case p = 1. We have

I =

∫ ∞

2

f(x) dx lim
b→∞

∫ ln b

ln 2

du

u
= lim

b→∞
[lnu]

∣
∣
∣

ln b

ln 2
= lim

b→∞
[ln(ln b)− ln(ln 2)] = ∞.

Since the improper integral I diverges, by the Integral Test, the series diverges for p = 1.

In conclusion, using the integral test, we have shown that the series
∞∑

k=2

ak =
∞∑

k=2

1
k(ln k)p

converges if and only if p > 1.
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66. The series is
∞∑

k=3

ak =
∞∑

k=3

1
k(ln k)[ln(ln k)]p . The function f(x) = 1

x(lnx)[ln(ln x)]p is defined on

[3,∞) and is continuous, positive, and decreasing for all x ≥ 3. To check whether f(x) is
decreasing, consider g(x) = 1

f(x) = x(lnx)[ln(ln x)]p. It suffices to show that g(x) is increasing

and has a nonzero derivative on [3,∞). We have

g′(x) = lnx[ln(ln x)]p + x · 1
x
[ln(ln x)]p + x ln x · p[ln(lnx)]p−1 · 1

lnx
· 1
x

= lnx[ln(ln x)]p + [ln(lnx)]p + p[ln(lnx)]p−1

= [ln(lnx)]p−1[(ln x+ 1)(ln(lnx) + p)]

> 0.

This final condition is satisfied for all p > 0 and for x in the interval [3,∞), so we can conclude
that the function f(x) must be decreasing on [3,∞). Also we have ak = f(k) for all positive

integers k ≥ 3. Using the integral test, we find I =
∫∞
3 f(x) dx = lim

b→∞

∫ b

3
dx

x(lnx)[ln(ln x)]p . Let

u = ln(lnx). Then du = dx
x ln x . We have for p 6= 1,

I = lim
b→∞

∫ ln(ln b)

ln(ln 3)

du

up
= lim

b→∞

∫ ln(ln b)

ln(ln 3)

u−p du = lim
b→∞

[
u−p+1

−p+ 1

]ln(ln b)

ln(ln 3)

=
1

1− p
lim
b→∞

(
1

[ln(ln b)]p−1
− 1

ln[(ln 3)]p−1

)

.

This improper integral converges if and only if p > 1, and diverges if p < 1 so the series
converges, by the Integral Test, for p > 1 and diverges for p < 1.
Next, consider the case p = 1. We have

I = lim
b→∞

∫ ln(ln b)

ln(ln 3)

du

u
= lim

b→∞
[lnu]

∣
∣
∣

ln(ln b)

ln(ln 3)
= lim

b→∞
[ln(ln(ln b))− ln(ln(ln 3))] = ∞.

Since the improper integral I diverges, by the Integral Test, the series diverges for p = 1. In

conclusion, using the Integral Test, we have shown that the series
∞∑

k=3

ak =
∞∑

k=3

1
k(ln k)[ln(ln k)]p

converges if and only if p > 1.

67. S = 1 + 2 + 4 + 8 + · · · is a divergent geometric series, because the sequence of partial

sums Sn =
n∑

k=1

2k−1 diverges since |r| = 2 > 1. Multiplying the series S by a constant nonzero

multiple such as 2 again gives a divergent series. The equation 2S = −1 + S can be solved for
S by the usual operations of arithmetic only if S and 2S are finite, which they are not. (Note
that since both S and 2S are infinite, the equation 2S = −1 + S is satisfied identically, that is
in the sense of ∞ = ∞.) This is the reason for the paradox.

68. Let ak = 1 and bk = −1 for all k. Then
∞∑

k=1

ak and
∞∑

k=1

bk diverge, but
∞∑

k=1

(ak + bk)

converges. Let ak = bk = 1 for all k. Then
∞∑

k=1

ak and
∞∑

k=1

bk diverge, but
∞∑

k=1

(ak − bk)

converges.

For another example, let ak = 1
k and bk = 1

k+1 for all k. Then
∞∑

k=1

ak and
∞∑

k=1

bk being

harmonic series diverge, but
∞∑

k=1

(ak − bk) will be a telescoping series and converge. Let ak = 1
k

and bk = − 1
k+1 for all k. Then

∞∑

k=1

ak and
∞∑

k=1

bk being harmonic series diverge, but

∞∑

k=1

(ak + bk) will be a telescoping series and converge.
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69. Using a CAS, we find that π2 ≈ 6
∑100

1
1
k2 ≈ 6(1.63498) ≈ 9.8099.

70. (a) Since 1
p−1 <

∞∑

k=1

1
kp < 1 + 1

p−1 , an interval of width 1 for the case of p = 3 is

(
1

p−1 , 1 +
1

p−1

)

=
(

1
3−1 , 1 +

1
3−1

)

=

(
1

2
,
3

2

)

.

(b) Using a CAS,
100∑

k=1

1
k3 ≈ 1.2020.

71. The series
∞∑

k=1

ak =
∞∑

k=1

k6e−k. The function f(x) = x6e−x is defined on [1,∞) and is

continuous, positive, and decreasing for all x ≥ 6, since

f ′(x) = 6x5e−x − x6e−x = x5(6− x)e−x ≤ 0 for x ≥ 6.

Also, ak = f(k) for all positive integers k ≥ 6. Using the integral test, we find

I =

∫ ∞

6

f(x) dx =

∫ ∞

6

x6e−x dx =
176112

e
,

using a CAS. Since the improper integral I converges, by the integral test the series
∞∑

k=6

ak =
∞∑

k=6

k6e−k converges as well. The original series
∞∑

k=1

ak =
∞∑

k=1

k6e−k differs from the

convergent series
∞∑

k=6

ak =
∞∑

k=6

k6e−k by the five terms:
5∑

k=1

ak =
5∑

k=1

k6e−k ≈ 225.625 using a

CAS, so since the two series differ by a finite value, it means that the original series
converges as well.

72. The series
∞∑

k=1

ak =
∞∑

k=1

k+3
k2+6k+7 . The function f(x) = x+3

x2+6x+7 is defined on [1,∞) and is

continuous, positive, and decreasing for all x ≥ 1, since

f ′(x) =
(x2 + 6x+ 7) · 1− (x+ 3) · (2x+ 6)

(x2 + 6x+ 7)2
= − x2 + 6x+ 11

(x2 + 6x+ 7)2
< 0 for x ≥ 1.

Also, ak = f(k) for all positive integers k ≥ 1. Using the integral test, we find

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

x+ 3

x2 + 6x+ 7
dx =

1

2
lim
b→∞

(
ln(b2 + 6b+ 7)− ln 14

)
= ∞,

using a CAS. Since the improper integral I diverges, by the integral test the series diverges

as well.

73. The series
∞∑

k=2

ak =
∞∑

k=2

5k+6
k3−1 . The function f(x) = 5x+6

x3−1 is defined on [2,∞) and is

continuous, positive, and decreasing for all x ≥ 2, since

f ′(x) =
(x3 − 1) · 5− (5x+ 6) · (3x2)

(x3 − 1)2
= −10x3 + 18x2 + 5

(x3 − 1)2
< 0 for x ≥ 2.

Also, ak = f(k) for all positive integers k ≥ 2. Using the integral test, we find using a CAS,

I =

∫ ∞

2

f(x) dx =

∫ ∞

2

5x+ 6

x3 − 1
dx =

1

6

(

−
√
3π + 11 ln 7 + 2

√
3 tan−1

(
5√
3

))

≈ 3.375.

Since the improper integral I converges, by the integral test the series converges as well.
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74. (a) For the series
∞∑

k=1

1
k0.99 : S10 ≈ 2.9561 S1000 ≈ 7.7290 S100,000 ≈ 12.7783 .

For the series
∞∑

k=1

1
k1.01 : S10 ≈ 2.9023 S1000 ≈ 7.2530 S100,000 ≈ 11.4529 .

(b) The partial sums of the convergent series
∞∑

k=1

1
k1.01 grow slower compared to the partial

sums of the divergent series
∞∑

k=1

1
k0.99 , as one might have expected.

75. Since
∞∑

k=1

ak is convergent, let the sequence of partial sums {Sn} for
∞∑

k=1

ak converge to L,

that is, lim
n→∞

Sn = lim
n→∞

n∑

k=1

ak = L. Similarly, since
∞∑

k=1

bk is convergent, let the sequence of

partial sums {S′
n} for

∞∑

k=1

bk converge to M , which means lim
n→∞

S′
n = lim

n→∞

n∑

k=1

bk = M . The

sequence of partial sums of
∞∑

k=1

(ak + bk) is {Sn + S′
n}, and we have

lim
n→∞

(Sn + S′
n) = lim

n→∞
Sn + lim

n→∞
S′
n = lim

n→∞

n∑

k=1

ak + lim
n→∞

n∑

k=1

bk = L+M,

using the additive property of limits, showing that the series
∞∑

k=1

(ak + bk) converges.

76. Let S =
∞∑

k=1

ak be a convergent series which converges to S; this means that the sequence

{Sn} of partial sums Sn =
n∑

k=1

ak converges to S, or lim
n→∞

Sn = lim
n→∞

n∑

k=1

ak = S. Consider the

series
∞∑

k=1

cak. The sequence of partial sums {S′
n} of this series is S′

n =
n∑

k=1

cak. We have

lim
n→∞

S′
n = lim

n→∞

n∑

k=1

cak = c lim
n→∞

n∑

k=1

ak = cS,

using the scalar multiple property of limits. Since the sequence of partial sums {S′
n} converges

to cS, this means that the sum of the series
∞∑

k=1

cak = cS.

77. We have
∞∑

k=1

ak =
N∑

k=1

ak +
∞∑

k=N+1

ak = K + S = S +K. This proves that
∞∑

k=1

ak converges

with sum S +K.

78. Let the series
∞∑

k=1

ak converge to a sum L. This means the limit of the sequence of partial

sums {Sn} is L, that is lim
n→∞

Sn = lim
n→∞

n∑

k=1

ak = L. If the series
∞∑

k=1

bk diverges, then the limit

of the sequence of partial sums {S′
n} is either nonexistent or is infinite, in other words,

lim
n→∞

S′
n = lim

n→∞

n∑

k=1

bk does not exist or is infinite. The sequence of partial sums {S′′
n} of the

series
∞∑

k=1

(ak + bk) is given by

S′′
n =

n∑

k=1

(ak + bk) =

n∑

k=1

ak +

n∑

k=1

bk = Sn + S′
n.
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Taking the limits on both sides, we have

lim
n→∞

S′′
n = lim

n→∞
Sn + lim

n→∞
S′
n = L+ lim

n→∞
S′
n,

which does not exist or is infinite because lim
n→∞

S′
n does not exist or is infinite. This shows that

the sequence of partial sums {S′′
n} of the series

∞∑

k=1

(ak + bk) diverges, so the series itself

diverges.

79. Since the series
∞∑

k=1

ak with ak > 0 for all k converges, the limit of the sequence {Sn} of

partial sums with nth term given by Sn =
n∑

k=1

ak is finite, say L. That is, L = lim
n→∞

n∑

k=1

ak. The

nth term of the sequence {S′
n} of partial sums for the series

∞∑

k=1

ak

1+ak
is given by

S′
n =

n∑

k=1

ak

ak+1 . Since the terms ak > 0 for all k, we have

0 < S′
n =

n∑

k=1

ak
ak + 1

<

n∑

k=1

ak < L,

which means that the partial sum is bounded from below by 0 and above by L. Also, the terms
of the sequence of partial sums is an increasing sequence which can be seen using the Algebraic
Difference Test:

S′
n+1 − S′

n =

n+1∑

k=1

ak
ak + 1

−
n∑

k=1

ak
ak + 1

=
an+1

an+1 + 1
> 0,

since an+1 > 0 for all n. Since the sequence {S′
n} of partial sums is bounded from above and

increasing, it converges.

Challenge Problems

80. The series is
∞∑

k=1

ak =
∞∑

k=1

1

k ln(1+ 1
k )

. We have

lim
n→∞

an = lim
n→∞

1

n ln
(
1 + 1

n

) = lim
n→∞

1
n

ln
(
1 + 1

n

)

= lim
x→∞

1
x

ln
(
1 + 1

x

) = lim
x→∞

− 1
x2

1
1+ 1

x

· − 1
x2

= lim
x→∞

(

1 +
1

x

)

= 1 6= 0,

using L’Hôpital’s rule on a related function of the sequence {ak}. So the series diverges.

81. The series is
∞∑

k=2

ak =
∞∑

k=2

1
(ln k)p . The function f(x) = 1

(ln x)p is defined on [2,∞) and is

continuous, positive, and decreasing for all x ≥ 2. Also, ak = f(k) for all positive integers k.

Using the integral test, we find I =
∫∞
2 f(x) dx = lim

b→∞

∫ b

2
dx

(ln x)p . Let u = 1
(lnx)p , dv = dx.

Then, du = −p(lnx)−p−1 · 1
x dx, and v = x. Integrating by parts, we have

I = lim
b→∞

([
x

(ln x)p

]b

2

+

∫ b

2

dx

(ln x)p+1

)

.
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The first term yields

lim
b→∞

b

(ln b)p
− 2

(ln 2)p
= lim

b→∞

1

p(ln b)p−1 · 1
b

− 2

(ln 2)p
= lim

b→∞

b

p(ln b)p−1
− 2

(ln 2)p

= · · · = lim
b→∞

b

p! ln b
− 2

(ln 2)p
=

1

p!
lim
b→∞

1
1
b

− 2

(ln 2)p
= ∞,

via a repeated application of L’Hôpital’s rule to the first term. This means that the improper

integral I diverges, so by the integral test the series diverges as well.

82. The series is
∞∑

k=2

ak =
∞∑

k=2

(lnk)q

xp . We assume in what follows that p > 0 and q > 0 are

integers. The function f(x) = (ln x)q

xp is defined on [2,∞) and is continuous, positive, and
decreasing for all x ≥ 2. Also, ak = f(k) for all positive integers k. To use the integral test, we
evaluate

I(p, q) =

∫ ∞

2

f(x) dx = lim
b→∞

∫ b

2

x−p(ln x)q dx.

Let u = (lnx)q, dv = x−p dx. Then du = (ln x)q−1

x dx, v = x−p+1

−p+1 , assuming p 6= 1 (we will

consider the case p = 1 separately below). Integrating by parts, we have

I(p, q) = lim
b→∞

[

(lnx)q · x−p+1

−p+ 1

∣
∣
∣

b

2
−
∫ b

2

x−p+1

−p+ 1
· (lnx)

q−1

x
dx

]

=
1

1− p
lim
b→∞

[

(ln x)qx−p+1
∣
∣
∣

b

2
−
∫ b

2

(ln x)q−1

xp
dx

]

=
1

1− p
lim
b→∞

[
(ln b)q

bp−1
− (ln 2)q

2p−1
− I(p, q − 1)

]

The first term limit is of an indeterminate form, and can be found by repeated application of
L’Hôpital’s rule,

lim
b→∞

(ln b)q

bp−1
= lim

b→∞

q(ln b)q−1 · 1
b

(p− 1)bp−2
= lim

b→∞

q(ln b)q−1

(p− 1)bp−1
= · · · = lim

b→∞

q!

(p− 1)!bp−1
.

This limit exists if p > 1. The other term obtained while integrating I(p, q) by parts, namely
I(p, q − 1) can again be integrated by parts, and will produce similar limits that are defined
only if p > 1—to see this, just replace q by q − k everywhere in the above calculation, to see
that

I(p, q − k) =
1

1− p
lim
b→∞

[
(ln b)q−k

bp−1
− (ln 2)q−k

2p−1
− I(p, q − k − 1)

]

,

where k = 0, 1, 2, · · · q − 1. In the final step, for k = q, we would obtain

I(p, 0) =

∫ b

2

dx

xp
=

1

1− p

1

bp−1
,

and once again, this term has convergent limit as b → ∞ only if p > 1. We have shown that the
series converges for any q > 0 if p > 1.
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If p = 1, then we have dv = dx
x so v = lnx. Proceeding with the integration of parts as before,

we have

I(p = 1, q) = lim
b→∞

[

(ln x)q · (lnx)1
∣
∣
∣

b

2
−
∫ b

2

(lnx)1 · (ln x)
q−1

x
dx

]

I(1, q) = lim
b→∞

[

(lnx)q+1
∣
∣
∣

b

2

]

− lim
b→∞

∫ b

2

(ln x)q

x
dx

= lim
b→∞

[
(ln b)q+1 − (ln 2)q+1

]
− I(1, q)

or, 2I(1, q) = lim
b→∞

[
(ln b)q+1 − (ln 2)q+1

]

I(1, q) =
1

2
lim
b→∞

[
(ln b)q+1 − (ln 2)q+1

]
,

which exists only if q + 1 ≤ 0, or q ≤ −1. Since we assumed that q > 0, we conclude that the
series does not converge for p = 1. So we have shown using the Integral Test that the original

series converges for the integers p > 1 for any q > 0.

83. The series
∞∑

k=1

ak =
∞∑

k=1

kx. The function f(y) = yx is defined on [1,∞) and is continuous,

positive, and decreasing for all y ≥ 1, provided x < 0, since f ′(x) = xyx−1 < 0 if x < 0 for
y ≥ 1. Also, ak = f(k) for all positive integers k ≥ 1. Using the Integral Test, we find

I =

∫ ∞

1

f(y) dy = lim
b→∞

∫ b

1

yx dy = lim
b→∞

yx+1

x+ 1

∣
∣
∣

b

1
= lim

b→∞

1

(x+ 1)b−1−x
− 1

(x+ 1)
= − 1

x+ 1

that is, the limit exists and is finite only if −1− x > 0, or x < −1. So for x ≤ 0 the range of x

values that lead to a convergent series is (−∞,−1). For x > 0, the function f(y) = yx is an

increasing function of x, and the Integral Test is not applicable. But for this case, we have
lim
n→∞

an = lim
n→∞

nx = ∞ 6= 0, so the series diverges by the Divergence Test.

84. (a) Consider the finite sum Sn =
n∑

k=1

1
1+k2 . The function f(x) = 1

1+x2 is defined on [0,∞)

and is continuous, positive, and decreasing for all x ≥ 0. Also, ak = f(k) for all positive

integers k. So we have
∫ n

1
1

1+x2 dx ≤
n∑

k=1

1
1+k2 ≤

∫ n

0
dx

1+x2 or tan−1 n− π
4 ≤ Sn ≤ tan−1 n. So,

Sn ≤ tan−1 n. See figure below for the case n = 6:

1

0.5

0 1 2 3 4 5 6

f(x)

y

x
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(b) Since Sn < tan−1 n < π
2 , the sequence of partial sums {Sn} is bounded from above. The

terms of the sum Sn are positive, so the sequence {Sn} is also increasing, as seen by the
Algebraic Difference Test:

Sn+1 − Sn =
n+1∑

k=1

1

1 + k2
−

n∑

k=1

1

1 + k2
=

1

1 + (n+ 1)2
> 0.

Since the sequence of partial sums {Sn} is bounded from above and is increasing, it converges

to a finite limit, which means that the series
∞∑

k=1

1
1+k2 also converges.

(c) From part (a), we have since tan−1 n− π
4 ≤ Sn ≤ tan−1 n. Taking limits on every term of

the inequality, we get lim
n→∞

(
tan−1 n− π

4

)
≤ lim

n→∞

(
n∑

k=1

1
1+k2

)

≤ lim
n→∞

(
tan−1 n

)
. So,

π
2 − π

4 ≤
∞∑

k=1

1
1+k2 ≤ π

2 , or
π
4 ≤

∞∑

k=1

1
1+k2 ≤ π

2 , as was required to be proved.

85. (a)
10∑

k=1

1
k3 ≈ 1.1975.

(b) We have since 1
p−1 <

∞∑

k=1

1
kp < 1 + 1

p−1 , for the case of p = 3, 1
3−1 <

∞∑

k=1

1
k3 < 1 + 1

3−1 , or

1

2
<

∞∑

k=1

1

k3
<

3

2
.

(c) We conclude that ζ(3) converges to a value between 1
2 and 3

2 .

86. (a) For the rectangles under the curve y = f(x), as shown in the left figure of the problem,
the height of the tallest rectangle of unit width is f(n+ 1), while the height of the smallest
rectangle of unit width is f(m). The area under the curve is larger than the areas of the
rectangles of unit width under the curve, so we have f(n+ 1) + · · ·+ f(m) ≤

∫m

n
f(x) dx.

For the rectangles over the curve y = f(x), as shown in the right figure of the problem, the
height of the tallest rectangle of unit width is f(n) while the height of the smallest rectangle of
unit width is f(m− 1). The area under the curve is now smaller than the areas of all the
rectangles of unit width over the curve, so we have

∫m

n
f(x) dx ≤ f(n) + · · ·+ f(m− 1).

Putting these two geometric results together gives us the desired inequalities,

f(n+ 1) + · · ·+ f(m) ≤
∫ m

n

f(x) dx ≤ f(n) + · · ·+ f(m− 1).

(b) We have, since
∞∑

k=1

f(k) converges, then
∞∑

k=n+1

f(k) and
∞∑

k=n

f(k) also converge, since either

of these series differs from the convergent series
∞∑

k=1

f(k) only by a finite sum of positive terms.

Since from part (a), we had f(n+ 1) + · · ·+ f(m) ≤
∫m

n
f(x) dx ≤ f(n) + · · ·+ f(m− 1),

taking the limits on every term of the inequality as m → ∞ gives us

lim
m→∞

m∑

k=n+1

f(k) ≤ lim
m→∞

∫ m

n

f(x) dx ≤ lim
m→∞

m∑

k=n

f(k)

or
∞∑

k=n+1

f(k) ≤
∫∞
n

f(x) dx ≤
∞∑

k=n+1

f(k), as needed to be shown, since the improper integral

exists by the Squeeze Theorem.
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(c) From the left hand inequality of part (b), we have
∞∑

k=n+1

1
k2 ≤

∫∞
n

1
x2 dx, or

∞∑

k=1

1

k2
−

n∑

k=1

1

k2
≤
[

− 1

x

]∞

n

.

Now, we use ζ(2) =
∞∑

k=1

1
k2 = π2

6 (see Problem 75). The Error, which refers to the difference

between the full value of the convergent series and its nth partial sum, is given by

Error =

∣
∣
∣
∣
∣

π2

6
−

n∑

k=1

1

k2

∣
∣
∣
∣
∣
≤ 1

n
.

So for an error 1
n <

(
1
2

)
10−2, we have n > 200. For an error 1

n <
(
1
2

)
10−10, we have

n > 2× 1010.

AP
R©

Practice Problems

1. The series
∞∑

k=1

1
kp/3 is a p-series which converges for p

3 > 1, p > 3 .

CHOICE C

2. Determine which of the following series diverge by examining each one:

I.
∞∑

k=1

ek−1

3k−1
=

∞∑

k=1

(
ek
)
e−1

(3k)3−1
=

∞∑

k=1

(
ek
)
3

(3k)e
=

3

e

∞∑

k=1

(e

3

)k

This is a convergent geometric series since R = e
3 < 1.

II.
∞∑

k=1

cos

(

π +
1

k

)

=

∞∑

k=1

(

cosπ cos
1

k
− sinπ sin

1

k

)

=

∞∑

k=1

(

−1 · cos 1
k
− 0 · sin 1

k

)

=

∞∑

k=1

(

− cos
1

k

)

= −
∞∑

k=1

cos
1

k

By the nth term test, lim
k→∞

(
cos 1

k

)
= 1 6= 0.

Therefore, by the nth term test,
∞∑

k=1

cos
(
π + 1

k

)
diverges .

III.
∞∑

k=1

(
10

k

)

= 10

∞∑

k=1

1

k
is the divergent harmonic series.

This is also a divergent p-series since p = 1.

A p-series only converges for p > 1.

II and III are the only series that diverge.

CHOICE C



8.3 Properties of Series; Series with Positive Terms; the Integral Test 8-77

3.
∞∑

k=1

kp =
∞∑

k=1

1
k−p is a convergent p-series if −p > 1, p < −1

CHOICE B

4.
∞∑

k=1

5k−1 − 3k−1

8k−1
=

∞∑

k=1

(
5k−1

8k−1
− 3k−1

8k−1

)

=

∞∑

k=1

(
5

8

)k−1

−
∞∑

k=1

(
3

8

)k−1

=
∞∑

k=1

(
5

8

)k(
5

8

)−1

−
∞∑

k=1

(
3

8

)k(
3

8

)−1

=

∞∑

k=1

(
5

8

)k(
8

5

)

−
∞∑

k=1

(
3

8

)k(
8

3

)

=
8

5

∞∑

k=1

(
5

8

)k

− 8

3

∞∑

k=1

(
3

8

)k

Each of the individual Series is a convergent Geometric Series for which lim
n→∞

tn = t1
1−r , so

the sum

=
8

5

( 5
8

1− 5
8

)

− 8

3

( 3
8

1− 3
8

)

=
8

5

(
5

3

)

− 8

3

(
3

5

)

=
8

3
− 8

5

= 16
15

CHOICE B

5.
∞∑

k=1

2
k3/2 is a convergent p-series since p = 3

2 > 1.

For a convergent p-series, the bounds are: 1
p−1 <

∞∑

k=1

1
kp < 1 + 1

p−1

Here,

1
3
2 − 1

<
∞∑

k=1

1

k3/2
< 1 +

1
3
2 − 1

2 <

∞∑

k=1

1

k3/2
< 3

4 <
∞∑

k=1

2
k3/2 < 6

6. (a) A related function is f(x) = ln x
x .

(b) f(x) = ln x
x is positive for all x > 0 since lnx > 0 and x > 0.
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To determine if f(x) is continuous and decreasing on [3,∞) calculate f ′(x) as
follows:

f(x) =
lnx

x

f ′(x) =
1
x(x)− 1 · lnx

x2
=

1− lnx

x2

f ′(x) < 0 for x > e so f(x) is decreasing for all x > e and therefore for all x on the
interval [3,∞).

f(x) is continuous where f ′(x) is differentiable. Here, f ′(x) is differentiable for all
x > 0 and therefore on the interval [3,∞).

(c) Since the related function, f(x), is positive, continuous and differentiable on [3,∞)

the integral test is applicable to determine whether
∞∑

k=3

ln k
k converges or diverges.

Investigate the improper Integral,
∫∞
3

ln x
x dx:

∫ ∞

3

lnx

x
dx = lim

b→∞

(
∫ b

3

lnx

x
dx

)

Let u = lnx du = dx
x

lim
b→∞

(
∫ b

3

lnx

x
dx

)

= lim
ln b→∞

(
∫ ln b

ln 3

u du

)

= lim
ln b→∞

[
u2

2

]ln b

ln 3

= lim
ln b→∞

[

(ln b)
2

2
− (ln 3)

2

2

]

= ∞

Since the improper Integral diverges, by the Integral Test the series
∞∑

k=3

ln k
k also

diverges .

7. (a) For
∞∑

k=1

1
1+9k2 , a related function to 1

1+9k2 is f(x) = 1
1+9x2 .

To determine if
∞∑

k=1

1
1+9k2 converges apply the Integral Test as follows:

f(x) must be positive, continuous, and decreasing for x ≥ 1.

Observe that f(x) = 1
1+9x2 > 0 for all x including x ≥ 1.

To determine if f(x) is continuous and decreasing, calculate f ′(x).

f ′(x) = −1(1 + 9x2)−2(18x) =
−18x

(1 + 9x2)2

f(x) is differentiable for x > 1 since f ′(x) is defined for x > 1, so f(x) is continuous
for x > 1.
f ′(x) is negative for x > 1, so f(x) is decreasing for x > 1.
With these preconditions met, the Integral Test is applicable to determine if
∞∑

k=1

1
1+9k2 converges.

∫ ∞

1

1

1 + 9x2
dx = lim

b→∞

(
∫ b

1

1

1 + 9x2
dx

)

= lim
b→∞

[
1

3
tan−1(3x)

]b

1

=
1

3
lim
b→∞

[
tan−1(3b)− tan−1(3)

]
=

1

3

[π

2
− tan−1 3

]

Since the Improper Integral converges the series
∞∑

k=1

1
1+9k2 also converges .
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(b) In general, if f is a continuous, positive, decreasing function on the interval [1,∞)
and ak = f(k) for all positive integers k and the improper integral

∫∞
1

f(x) dx
converges, then the sum of the series is bounded by

∫ ∞

1

f(x) dx <
∞∑

k=1

ak < a1 +

∫ ∞

1

f(x) dx

Here,
π

6
− 1

3
tan−1 3 <

∞∑

k=1

1

1 + 9k2
<

1

10
+

π

6
− 1

3
tan−1 3

8.4 Comparison Tests

Concepts and Vocabulary

1. (b) The series
∞∑

k=1

ak is divergent by the Comparison Test.

2. False: We require lim
n→∞

an

bn
= L 6= 0 in order to be able to conclude that

∞∑

k=1

ak and
∞∑

k=1

bk

are both convergent or both divergent.

3. False: If lim
n→∞

an

bn
= L > 0, then all that can be concluded is either

∞∑

k=1

ak and
∞∑

k=1

bk both

converge or they both diverge.

4. False: The limit comparison test merely decides if the unknown series converges or diverges
by comparing it with a known convergent or divergent series. It does not tell us what the sum
of the series is.

Skill Building

5. Comparing the nth term of
∞∑

k=1

1
k(k+1) with the nth term of

∞∑

k=1

1
k2 we have

1

n(n+ 1)
=

1

n2 + n
<

1

n2

whenever n ≥ 1. Since the p-series
∞∑

k=1

1
kp =

∞∑

k=1

1
k2 converges for p = 2 > 1, by the Comparison

Test,
∞∑

k=1

1
k(k+1) also converges.

6. Comparing the nth term of
∞∑

k=1

1
(k+1)2 with the nth term of

∞∑

k=1

1
k2 we have

1

(n+ 1)2
=

1

n2 + 2n+ 1
<

1

n2
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for n ≥ 1. By the Comparison Test, since the p-series
∞∑

k=1

1
kp =

∞∑

k=1

1
k2 converges for p = 2 > 1,

the series
∞∑

k=1

1
(k+1)2 also converges.

7. Comparing the nth term of
∞∑

k=2

4k

7k+1
with the nth term of

∞∑

k=2

(
4
7

)k
, we have

4n

7n + 1
<

4n

7n

for n ≥ 1. Since the geometric series
∞∑

k=2

(
4
7

)k
converges since |r| = 4

7 < 1, by the Comparison

Test, the series
∞∑

k=2

4k

7k+1
also converges.

8. Comparing the nth term of
∞∑

k=1

1
(2k−1)(2k) with the nth term of

∞∑

k=1

1
2k we wish to have

1

(2n− 1)(2n)
<

1

(2n)

or,
1

2n− 1
< 1

or, 2n− 1 > 1,

or n > 1. So for n > 1, by the Comparison test, since
∞∑

k=1

1
2k is a convergent geometric series,

since |r| = 1
2 < 1, the series

∞∑

k=1

1
(2k−1)(2k) also converges.

9. Comparing the nth term of
∞∑

k=2

1√
k(k−1)

with the nth term of
∞∑

k=2

1
k we have

1
√

n(n− 1)
=

1

n
√

1− 1
n

>
1

n

for n > 1. Since
∞∑

k=2

1
k is the divergent harmonic series, by the Comparison Test, the series

∞∑

k=2

1√
k(k−1)

also diverges.

10. Comparing the nth term of
∞∑

k=2

√
k

k−1 with the nth term of
∞∑

k=2

1√
k
, we wish to have

√
n

n− 1
>

1√
n

or, cross-multiplying, n > n− 1,

which is true for all n ≥ 1. Since the p-series
∞∑

k=2

1
kp =

∞∑

k=2

1
k1/2 diverges since 0 < p < 1, by the

Comparison Test, the series
∞∑

k=2

√
k

k−1 also diverges.
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11. Comparing the nth term of
∞∑

k=1

1
k(k+1)(k+2) with the nth term of the convergent p-series

∞∑

k=1

1
kp =

∞∑

k=1

1
k3 (convergent since p = 3 > 1) we have

1

n(n+ 1)(n+ 2)
=

1

n3 + 3n2 + 2n
<

1

n3

for n ≥ 1. By the Comparison Test, the series
∞∑

k=1

1
k(k+1)(k+2) also converges.

12. We compare the nth term of
∞∑

k=1

6
5k−2 with the nth term of the divergent harmonic series

∞∑

k=1

1
k . Since

6

5n− 2
>

1

n
or 6n > 5n− 2,

for n > −2, by the Comparison Test, the series
∞∑

k=1

6
5k−2 also diverges.

13. We compare
∞∑

k=1

sin2 k
kπ with the convergent p-series

∞∑

k=1

1
kπ , which converges since

p = π > 1. We have
sin2 n

nπ
≤ 1

nπ

since sin2 n ≤ 1 for all n ≥ 1, so by the Comparison Test, the series
∞∑

k=1

sin2 k
kπ also converges.

14. We compare
∞∑

k=1

cos2 k
k2+1 with the convergent p-series

∞∑

k=1

1
k2 , which converges since p = 2 > 1.

We have
cos2 n

n2 + 1
≤ 1

n2 + 1
<

1

n2

since cos2 n ≤ 1 for all n ≥ 1, so by the Comparison Test, the series
∞∑

k=1

cos2 k
k2+1 also converges.

15. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

1
(k+1)(k+2) behaves like

an =
1

(n+ 1)(n+ 2)
=

1

n2
(
1 + 1

n

) (
1 + 2

n

) ≈ 1

n2

for large n. So we compare with the series
∞∑

k=1

bk =
∞∑

k=1

1
k2 , which is a convergent p-series since

p = 2 > 1. We have

lim
n→∞

an
bn

= lim
n→∞

1
(n+1)(n+2)

1
n2

= lim
n→∞

n2

(n+ 1)(n+ 2)
= lim

n→∞
n2

n2 + 3n+ 2
= lim

n→∞
1

1 + 3
n + 2

n2

= 1.

Since the limit is a positive number, and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

1
(k+1)(k+2) also converges.
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16. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

1
k2+1 behaves like

an =
1

n2 + 1
=

1

n2
(
1 + 1

n2

) ≈ 1

n2

for large n. So we compare with the convergent p-series
∞∑

k=1

bk =
∞∑

k=1

1
k2 , which converges since

p = 2 > 1. We have

lim
n→∞

an
bn

= lim
n→∞

1
n2+1

1
n2

= lim
n→∞

n2

n2 + 1
= lim

n→∞
1

1 + 1
n2

= 1.

Since the limit is a positive number, and the series
∞∑

k=1

bk converges, then by the Limit

Comparison Test, the series
∞∑

k=1

ak =
∞∑

k=1

1
k2+1 also converges.

17. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

1√
k2+1

behaves like

an =
1√

n2 + 1
=

1

n
√

1 + 1
n2

≈ 1

n

for large n. So we compare with the divergent harmonic series
∞∑

k=1

bk =
∞∑

k=1

1
k . We have

lim
n→∞

an
bn

= lim
n→∞

1√
n2+1
1
n

= lim
n→∞

n√
n2 + 1

= lim
n→∞

1
√

1 + 1
n2

= 1.

Since the limit is a positive number, and the series
∞∑

k=1

bk diverges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

1√
k2+1

also diverges.

18. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

√
k

k+4 behaves like

an =

√
n

n+ 4
=

√
n

n
(
1 + 4

n

) =
1√

n
(
1 + 4

n

) ≈ 1√
n

for large n. So we compare with the p-series
∞∑

k=1

bk =
∞∑

k=1

1
k1/2 which is divergent since

0 < p < 1. We have

lim
n→∞

an
bn

= lim
n→∞

√
n

n+4
1√
n

= lim
n→∞

n

n+ 4
= lim

n→∞
1

1 + 4
n

= 1.

Since the limit is a positive number and the series
∞∑

k=1

bk diverges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

√
k

k+4 also diverges.
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19. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

3
√
k+2

2k2+5 behaves like

an =
3
√
n+ 2

2n2 + 5
=

√
n
(

3 + 2√
n

)

n2
(
2 + 5

n2

) ≈ 1

n3/2

for large n. So we compare with the p-series
∞∑

k=1

bk =
∞∑

k=1

1
k3/2 which is convergent since

p = 3
2 > 1. We have

lim
n→∞

an
bn

= lim
n→∞

3
√
n+2

2n2+5
1

n3/2

= lim
n→∞

n
√
n(3

√
n+ 2)

2n2 + 5
= lim

n→∞
3n2 + 2n

√
n

2n2 + 5
= lim

n→∞

3 + 2√
n

2 + 5
n2

=
3

2
.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

3
√
k+2

2k2+5 also converges.

20. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

3
√
k+2

2k−3 behaves like

an =
3
√
n+ 2

2n− 3
=

√
n
(

3 + 2√
n

)

n
(
2− 3

n

) ≈ 1√
n

for large n. So we compare with the p-series
∞∑

k=1

bk =
∞∑

k=1

1√
k
, which is divergent since

0 < p = 1
2 < 1. We have

lim
n→∞

an
bn

= lim
n→∞

3
√
n+2

2n−3
1√
n

= lim
n→∞

3n+ 2
√
n

2n− 3
= lim

n→∞

3 + 2√
n

2− 3
n

=
3

2
.

Since the limit is a positive number and the series
∞∑

k=1

bk diverges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

3
√
k+2

2k−3 also diverges.

21. The nth term of the series
∞∑

k=2

ak =
∞∑

k=2

1
k
√
k2−1

behaves like

an =
1

n
√
n2 − 1

=
1

n2
√

1− 1
n2

≈ 1

n2

for large n. So we compare with the p-series
∞∑

k=2

bk =
∞∑

k=2

1
k2 , which converges since p = 2 > 1.

We have

lim
n→∞

an
bn

= lim
n→∞

1
n
√
n2−1
1
n2

= lim
n→∞

n√
n2 − 1

= lim
n→∞

1
√

1− 1
n2

= 1.

Since the limit is a positive number and the series
∞∑

k=2

bk converges, by the Limit Comparison

Test, the series
∞∑

k=2

ak =
∞∑

k=2

1
k
√
k2−1

also converges.
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22. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

k
(2k−1)2 behaves like

an =
n

(2n− 1)2
=

n

n2
(
2− 1

n

)2 ≈ 1

n

for large n. So we compare with the divergent harmonic series
∞∑

k=1

bk =
∞∑

k=1

1
k . We have

lim
n→∞

an
bn

= lim
n→∞

n
(2n−1)2

1
n

= lim
n→∞

n2

(2n− 1)2
= lim

n→∞
1

(
2− 1

n

)2 =
1

4
.

Since the limit is a positive number and the series
∞∑

k=1

bk diverges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

k
(2k−1)2 also diverges.

23. Use the Limit Comparison Test and compare the series
∞∑

k=1

3k

2k+5
to the Geometric Series

∞∑

k=1

(
3
2

)k
. Then with an = 3n

2n+5 and bn =
(
3
2

)n
we have

lim
n→∞

an
bn

= lim
n→∞

3n

2n+5
(
3
2

)n = lim
n→∞

[
3n

2n + 5

(
2

3

)n]

= lim
n→∞

2n

2n + 5
= lim

n→∞
1

1 + 5
2n

= 1.

Since the limit is a positive number and
∞∑

k=1

(
3
2

)k
diverges, by the Limit Comparison Test,

∞∑

k=1

3k

2k+5 also diverges .

24. Use the Limit Comparison Test and compare the series
∞∑

k=1

8k

5+3k
to the Geometric Series

∞∑

k=1

(
8
3

)k
. Then with an = 8n

5+3n and bn =
(
8
3

)n
we have

lim
n→∞

an
bn

= lim
n→∞

8n

5+3n
(
8
3

)n lim
n→∞

[
8n

5 + 3n

(
3

8

)n]

= lim
n→∞

3n

5 + 3n
= lim

n→∞
1

1 + 5
3n

= 1.

Since the limit is a positive number and
∞∑

k=1

(
8
3

)k
diverges, by the Limit Comparison Test,

∞∑

k=1

8k

5+3k
also diverges .

25. Use the Limit Comparison Test and compare the series
∞∑

k=1

3k+4
5k+3 to the Geometric Series

∞∑

k=1

(
3
5

)k
. Then with an = 3n+4

5n+3 and bn =
(
3
5

)n
we have

lim
n→∞

an
bn

= lim
n→∞

3n+4
5n+3
(
3
5

)n lim
n→∞

[(
3n + 4

5n + 3

)(
5

3

)n]

= lim
n→∞

15n + 4 · 5n
15n + 3 · 3n = lim

n→∞

1 + 4
(
1
3

)n

1 + 3
(
1
5

)n = 1.
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Since the limit is a positive number and
∞∑

k=1

(
3
5

)k
converges, by the Limit Comparison Test

∞∑

k=1

3k+4
5k+3

also converges .

26. Use the Limit Comparison Test and compare the series
∞∑

k=1

2k+1
7k+4

to the Geometric Series

∞∑

k=1

(
2
7

)k
. Then with an = 2n+1

7n+4 and bn =
(
2
7

)n
we have

lim
n→∞

an
bn

= lim
n→∞

2n+1
7n+4
(
2
7

)n lim
n→∞

[(
2n + 1

7n + 4

)(
7

2

)n]

= lim
n→∞

14n + 1 · 7n
14n + 4 · 2n = lim

n→∞

1 +
(
1
2

)n

1 + 4
(
1
7

)n = 1.

Since the limit is a positive number and
∞∑

k=1

(
2
7

)k
converges, by the Limit Comparison Test

∞∑

k=1

2k+1
7k+4

also converges .

27. Use the Limit Comparison Test and compare the series
∞∑

k=1

2·3k+5
4·8k to the Geometric Series

∞∑

k=1

(
3
8

)k
. Then with an = 2·3n+5

4·8n and bn =
(
3
8

)n
we have

lim
n→∞

an
bn

= lim
n→∞

2·3n+5
4·8n
(
3
8

)n = lim
n→∞

[
2 · 3n + 5

4 · 8n
(
8

3

)n]

= lim
n→∞

2 · 24n + 5 · 8n
4 · 24n = lim

n→∞

2 + 5
(
1
3

)n

4
=

1

2
.

Since the limit is a positive number and
∞∑

k=1

(
3
8

)k
converges, by the Limit Comparison Test

∞∑

k=1

2·3k+5
4·8k also converges .

28. The Limit Comparison Test is not necessary for this series:
∞∑

k=1

−4·5k
2·6k = − 4

2

∞∑

k=1

5k

6k
=

−2
∞∑

k=1

(
5
6

)k
, and

∞∑

k=1

(
5
6

)k
converges. Therefore

∞∑

k=1

−4·5k
2·6k converges .

The Limit Comparison Test does also give the same result, of course:

Compare the series
∞∑

k=1

−4·5k
2·6k to the Geometric Series

∞∑

k=1

−
(
5
6

)k
.

Then with an = −4·5n
2·6n and bn = −

(
5
6

)n
we have

lim
n→∞

an
bn

= lim
n→∞

−4·5n
2·6n

−
(
5
6

)n = lim
n→∞

[
4 · 5n
2 · 6n ·

(
6

5

)n]

= 2.

Since the limit is a positive number and
∞∑

k=1

−
(
5
6

)k
converges, by the Limit Comparison Test,

∞∑

k=1

−4(5k)
2(6k)

also converges .
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29. Use the Limit Comparison Test and compare the series
∞∑

k=1

8·3k+4·5k
8k−1 to the Geometric

Series
∞∑

k=1

(
5
8

)k
. Then with an = 8·3n+4·5n

8n−1 and bn =
(
5
8

)n
we have

lim
n→∞

an
bn

= lim
n→∞

8·3n+4·5n
8n−1
(
5
8

)n = lim
n→∞

[
8 · 3n + 4 · 5n

8n−1

(
8

5

)n]

= lim
n→∞

(

8 · 8 · 24
n + 4 · 40n
40n

)

= lim
n→∞

{

8

[

8 ·
(
3

5

)n

+ 4

]}

= 32.

Since the limit is a positive number and
∞∑

k=1

(
5
8

)k
converges, by the Limit Comparison Test,

∞∑

k=1

8·3k+4·5k
8k−1 also converges .

30. Use the Limit Comparison Test and compare the series
∞∑

k=1

2·5k+3k

2k−1 to the Geometric Series

∞∑

k=1

(
5
2

)k
. Then with an = 2·5n+3n

2n−1 and bn =
(
5
2

)n
we have

lim
n→∞

an
bn

= lim
n→∞

2·5n+3n

2n−1
(
5
2

)n lim
n→∞

[
2 · 5n + 3n

2n−1

(
2

5

)n]

= lim
n→∞

(

2 · 2 · 10
n + 6n

10n

)

= lim
n→∞

{

2

[

2 +

(
3

5

)n]}

= 4.

Since the limit is a positive number and
∞∑

k=1

(
5
2

)k
diverges, by the Limit Comparison Test,

∞∑

k=1

2·5k+3k

2k−1 also diverges .

31. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

3k+4
k2k behaves like

an =
3n+ 4

n2n
=

(

3 +
4

n

)
1

2n
≈ 1

2n

for large n. So we compare with the convergent geometric series
∞∑

k=1

bk =
∞∑

k=1

1
2k . We have

lim
n→∞

an
bn

= lim
n→∞

3n+4
n2n

1
2n

= lim
n→∞

(

3 +
4

n

)

= 3.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

3k+4
k2k also converges.

32. The nth term of the series
∞∑

k=2

ak =
∞∑

k=2

k−1
k2k behaves like

an =
n− 1

n2n
=

1

2n

(

1− 1

n

)

≈ 1

2n
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for large n. So we compare with the convergent geometric series
∞∑

k=2

bk =
∞∑

k=2

1
2k
. We have

lim
n→∞

an
bn

= lim
n→∞

n−1
n2n

1
2n

= lim
n→∞

n− 1

n
= lim

n→∞

(

1− 1

n

)

= 1.

Since the limit is a positive number and the series
∞∑

k=2

bk converges, by the Limit Comparison

Test, the series
∞∑

k=2

ak =
∞∑

k=2

k−1
k2k

also converges.

33. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

1
2k+1 behaves like an = 1

2n+1 ≈ 1
2n for large n So

we compare with the convergent geometric series
∞∑

k=1

bk =
∞∑

k=1

1
2n . We have

lim
n→∞

an
bn

= lim
n→∞

1
2n+1

1
2n

= lim
n→∞

2n

2n + 1
= lim

n→∞
1

1 + 1
2n

= 1.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

1
2k+1 also converges.

34. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

5
3k+2 behaves like an = 5

3n+2 ≈ 5
3n for large n So

we compare with the convergent geometric series
∞∑

k=1

bk =
∞∑

k=1

1
3n . We have

lim
n→∞

an
bn

= lim
n→∞

5
3n+2

1
3n

= lim
n→∞

5 · 3n
3n + 2

= lim
n→∞

5

1 + 2
3n

= 5.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

5
3k+2 also converges.

35. The nth term of
∞∑

k=1

ak =
∞∑

k=1

k+5
kk+1 behaves like

an =
n+ 5

nn+1
=

n
(
1 + 5

n

)

nn+1
≈ 1

nn

for large n. So we compare with the series
∞∑

k=1

bk =
∞∑

k=1

1
kk which was shown (see Example 1,

p. 672 of text) to be convergent. We have

lim
n→∞

an
bn

= lim
n→∞

n+5
nn+1

1
nn

= lim
n→∞

(n+ 5)nn

nn+1
= lim

n→∞
n+ 5

n
= lim

n→∞

(

1 +
5

n

)

= 1.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

k+5
kk+1 also converges.
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36. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

5
kk+1

behaves like an = 5
nn+1 ≈ 5

nn for large n. So

we compare with the series
∞∑

k=1

bk =
∞∑

k=1

1
kk which was shown (see Example 1, p. 672 of text) to

be convergent. We have

lim
n→∞

an
bn

= lim
n→∞

5
nn+1

1
nn

= lim
n→∞

5nn

nn + 1
= lim

n→∞
5

1 + 1
nn

=
5

1 + 0
= 5.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

5
kk+1 also converges.

37. Comparing the nth term of the series
∞∑

k=1

ak =
∞∑

k=1

6k
5k2+2 with the nth term of the

harmonic series
∞∑

k=1

bk =
∞∑

k=1

1
k gives 6n

5n2+2 > 1
n since 6n2 > 5n2 + 2 for n >

√
2. This means for

n ≥ 2, the nth terms satisfy an > bn. Since the harmonic series
∞∑

k=1

bk diverges, by the

Comparison test, the given series
∞∑

k=1

ak =
∞∑

k=1

6k
5k2+2 also diverges.

38. The nth term of the series
∞∑

k=2

ak =
∞∑

k=2

6k+3
2k3−2 behaves like

an =
6n+ 3

2n3 − 2
=

n
(
6 + 3

n

)

n3
(
2− 2

n3

) ≈ 1

n2

for large n. So we compare with the series
∞∑

k=2

bk =
∞∑

k=2

1
k2 which is a convergent p-series (since

p = 2 > 1). We have

lim
n→∞

an
bn

= lim
n→∞

6n+3
2n3−2

1
n2

= lim
n→∞

6n3 + 3n2

2n3 − 2
= lim

n→∞

6 + 3
n

2− 2
n

= 3.

Since the limit is a positive number and the series
∞∑

k=2

bk converges, by the Limit Comparison

Test, the series
∞∑

k=2

ak =
∞∑

k=2

6k+3
2k3−2 also converges.

39. The nth term of the series
∞∑

k=1

7+k
(1+k2)4 behaves like

an =
7 + n

(1 + n2)4
=

n
(
7
n + 1

)

n8
(

1
n2 + 1

)4 ≈ 1

n7

for large n. So we compare with the series
∞∑

k=1

bk = 1
k7 which is a convergent p-series (since

p = 7 > 1). We have

lim
n→∞

an
bn

= lim
n→∞

7+n
(1+n2)4

1
n7

= lim
n→∞

7n7 + n8

(1 + n2)4
= lim

n→∞

7
n + 1

(
1
n2 + 1

)4 = 1.
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Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

7+k
(1+k2)4 also converges.

40. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

(
7+k
1+k2

)4

behaves like

an =

(
7 + n

1 + n2

)4

=
n4

n8

( 7
n + 1
1
n2 + 1

)4

≈ 1

n4

for large n. So we compare with the series
∞∑

k=1

bk =
∞∑

k=1

1
k4 which is a convergent p-series, since

p = 4 > 1. We have

lim
n→∞

an
bn

= lim
n→∞

(
7+n
1+n2

)4

1
n4

= lim
n→∞

(
7n+ n2

1 + n2

)4

= lim
n→∞

( 7
n + 1
1
n2 + 1

)4

= 1.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

(
7+k
1+k2

)4

also converges.

41. We compare the series
∞∑

k=1

e1/k

k with the divergent harmonic series
∞∑

k=1

1
k . Comparing the

nth term of each series we have e1/n

n > 1
n since e1/n > 1 for any n ≥ 1 (since the nth root of a

number bigger than 1 is also bigger than 1; here e > 1). By the Comparison Test, the original

series also diverges .

42. We compare the series
∞∑

k=1

1
1+ek with the convergent geometric series

∞∑

k=1

(
1
e

)k
, which

converges since |r| = 1
e < 1. Comparing the nth term of each series we have 1

1+en < 1
en for all

n ≥ 1, so by the Comparison Test, the original series also converges.

43. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

(1+ 1
k )

2

ek
behaves like

(1+ 1
n)

2

en ≈ 1
en for large n. So

we compare with the convergent geometric series
∞∑

k=1

bk =
∞∑

k=1

(
1
e

)k
which converges since

|r| = 1
e < 1. We have

lim
n→∞

an
bn

= lim
n→∞

(1+ 1
n)

2

en

1
en

= lim
n→∞

(

1 +
1

n

)2

= 1.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

(1+ 1
k )

2

ek
also converges.

44. We compare the series
∞∑

k=1

1
k2k with the convergent geometric series

∞∑

k=1

1
2k which converges

since |r| = 1
2 < 1. Comparing the nth term of each series we have 1

n2n < 1
2n for n > 1. By the

Comparison Test, we see that the original series also converges.
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45. We compare the series
∞∑

k=1

1+
√
k

k with the divergent harmonic series
∞∑

k=1

1
k . Since the nth

terms of the series satisfy 1+
√
n

n > 1
n for n ≥ 1, we see by the Comparison Test that the original

series diverges.

46. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

1+3
√
k

k2 behaves like

an =
1 + 3

√
n

n2
=

√
n
(

1√
n
+ 3
)

n2
≈ 1

n3/2

for large n. So we compare with the p-series
∞∑

k=1

bk =
∞∑

k=1

1
k3/2 , which converges since p = 3

2 > 1.

We have

lim
n→∞

an
bn

= lim
n→∞

1+3
√
n

n2

1
n3/2

= lim
n→∞

n3/2 + 3n2

n2
= lim

n→∞

(
1√
n
+ 3

)

= 3.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

1+3
√
k

k2 also converges.

47. We compare the series
∞∑

k=1

(
1
2

)k
sin2 k with the convergent geometric series

∞∑

k=1

1
2k which

converges since |r| = 1
2 < 1. Comparing the nth term of each series we have

(
1
2

)n
sin2 n ≤ 1

2n

since sin2 n ≤ 1 for all n ≥ 1. By the Comparison test, we see that the original series also
converges.

48. We compare the series
∞∑

k=1

tan−1 k
k3 with the p-series

∞∑

k=1

π
2k3 , convergent since p = 3 > 1.

Since the nth terms of the series satisfy tan−1 n
n3 < π

2n3 because tan−1 n < π
2 for any finite and

positive n ≥ 1, we see that, by the Comparison Test, the original series also converges.

Applications and Extensions

49. We compare the series
∞∑

k=2

2
k3 ln k with the series

∞∑

k=2

2
k3 , which is a convergent p-series since

p = 3 > 1. Since the nth terms of the series satisfy 2
n3 lnn < 2

n3 since lnn > 1 when n ≥ 3
(recall ln e = 1) we see that by the Comparison Test, the original series also converges.

50. (Using the result of Problem 59 below) we compare the series
∞∑

k=2

ak =
∞∑

k=2

1√
k(ln k)4

with

the divergent harmonic series
∞∑

k=2

dk =
∞∑

k=2

1
k . Applying L’Hôpital’s rule repeatedly (⋆) and

arranging the fractions after each application, we have
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lim
n→∞

an
dn

= lim
n→∞

[
1√

n(lnn)4

1
n

]

= lim
n→∞

√
n

(lnn)4

⋆
= lim

n→∞

[
1

2
√
n

4(lnn)3

n

]

= lim
n→∞

√
n

8(lnn)3

⋆
= lim

n→∞

[
1

2
√
n

24(lnn)2

n

]

= lim
n→∞

√
n

48(lnn)2

⋆
= lim

n→∞

[
1

2
√
n

96 lnn
n

]

= lim
n→∞

√
n

192 lnn

⋆
= lim

n→∞

[
1

2
√
n

192
n

]

= lim
n→∞

√
n

384

= ∞.

So, by the result of Problem 59, since the series
∞∑

k=2

dk =
∞∑

k=2

1
k diverges, the series

∞∑

k=2

ak =
∞∑

k=2

1√
k(ln k)4

also diverges.

51. We compare the series
∞∑

k=2

ln k
k+3 with the series

∞∑

k=2

1
k+3 , which is a divergent harmonic

series. The nth terms of the series satisfy lnn
n+3 > 1

n+3 since lnn > 1 if n ≥ 3 (recall that

ln e = 1). By the Comparison test, we see that the original series also diverges.

52. We compare the series
∞∑

k=2

ak =
∞∑

k=2

(ln k)2

k5/2 with the series
∞∑

k=2

bk =
∞∑

k=2

1
k3/2 , which is a

convergent p-series since p = 3
2 > 1. The nth term satisfies

an =
(lnn)2

n5/2
<

1

n3/2
= bn

if lnn < n1/2. To find under what conditions lnn < n1/2, let f(x) = ln x− x1/2. We wish to
find when this function is decreasing. Since f ′(x) = 1

x − 1
2x

−1/2 < 0 whenever
√
x > 2 or x > 4,

and f(4) = ln 4−
√
2 < 0, and we have shown that f(x) is decreasing for x > 4, and is negative

at x = 4, this proves that f(x) < 0 for x > 4. That is, lnn < n1/2 for n ≥ 4. Note that the
Comparison Test does not care about the relative behavior of series for any initial finite
number of terms, but only about the large n behavior; due to this, by the Comparison Test, we
see that the original series also converges.

53. We compare the series
∞∑

k=1

ak =
∞∑

k=1

sin 1
k with the series

∞∑

k=1

bk =
∞∑

k=1

1
k which is a

divergent harmonic series. We have

lim
n→∞

an
bn

= lim
n→∞

sin 1
n

1
n

= lim
y→0

sin y

y
= 1,

where the substitution y = 1
n was made and the standard limit result lim

y→0

sin y
y = 1 was used.

Since the limit is a positive number and the series
∞∑

k=1

bk diverges, by the Limit Comparison

Test, the series
∞∑

k=1

ak also diverges.
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54. We compare the series
∞∑

k=1

ak =
∞∑

k=1

tan 1
k with the series

∞∑

k=1

bk =
∞∑

k=1

1
k which is a

divergent harmonic series. We have

lim
n→∞

an
bn

= lim
n→∞

tan 1
n

1
n

= lim
y→0

tan y

y
= lim

y→0

sec2 y

1
= 1,

where the substitution y = 1
n was made and L’Hôpital’s rule was used. Since the limit is a

positive number and the series
∞∑

k=1

bk diverges, by the Limit Comparison Test, the series

∞∑

k=1

ak =
∞∑

k=1

tan 1
k also diverges.

55. Compare the series
∞∑

k=1

ak =
∞∑

k=1

1
k! with the convergent geometric series

∞∑

k=1

bk =
∞∑

k=1

1
2k
.

Since
n! = n(n− 1)(n− 2) · · · 3 · 2 ≥ 2 · 2 · 2 · · · · 2 (n factors of 2),

we have n! ≥ 2n or

an =
1

n!
≤ 1

2n
= bn

for all n ≥ 2. So by the Comparison Test that the original series also converges.

56. The series is
∞∑

k=1

ak =
∞∑

k=1

k!
kk . We have

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1 ≤ n · n · n · · ·n · 2 · 1 = 2nn−2 = 2
nn

n2

so that

an =
n!

nn
≤ 2

n2
= bn.

Comparing with the series
∞∑

k=1

bk =
∞∑

k=1

2
k2 , which is a constant multiple of a convergent p-series

(since p = 2 > 1), we conclude based on the Comparison Test that the original series
∞∑

k=1

ak =
∞∑

k=1

k!
kk converges.

57. (a) The nth term of
∞∑

k=1

1
k2+1 satisfies 1

n2+1 < 1
n2 for all n ≥ 1. So by the Comparison

Test, since the series
∞∑

k=1

1
k2 converges (being a p-series for p = 2 > 1), the original series also

converges.

(b) We have the nth term of
∞∑

k=2

1
k2−1 satisfy 1

n2−1 > 1
n2 . This however provides no

information about the convergence or divergence of the original series, since the nth term of
the original series is greater and not less than the nth term of a convergent p-series.

(c) Let
∞∑

k=2

ak =
∞∑

k=2

1
k2−1 and

∞∑

k=2

bk =
∞∑

k=2

1
k2 . We have

lim
n→∞

an
bn

= lim
n→∞

1
n2−1

1
n2

= lim
n→∞

n2

n2 − 1
= lim

n→∞
1

1− 1
n2

= 1.
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Since the limit is a positive number and the series
∞∑

k=2

bk converges, by the Limit Comparison

Test, the series
∞∑

k=2

ak =
∞∑

k=2

1
k2−1 also converges. So, yes , the Limit Comparison Test can

be used to decide the convergence of the series.

58. Compare the series
∞∑

k=1

d
10k

with the geometric series
∞∑

k=1

1
10k−1 , which is convergent since

|r| = 1
10 < 1. Since the nth terms of the series satisfy dn

10n < 1
10n−1 , since dn < 10, by the

Comparison Test, the original series also converges.

59. If lim
n→∞

an

dn
= ∞ it follows that we can choose an M > 0 such that there exists an n > N ,

such that for n > N , we have an

dn
> M , that is, an > Mdn. By the Comparison Test, since

∞∑

k=1

dk diverges, so does
∞∑

k=1

ak.

60. If lim
n→∞

an

dn
= 0 it follows that we can choose an ǫ > 0 such that there exists n > N , such

that for n > N , we have
∣
∣
∣
an

dn
− 0
∣
∣
∣ < ǫ, or an < ǫ dn. By the Comparison Test, since

∞∑

k=1

dk

converges, so does
∞∑

k=1

ak.

61. Let
∞∑

k=2

ak =
∞∑

k=2

1
ln k and

∞∑

k=2

dk =
∞∑

k=2

1
k . Then

lim
n→∞

an
dn

= lim
n→∞

1
lnn
1
n

= lim
n→∞

n

lnn
= lim

x→∞
x

lnx
= lim

x→∞
1
1
x

= lim
x→∞

x = ∞,

by using L’Hôpital’s rule on a related function of the ratio of the nth terms. So by the result of

Problem 59, since the harmonic series
∞∑

k=2

dk diverges, the original series
∞∑

k=2

ak =
∞∑

k=2

1
ln k also

diverges.

62. Let
∞∑

k=2

ak =
∞∑

k=2

(
1

ln k

)2
and

∞∑

k=2

dk =
∞∑

k=2

1
k . Then

lim
n→∞

an
dn

= lim
n→∞

(
1

lnn

)2

1
n

= lim
n→∞

n

(lnn)2
= lim

x→∞
x

(lnx)2

= lim
x→∞

1

2 lnx · 1
x

= lim
x→∞

x

2 lnx
=

1

2
lim
x→∞

1
1
x

=
1

2
lim
x→∞

x = ∞,

by using L’Hôpital’s rule on a related function of the ratio of the nth terms. So by the result of

Problem 59, since the harmonic series
∞∑

k=2

dk diverges, the original series
∞∑

k=2

ak =
∞∑

k=2

(
1

ln k

)2

also diverges.

63. Let
∞∑

k=1

ak =
∞∑

k=1

ln k
k2 and

∞∑

k=1

dk =
∞∑

k=1

1
k3/2 . Then

lim
n→∞

an
dn

= lim
n→∞

lnn
n2

1
n3/2

= lim
n→∞

lnn√
n

= lim
x→∞

lnx√
x

= lim
x→∞

1
x

1
2x

−1/2
= 2 lim

x→∞
1√
x
= 0,
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by using L’Hôpital’s rule on a related function of the ratio of the nth terms. So by the result of

Problem 60, since the p-series
∞∑

k=2

dk converges (since p = 3
2 > 1), the original series

∞∑

k=2

ak =
∞∑

k=1

ln k
k2 also converges.

64. Let
∞∑

k=2

ak =
∞∑

k=2

1
(k ln k)2 and

∞∑

k=2

dk = 1
k2 . Then

lim
n→∞

an
dn

= lim
n→∞

1
n2(lnn)2

1
n2

= lim
n→∞

1

(lnn)2
= 0.

So by the result of Problem 60, since the p-series
∞∑

k=2

dk converges (since p = 2 > 1), the

original series
∞∑

k=2

ak =
∞∑

k=2

1
(k ln k)2 also converges.

65. If
∞∑

k=2

ak =
∞∑

k=2

1
ln k and

∞∑

k=1

bk =
∞∑

k=1

1
ek , then

lim
n→∞

an
bn

= lim
n→∞

1
lnn
1
en

= lim
n→∞

en

lnn
= lim

x→∞
ex

lnx
= lim

x→∞
ex

1
x

= lim
x→∞

xex = ∞,

by using L’Hôpital’s rule on a related function of the ratio of the nth terms. Because the limit
in question is not a finite positive number, but infinity, the Limit Comparison test is

inconclusive in regards to whether the series
∞∑

k=2

ak =
∞∑

k=2

1
ln k converges or diverges, even

though the series
∞∑

k=1

bk =
∞∑

k=1

1
ek converges, as it is a geometric series with |r| = 1

e < 1.

66. (a) Let
∞∑

k=1

ak =
∞∑

k=1

ln k
kp and

∞∑

k=1

dk =
∞∑

k=1

1
kq , where 1 < q < 2 and p > 1. Then we have

lim
n→∞

an
dn

= lim
n→∞

lnn
np

1
nq

= lim
n→∞

lnn

np−q
= lim

x→∞
lnx

xp−q
= lim

x→∞

1
x

(p− q)xp−q−1
=

1

p− q
lim
x→∞

1

xp−q
= 0,

by L’Hôpital’s rule, and since from p > 1, and 1 < q < 2, we have p− q > 0, since p > 1 implies

p ≥ 2 > q. So by the result of Problem 60, since the p-series
∞∑

k=1

dk converges (for q > 1), the

original series
∞∑

k=1

ak =
∞∑

k=1

ln k
kp also converges.

(b) Let
∞∑

k=1

ak =
∞∑

k=1

(ln k)r

kp and
∞∑

k=1

dk =
∞∑

k=1

1
kq , where 1 < q < 2, p > 1, and r > 0. Then we

have

lim
n→∞

an
dn

= lim
n→∞

(lnn)r

np

1
nq

= lim
n→∞

(lnn)r

np−q
= lim

x→∞
(lnx)r

xp−q

= lim
x→∞

r(ln x)r−1 · 1
x

(p− q)xp−q−1
=

r

p− q
lim
x→∞

(lnx)r−1

xp−q
= · · ·

=
r!

(p− q)r
lim
x→∞

1

xp−q
= 0
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by repeatedly applying L’Hôpital’s rule, and since from p > 1, and 1 < q < 2, we have
p− q > 0, since p > 1 implies p ≥ 2 > q. So by the result of Problem 60, since the p-series
∞∑

k=1

dk converges (for q > 1), the original series
∞∑

k=1

ak =
∞∑

k=1

(lnk)r

kp also converges.

67. (a) Let
∞∑

k=1

ak =
∞∑

k=1

lnk
kp and

∞∑

k=1

dk =
∞∑

k=1

1
kp , where 0 < p ≤ 1. We have

lim
n→∞

an
dn

= lim
n→∞

lnn
np

1
np

= lim
n→∞

lnn = ∞.

By the results of exercise 59, since
∞∑

k=1

dk is a divergent p-series (since 0 < p ≤ 1), it follows

that
∞∑

k=1

ak =
∞∑

k=1

ln k
kp also diverges, as was needed to be shown.

(b) Let
∞∑

k=1

ak =
∞∑

k=1

(ln k)r

kp and
∞∑

k=1

dk =
∞∑

k=1

1
kp , where 0 < p ≤ 1 and r > 0. We have

lim
n→∞

an
dn

= lim
n→∞

(lnn)r

np

1
np

= lim
n→∞

(lnn)r = ∞,

since r is given to be a positive real number. By the results of exercise 59, since
∞∑

k=1

dk is a

divergent p-series (since 0 < p ≤ 1), it follows that
∞∑

k=1

ak =
∞∑

k=1

(ln k)r

kp also diverges, as was

needed to be shown.

68. The series
∞∑

k=1

ln k
k diverges since it is of the form

∞∑

k=1

ln k
kp , p = 1, which diverges by the

results of Problem 67, part (a).

69. The series
∞∑

k=1

√
ln k√
k

diverges since it is of the form
∞∑

k=1

(ln k)r

kp , with 0 < p = 1
2 ≤ 1, and

r = 1
2 > 0, which converges by the results of Problem 67, part (b).

70. The series
∞∑

k=2

ln k
k3 converges since it is of the form

∞∑

k=2

lnk
kp , where p = 3 > 1, which

converges by the results of Problem 66, part (a).

71. Since we can write
∞∑

k=1

(lnk)2√
k3

=
∞∑

k=1

(lnk)2

k3/2 , then the series is in the form

∞∑

k=1

(ln k)r

kp
with

r = 2 > 0 and p = 3
2 > 1. By Exercise 66(b), the series converges .

72. (a) We first show that the p-series
∞∑

k=1

ak =
∞∑

k=1

1
kp converges for p > 1 and diverges for

p = 1 using the Integral Test. Let f(x) = 1
xp be a related function of the nth term of the series.

f(x) is continuous and decreasing on [1,∞), and f(k) = ak for all k ≥ 1. To apply the Integral
Test, we evaluate

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

1

xp
dx = lim

b→∞

[
x−p−1

−p− 1

]b

1

= − 1

p+ 1
lim
b→∞

[
b−p−1 − 1−p−1

]
= − 1

p+ 1
[0− 1] =

1

p+ 1
.
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Since the limit is a finite real number, the improper integral converges, so by the Integral Test,
the series converges for p > 1. At p = 1, the integral in question evaluates to

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

1

x
dx = lim

b→∞
[lnx]b1 = lim

b→∞
[ln b− ln 1] = ∞,

so by the Integral Test, since the improper integral diverges, so does the series for p = 1.

(b) For 0 < p < 1, np < n for n ≥ 1, or

an =
1

np
<

1

n
= bn

for n ≥ 1. Since we have shown in part (a) that the series
∞∑

k=1

bk =
∞∑

k=1

1
k diverges, by the

Comparison Test, so does the series
∞∑

k=1

ak =
∞∑

k=1

1
kp for 0 < p < 1.

If p = 0, the series becomes
∞∑

k=1

1. Since lim
n→∞

an = 1 6= 0, the series diverges by the Divergence

Test.
Finally, let p < 0. Then p = −q, with q > 0. Since

an =
1

np
= nq ≥ 1

for n ≥ 1, and the series
∞∑

k=1

1 diverges (see above), by the Comparison Test, the series

∞∑

k=1

ak =
∞∑

k=1

1
kp is divergent for p < 0.

73. If the series
∞∑

k=1

ak converges, then by the Comparison Test the series
∞∑

k=1

ak

k also converges

since the nth terms satisfy an

n < an for n > 1, provided that an are all positive (and they are
given to be positive).

74. The series
∞∑

k=1

1
1+2k

is convergent as can be seen by comparing it with the (convergent)

geometric series
∞∑

k=1

1
2k
. The nth terms satisfy 1

1+2n < 1
2n for all n ≥ 1, so by the Comparison

Test, the original series also converges.

75. We are given that the harmonic series
∞∑

k=1

bk =
∞∑

k=1

1
k diverges. Choose

∞∑

k=1

ak =
∞∑

k=1

1
k2

which is a convergent p-series (since p = 2 > 1). Then

lim
n→∞

an
bn

= lim
n→∞

1
n2

1
n

= lim
n→∞

1

n
= 0.

On the other hand, choose
∞∑

k=1

ak =
∞∑

k=1

1
k ln(k+1) . Since

1
n ln(n+1) >

1
(n+1) ln(n+1) , it suffices to

show that
∞∑

k=1

ck =
∞∑

k=1

1
(k+1) ln(k+1) is divergent, for then the divergence of

∞∑

k=1

ak would follow

from the Comparison Test. That
∞∑

k=1

ck is a divergent series is seen by using Integral Test. In
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fact, this was done in Problem 27, of Section 8.3, where it is shown that
∞∑

k=2

1
k ln k =

∞∑

k=1

1
(k+1) ln(k+1) is divergent. Now we have

lim
n→∞

an
bn

= lim
n→∞

1
n ln(n+1)

1
n

=
1

ln(n+ 1)
= 0.

This shows that the Limit Comparison test gives no guidance as to the convergence or

divergence of a given
∞∑

k=1

ak series if lim
n→∞

an

bn
= 0.

Challenge Problems

76. The nth term of the series
∞∑

k=2

ak =
∞∑

k=2

ln(2k+1)√
k2−2

√
k3−2k−3

behaves like

an =
ln(2n+ 1)√

n2 − 2
√
n3 − 2n− 3

=
ln(2n+ 1)

n · n3/2
√

1− 2
n2

√

1− 2
n2 − 3

n3

≈ ln(2n+ 1)

n5/2

for large n. We compare with the series
∞∑

k=2

bk =
∞∑

k=2

ln(2k+1)
k5/2 . To see that this series converges,

examine the nth term

bn =
ln(2n+ 1)

n5/2
≤ ln(2n+ n)

n5/2
=

ln(3n)

n5/2
=

ln 3 + lnn

n5/2
=

ln 3

n5/2
+

lnn

n5/2
= cn + dn

for n ≥ 2. The series
∞∑

k=2

ck =
∞∑

k=2

ln 3
k5/2 is a constant multiple of a convergent p-series (since

p = 5
2 > 1), while the series

∞∑

k=2

dk =
∞∑

k=2

ln k
k5/2 converges by the result of Problem 66. (In the

terminology of that problem, p = 5
2 > 1.) So we have shown that the series

∞∑

k=2

bk converges.

We have

lim
n→∞

an
bn

= lim
n→∞

ln(2n+1)√
n2−2

√
n3−2n−3

ln(2n+1)
n5/2

= lim
n→∞

n5/2

√
n2 − 2

√
n3 − 2n− 3

= lim
n→∞

1
√

1− 2
n2

√

1− 2
n2 − 3

n3

= 1.

Since the limit is a positive number and the series
∞∑

k=2

bk converges, by the Limit Comparison

Test, the series
∞∑

k=2

ak =
∞∑

k=2

ln(2k+1)√
k2−2

√
k3−2k−3

also converges.

77. The nth term of the series
∞∑

k=1

ak =
∞∑

k=1

√
k√

(k3−k+1) ln(2k+1)
behaves like

an =

√
n

√

(n3 − n+ 1) ln(2n+ 1)
=

√
n

n3/2
√

1− 1
n2 + 1

n3

· 1
√

ln(2n+ 1)
≈ 1

n
· 1
√

ln(2n+ 1)

for large n. We compare with
∞∑

k=1

bk =
∞∑

k=1

1

k
√

ln(2k+1)
. This series diverges, and this is seen as

follows: Let
∞∑

k=1

dk =
∞∑

k=1

1
k ln(2k+1) . This series diverges by comparing with the series



8-98 Chapter 8 Infinite Series

∞∑

k=2

ck =
∞∑

k=2

1
k lnk (which itself diverges by the Integral Test since

lim
b→∞

∫ b

2
dx

x ln x = lim
b→∞

ln(ln b)− ln(ln 2) = ∞) and applying the Limit Comparison Test:

lim
n→∞

dn

cn
= lim

n→∞
n lnn

n ln(2n+1) = lim
x→∞

lnx
ln(2x+1) = lim

x→∞

1
x
1

2x+1

= lim
x→∞

(
2 + 1

x

)
= 2. Compare now the

nth terms of the series
∞∑

k=1

bk and
∞∑

k=1

dk:

lim
n→∞

bn
dn

= lim
n→∞

1
n

1√
ln(2n+1)

1
n

1
ln(2n+1)

= lim
n→∞

√

ln(2n+ 1) = ∞.

So, by the result of Problem 59, the series
∞∑

k=1

bk indeed diverges. Now, finally, we compare the

series
∞∑

k=1

ak with the series
∞∑

k=1

bk:

lim
n→∞

an
bn

= lim
n→∞

1

n
√

1− 1
n2 + 1

n3

· 1√
ln(2n+1)

1
n · 1√

ln(2n+1)

= lim
n→∞

1
√

1− 1
n2 + 1

n3

= 1.

Since the limit is a positive number and the series
∞∑

k=1

bk diverges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

√
k√

(k3−k+1) ln(2k+1)
also diverges.

78. The nth term of the series
∞∑

k=1

1+sin k
4k

satisfies 0 < 1+sinn
4n ≤ 2

4n < 3
4n , since sinn > 0 for

n ≥ 1. So, comparing with the convergent geometric series
∞∑

k=1

3
4

(
1
4

)k−1
we see by the

Comparison Test that the given series also converges.

79. We compare the series
∞∑

k=1

ak =
∞∑

k=1

1
k1+1/k with the divergent harmonic series

∞∑

k=1

bk =
∞∑

k=1

1
k . We have

lim
n→∞

an
bn

= lim
n→∞

1
n1+1/n

1
n

= lim
n→∞

n

n1+1/n
= lim

n→∞
n

n · n1/n
= lim

n→∞
1

n1/n
=

1

lim
n→∞

n1/n
.

To evaluate lim
n→∞

n1/n, let y = n1/n. Then ln y = 1
n lnn = lnn

n . We have

lim
n→∞

y = lim
n→∞

eln y = lim
n→∞

e
lnn
n = e

lim
n→∞

lnn
n = e

lim
x→∞

ln x
x = e

lim
x→∞

1/x
1 = e

lim
x→∞

1
x = e0 = 1,

using L’Hôpital’s rule on a related function of lnn
n . Since the limit is a positive number and the

series
∞∑

k=1

bk diverges, by the Limit Comparison Test, the series
∞∑

k=1

ak =
∞∑

k=1

1
k1+1/k also

diverges.

80. (a) For large n, the nth term of the series
∞∑

k=1

ak =
∞∑

k=1

k2−3k−2
k2(k+1)2 behaves like

an =
n2 − 3n− 2

n2(n+ 1)2
=

n2
(
1− 3

n − 2
n2

)

n2 · n2
(
1 + 1

n

)2 ≈ 1

n2
.
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So we compare with the series
∞∑

k=1

bk =
∞∑

k=1

1
k2 , which is a convergent p-series (since p = 2 > 1).

We have

lim
n→∞

an
bn

= lim
n→∞

(1− 3
n− 2

n2 )
n2(1+ 1

n )
2

1
n2

= lim
n→∞

(
1− 3

n − 2
n2

)

(
1 + 1

n

)2 = 1.

Since the limit is a positive number and the series
∞∑

k=1

bk converges, by the Limit Comparison

Test, the series
∞∑

k=1

ak =
∞∑

k=1

k2−3k−2
k2(k+1)2 also converges.

(b) We use a partial fraction decomposition on the kth term of the series
∞∑

k=1

ak as follows:

k2 − 3k − 2

k2(k + 1)2
=

A

k2
+

B

(k + 1)2
+

C

k
+

D

(k + 1)
.

Comparing coefficients after taking the common denominator on the right hand side, we obtain
A = −2; B = 2; C = 1; D = −1. So,

∞∑

k=1

k2 − 3k − 2

k2(k + 1)2
=

∞∑

k=1

− 2

k2
+

∞∑

k=1

2

(k + 1)2
+

∞∑

k=1

(
1

k
− 1

(k + 1)

)

= −2 · π2

6
+ 2

(
π2

6
− 1

)

+ lim
n→∞

[(
1

1
− 1

2

)

+

(
1

2
− 1

3

)

+ · · ·+
(

1

n− 1
− 1

n

)]

= −2 + lim
n→∞

(

1− 1

n

)

= −2 + 1 = −1,

where we have used the result
∞∑

k=1

1
k2 = π2

6 (see p.572), and the fact that

∞∑

k=1

1
(k+1)2 = 1

22 + 1
32 + 1

42 + · · · =
∞∑

k=1

1
k2 − 1. So the required sum of the series is −1.

AP
R©

Practice Problems

1. Analyze each series to determine if it converges:

I.

∞∑

k=1

2πk

3kπ
=

2

π

∞∑

k=1

(π

3

)k

This is a geometric series that diverges , since r = π
3 > 1.

II. The convergence of the series
∞∑

k=1

k2

2k3+1 can be evaluated using the Integral Test as

follows:

A related function to k2

2k3+1 is f(x) = x2

2x3+1 .

f ′(x) =
2x
(
2x3 + 1

)
− 6x2 · x2

(2x3 + 1)2
=

4x4 + 2x− 6x4

(2x3 + 1)2
=

−2x4 + 2x

(2x3 + 1)2

f(x) is positive for x ≥ 1.
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f(x) is differentiable for x ≥ 1 since f ′(x), as determined above, is defined for x ≥ 1.
f(x) is continuous for x ≥ 1 since a function is continuous where the function is
differentiable.

f(x) is decreasing for x ≥ 1 since f ′(x) < 0 for x ≥ 1.

Consider the Improper Integral

∫ ∞

1

x2

2x3 + 1
dx = lim

b→∞

∫ b

1

(
x2

2x3 + 1
dx

)

= lim
b→∞

[
1

6
ln
∣
∣2x3 + 1

∣
∣

]b

1

=
1

6
lim
b→∞

[
ln
∣
∣2b3 + 1

∣
∣− ln 3

]
= ∞

Since the improper integral
∫∞
1

x2

2x3+1dx diverges, by the Integral Test the series
∞∑

k=1

k2

2k3+1 also diverges .

III.

∞∑

k=1

k2 + 3 3
√
k

2k5
=

∞∑

k=1

(

k2

2k5
+

3k
1
3

2k5

)

=
1

2

∞∑

k=1

1

k3
+

3

2

∞∑

k=1

1

k
14
3

Each of the individual series is a convergent p-series since, for each, p > 0.

CHOICE B

2. Analyze each series to determine if it converges:

I.
∞∑

k=1

7k − 5

k3
=

∞∑

k=1

(
7k

k3
− 5

k3

)

= 7

∞∑

k=1

1

k2
− 5

∞∑

k=1

1

k3

Each of the series is a convergent p-series.

II. The convergence of the series
∞∑

k=1

k2

2k3+1 can be evaluated using the Integral Test as

follows:

A related function to k2

2k3+1 is f(x) = x2

2x3+1 .

f ′(x) =
2x
(
2x3 + 1

)
− 6x2 · x2

(2x3 + 1)
2 =

4x4 + 2x− 6x4

(2x3 + 1)2
=

−2x4 + 2x

(2x3 + 1)
2

f(x) is positive for x ≥ 1.

f(x) is differentiable for x ≥ 1 since f ′(x), as determined above, is defined for x ≥ 1.
f(x) is continuous for x ≥ 1 since a function is continuous where the function is
differentiable.

f(x) is decreasing for x ≥ 1 since f ′(x) < 0 for x ≥ 1.

Consider the Improper Integral

∫ ∞

1

x2

2x3 + 1
dx = lim

b→∞

∫ b

1

(
x2

2x3 + 1
dx

)

= lim
b→∞

[
1

6
ln
∣
∣2x3 + 1

∣
∣

]b

1

=
1

6
lim
b→∞

[
ln
∣
∣2b3 + 1

∣
∣− ln 3

]
= ∞

Since the improper integral
∫∞
1

x2

2x3+1dx diverges, by the Integral Test the series
∞∑

k=1

k2

2k3+1 also diverges .
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III.

∞∑

k=1

k + 3

(k − 3)
2
+ 1

=

∞∑

k=1

k + 3

k2 − 6k + 10

We choose an appropriate p-series to use for comparison by examining the behavior
of the series for large values of n.

n+ 3

n2 − 6n+ 10
·
(
1
n

)

(
1
n

) =
1 + 3

n

n− 6 + 10
n

≈ 1

n
for large values of n.

This leads us to choose the p-series
∞∑

k=1

1
k , which diverges, and use the Limit

Comparison Test with an = n+3
n2−6n+10 and bn = 1

n .

lim
n→∞

an
bn

= lim
n→∞

n+3
n2−6n+10

1
n

= lim
n→∞

n2 + 3n

n2 − 6n+ 10
= lim

n→∞
n2 + 3n

n2 − 6n+ 10
·
(

1
n2

)

(
1
n2

)

= lim
n→∞

1 + 3
n

1− 6
n + 10

n2

= 1

Since the limit is a positive number and the p-series
∞∑

k=1

1
k diverges, then by the

Limit Comparison Test
∞∑

k=1

k+3
k2−6k+10 =

∞∑

k=1

k+3
(k−3)2+1

also diverges .

CHOICE D

3.
∞∑

k=1

sin2 k

k2 + 2k + 1
=

∞∑

k=1

sin2 k

(k + 1)
2

The direct comparison test provides that for 0 < an < bn

If
∞∑

n=1
bn converges, then

∞∑

n=1
an converges.

If
∞∑

n=1
an diverges, then

∞∑

n=1
bn diverges.

Here, since
∞∑

k=1

1
k2 is a convergent p-series and 0 < 1

(k+1)2
≤ 1

k2 ,
∞∑

k=1

1
(k+1)2

converges by

the Direct Comparison Test.

Then, since
∞∑

k=1

1
(k+1)2

converges and 0 < sin2 k
(k+1)2

≤ 1
(k+1)2

,
∞∑

k=1

sin2 k
(k+1)2

converges by the

Direct Comparison Test.

4. Use the Limit Comparison Test and compare the series
∞∑

k=1

2k2−1
k(k2+3) to the harmonic series

∞∑

k=1

1
k , which diverges.

Then, with an = 2n2−1
n(n2+3) and bn = 1

n , we have

lim
n→∞

an
bn

= lim
n→∞

2n2−1
n(n2+3)

1
n

= lim
n→∞

2n2 − 1

n2 + 3
= lim

n→∞
2n2 − 1

n2 + 3
·

1
n2

1
n2

= lim
n→∞

2− 1
n2

1 + 3
n2

= 2
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Since the limit is a positive number, and
∞∑

k=1

1
k diverges, by the Limit Comparison Test

∞∑

k=1

2k2−1
k(k2+3) also diverges .

8.5 Alternating Series; Absolute Convergence

Concepts and Vocabulary

1. False: For odd k, (−1)k = −1 and cos kπ = −1. So (−1)k cos(kπ) = (−1)(−1) = +1. For
even k, (−1)k = +1 and cos kπ = +1. So (−1)k cos(kπ) = (+1)(+1) = +1. This means that
the terms of the series are all positive for every k and so the series is not an alternating series.

2. False: For odd k, (−1)k = −1, so
[
1 + (−1)k

]
= 1− 1 = 0. For even k, (−1)k = +1, so

[
1 + (−1)k

]
= 1 + 1 = 2. So the terms of the series are alternately either 0 or positive, but that

does not make it an alternating series, which by definition alternates positive and negative
terms.

3. False: It is not sufficient that lim
n→∞

an = 0 for the alternating series
∞∑

k=1

(−1)k+1ak to be

convergent. We also need to require that the ak are nonincreasing, that is ak ≥ ak+1 for all k.

4. False: The correct conclusion under the stated conditions is that the error in using the sum
of n terms Sn in order to approximate the sum S of the series is given by |En| ≤ an+1 and not
|En| ≤ an.

5. False: It is possible for an alternating series to be convergent even if it is not absolutely
convergent. For example, the alternating harmonic series is convergent but not absolutely
convergent (as it would then become a divergent harmonic series).

6. True: This follows from the statement of the theorem on p. 684.

Skill Building

7. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 1
k2 . We have lim

n→∞
an = lim

n→∞
1
n2 = 0. By the

Algebraic Ratio Test,

an+1

an
=

1
(n+1)2

1
n2

=
n2

(n+ 1)2
< 1, for n ≥ 1.

So the an are nonincreasing. By the Alternating Series Test, the series converges.

8. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 1
2
√
k
. We have lim

n→∞
an = lim

n→∞
1

2
√
n
= 0. By the

Algebraic Ratio Test,

an+1

an
=

1
2
√
n+1
1

2
√
n

=

√
n√

n+ 1
< 1, for n ≥ 1.

So the an are nonincreasing. By the Alternating Series Test, the series converges.

9. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 k
2k+1 . We have

lim
n→∞

an = lim
n→∞

n
2n+1 = 1

2+ 1
n

= 1
2 6= 0. Since the limit is nonzero, by the Divergence Test, the

series will diverge.
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10. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 k+1
k . We have lim

n→∞
n+1
n = lim

n→∞

(
1 + 1

n

)
= 1 6= 0.

Since the limit is nonzero, by the Divergence Test, the series diverges.

11. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 k2

5k2+2 . We have

lim
n→∞

n2

5n2+2 = lim
n→∞

1
5+ 2

n2
= 1

5 6= 0. Since the limit is nonzero, by the Divergence Test, the series

will diverge.

12. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 k+1
k2 . We have

lim
n→∞

an = lim
n→∞

n+ 1

n2
= lim

n→∞

(
1

n
+

1

n2

)

= 0 + 0 = 0.

By the Algebraic Ratio Test,

an+1

an
=

n+2
(n+1)2

n+1
n2

= lim
n→∞

(n+ 2)n2

(n+ 1)3
=

n3 + 2n2

n3 + 3n2 + 3n+ 1
< 1 for n ≥ 1.

So the an are nonincreasing. By the Alternating Series Test, the series converges.

13. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1

(k+1)2k
. We have lim

n→∞
an = lim

n→∞
1

(n+1)2n = 0. By the

Algebraic Ratio Test,

an+1

an
=

1
(n+2)2n+1

1
(n+1)2n

=
1

2

n+ 1

n+ 2
< 1, for n ≥ 1.

So the an are nonincreasing. By the Alternating Series Test, the series converges.

14. The series is
∞∑

k=2

(−1)k+1ak =
∞∑

k=2

(−1)k+1 1
k ln k . We have lim

n→∞
an = lim

n→∞
1

n lnn = 0. By the

Algebraic Ratio Test,

an+1

an
=

1
(n+1) ln(n+1)

1
n lnn

=
n

n+ 1
· lnn

ln(n+ 1)
< 1, for n ≥ 2,

since both n and lnn are monotonically increasing functions of n for n ≥ 2. So the terms of the
series are nonincreasing. By the Alternating Series Test, the series converges.

15. The series is
∞∑

k=2

(−1)k+1ak =
∞∑

k=2

(−1)k+1 1
1+2−k . We have

lim
n→∞

an = lim
n→∞

1
1+2−n = 1

1+0 = 1 6= 0. Since the limit is nonzero, by the Divergence Test, the

series diverges.

16. The series is
∞∑

k=0

(−1)kak =
∞∑

k=0

(−1)k 1
k! . We have lim

n→∞
an = lim

n→∞
1
n! = 0. By the Algebraic

Ratio Test,

an+1

an
=

1
(n+1)!

1
n!

=
n!

(n+ 1)!
=

n!

(n+ 1)n!
=

1

n+ 1
≤ 1, for n ≥ 0.
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So the an are nonincreasing. By the Alternating Series Test, the series converges.

17. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1
(

k
k+1

)k

. We have

lim
n→∞

an = lim
n→∞

(
n

n+ 1

)n

= lim
n→∞

(
1

1 + 1
n

)n

=
1

lim
n→∞

(
1 + 1

n

)n =
1

e
6= 0,

using the standard limit definition of e. Since the limit is nonzero, by the Divergence Test, the

series diverges.

18. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 k2

(k+1)3 . We have

lim
n→∞

an = lim
n→∞

n2

(n+ 1)3
= lim

n→∞
n2

n3
(
1 + 1

n

)3 = lim
n→∞

1

n
(
1 + 1

n

)3 = 0.

Let f(x) = x2

(x+1)3 be a related function of the nth term of the series. Examine the derivative:

f ′(x) =
(x + 1)3 · 2x− x2 · 3(x+ 1)2

(x+ 1)6
=

(x+ 1)2x

(x+ 1)6
[2(x+ 1)− 3x] =

(x + 1)2x(2− x)

(x+ 1)6
.

So for x > 2, f ′(x) < 0, which means that for n ≥ 2, the an are nonincreasing. By the
Alternating Series Test, the series converges.

19. To use the Alternating Series test, note that ak = e−k = 1
ek

> 0 for all k.

We find lim
n→∞

an = lim
n→∞

e−n = lim
n→∞

1
en = 0.

On the interval [1,∞), the function f(x) = e−x is continuous, positive, and decreasing (f is
decreasing because f ′(x) = −e−x < 0 for x > 1). Thus the ak are nonincreasing, and the

alternating series
∞∑

k=1

(−1)
k
e−k converges .

20. To use the Alternating Series test, note that ak = ke−k = k
ek

> 0 for all k.

We find lim
n→∞

an = lim
n→∞

ne−n = lim
n→∞

n
en , which is in indeterminate form ∞

∞ .

We use L’Hôpital’s Rule: lim
n→∞

n
en = lim

n→∞
1
en = 0.

On the interval [1,∞), the function f(x) = xe−x is continuous, positive, and decreasing (f is
decreasing because f ′(x) = 1−x

ex < 0 for x > 1). Thus the ak are nonincreasing, and the

alternating series
∞∑

k=1

(−1)
k
ke−k converges .

21. To use the Alternating Series test, note that ak = tan−1 k > 0 for all k. Next we have

lim
n→∞

tan−1 n = π
2 . By the Test for Divergence, the alternating series

∞∑

k=1

(−1)
k
tan−1 k

diverges .
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22. To use the Alternating Series test, note that ak = e2/k > 0 for all k. Next we have

lim
n→∞

an = lim
n→∞

e2/n = 1. By the Test for Divergence, the alternating series
∞∑

k=1

(−1)
k
e2/k

diverges .

23. (a) ak = 1
k5 > 0 for all k ≥ 1, and lim

n→∞
1
n5 = 0.

an+1

an
=

1
(n+1)5

1
n5

= n5

(n+1)5
=
(

n
n+1

)5

< 1 for all n > 1, so the terms are nonincreasing. (In fact,

they are decreasing.)

(b) For a convergent alternating series meeting the conditions above in Part (a), the error En
in using the sum Sn of the first n terms as an approximation to the sum S is numerically less
than or equal to the (n+ 1)st term of the series.

For an = 1
n5 , we must determine n for which

1

(n+ 1)
5 ≤ 0.001

(n+ 1)
5 ≥ 1000

n ≥ −1 +
5
√
1000 ≈ 2.98

So n = 3 .

(c) As determined above, we will evaluate

3∑

k=1

(−1)k+1

k5
=

1

1
− 1

25
+

1

35

= 1− 1

32
+

1

243
=

7565

7776
≈ 0.973

24. (a) lim
n→∞

1
n4 = 0.

an+1

an
=

1
(n+1)4

1
n4

= n4

(n+1)4
=
(

n
n+1

)4

< 1 for all n > 1, so the terms are nonincreasing.

(In fact, they are decreasing.)

(b) For a convergent alternating series meeting the conditions above in Part (a), the error En
in using the sum Sn of the first n terms as an approximation to the sum S is numerically less
than or equal to the (n+ 1)st term of the series.

For an = 1
n4 , we must determine n for which

1

(n+ 1)
4 ≤ 0.001

(n+ 1)
4 ≥ 1000

n ≥ −1 +
4
√
1000 ≈ 4.62

So n = 5 .

(c) As determined above, we will evaluate

5∑

k=1

(−1)k+1

k5
=

1

1
− 1

24
+

1

34
− 1

44
+

1

54

= 1− 1

64
+

1

81
− 1

256
+

1

625
=

12, 280, 111

12, 960, 000
≈ 0.948
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25. (a) ak = 1
k! > 0 for all k ≥ 1, and lim

n→∞
1
n! = 0.

an+1

an
=

1
(n+1)!

1
n!

= n!
(n+1)! =

n!
(n+1)n! =

1
n+1 < 1 for all n ≥ 1, so the terms are nonincreasing.

(In fact, they are decreasing.)

(b) For a convergent alternating series meeting the conditions above in Part (a), the error En
in using the sum Sn of the first n terms as an approximation to the sum S is numerically less
than or equal to the (n+ 1)st term of the series.

For an = 1
n4 , we must determine n for which

1

(n+ 1)!
≤ 0.001

(n+ 1)! ≥ 1000

Now 6! = 720 and 7! = 5040. Since 7! is the smallest value great than 1000, therefore

n+ 1 = 7, or n = 6 .

(c) As determined above, we will evaluate

6∑

k=1

(−1)
k+1

k!
=

1

1!
− 1

2!
+

1

3!
− 1

4!
+

1

5!
− 1

6!

= 1− 1

2
+

1

6
− 1

24
+

1

120
− 1

720
=

91

144
≈ 0.632

26. (a) ak = 1
kk > 0 for all k ≥ 1, and lim

n→∞
1
nn = 0.

an+1

an
=

1

(n+1)n+1

1
nn

= nn

(n+1)n+1 = nn

(n+1)(n+1)n = 1
n+1

(
n

n+1

)n

= 1
n+1

(
1

1+ 1
n

)n

< 1 for all n ≥ 1, so

the terms are nonincreasing. (In fact, they are decreasing.)

(b) For a convergent alternating series meeting the conditions above in Part (a), the error En
in using the sum Sn of the first n terms as an approximation to the sum S is numerically less
than or equal to the (n+ 1)st term of the series.

For an = 1
nn , we must determine n for which

1

(n+ 1)
n+1 ≤ 0.001

(n+ 1)
n+1 ≥ 1000

(n+ 1) ln (n+ 1) ≥ ln 1000

n ≥ 3.56, using technology

So n = 4 .

(c) As determined above, we will evaluate

4∑

k=1

(−1)
k+1

kk
=

1

11
− 1

22
+

1

33
− 1

44

= 1− 1

4
+

1

27
− 1

256
=

5413

6912
≈ 0.783

27. (a) ak = 1
2k

> 0 for all k ≥ 1, and lim
n→∞

1
2n = 0.

an+1

an
=

1

2n+1
1
2n

= 2n

2n+1 = 1
2 · 2n

2n = 1
2 < 1 for all n ≥ 1, so the terms are nonincreasing.

(In fact, they are decreasing.)
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(b) For a convergent alternating series meeting the conditions above in Part (a), the error En
in using the sum Sn of the first n terms as an approximation to the sum S is numerically less
than or equal to the (n+ 1)st term of the series.

For an = 1
2n , we must determine n for which

1

2n+1
≤ 0.001

2n+1 ≥ 1000

(n+ 1) ln 2 ≥ ln 1000

n ln 2 + ln 2 ≥ ln 1000

n ln 2 ≥ ln 1000− ln 2 = ln
1000

2
= ln 500

n ≥ ln 500

ln 2
≈ 8.97

So n = 9 .

(c) As determined above, we will evaluate

6∑

k=1

(−1)
k+1

2k
=

1

21
− 1

22
+

1

23
− 1

24
+

1

25
− 1

26
+

1

27
− 1

28
+

1

29

=
1

2
− 1

4
+

1

8
− 1

16
+

1

32
− 1

64
+

1

128
− 1

256
+

1

512
=

171

512
≈ 0.334

Another method: Note that the sum is

9∑

k=1

(−1)
k+1

2k
=

9∑

k=1

(−1)(−1)
k

2k
=

9∑

k=1

(−1)

(

−1

2

)k

.

This is the geometric series
n∑

k=1

ark, with a = −1, r = − 1
2 , n = 9, and |r| = 1

2 < 1.

So the sum is ar(1−rn)
1−r =

(−1)(− 1
2 )

[

1−(− 1
2 )

9
]

1−(− 1
2 )

, which also evaluates to the same result.

28. (a) ak = 1
3k > 0 for all k ≥ 1, and lim

n→∞
1
3n = 0.

an+1

an
=

1

3n+1
1

3n
= 3n

3n+1 = 3n

3·3n = 1
3 < 1 for all n ≥ 1, so the terms are nonincreasing.

(In fact, they are decreasing.)

(b) For a convergent alternating series meeting the conditions above in Part (a), the error En
in using the sum Sn of the first n terms as an approximation to the sum S is numerically less
than or equal to the (n+ 1)st term of the series.

For an = 1
3n , we must determine n for which

1

3n+1
≤ 0.001

3n+1 ≥ 1000

(n+ 1) ln 3 ≥ ln 1000

n ln 3 + ln 3 ≥ ln 1000

n ln 3 ≥ ln 1000− ln 3 = ln

(
1000

3

)

n ≥ ln
(
1000
3

)

ln 3
≈ 5.72

So n = 6 .
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(c) As determined above, we will evaluate

6∑

k=1

(−1)
k+1

3k
=

1

31
− 1

32
+

1

33
− 1

34
+

1

35
− 1

36

=
1

3
− 1

9
+

1

27
− 1

81
+

1

243
− 1

729
=

182

729
≈ 0.250

Another method: Note that the sum is
6∑

k=1

(−1)
k+1

3k
=

6∑

k=1

(−1)(−1)
k

3k
=

6∑

k=1

(−1)

(

−1

3

)k

.

This is the geometric series
n∑

k=1

ark, with a = −1, r = − 1
3 , n = 6, and |r| = 1

3 < 1.

So the sum is ar(1−rn)
1−r =

(−1)(− 1
3 )

[

1−(− 1
3 )

6
]

1−(− 1
3 )

, which also evaluates to the same result.

29. We have S3 =
3∑

k=1

(−1)k+1 1
k2 = (−1)2 1

12 + (−1)3 1
22 + (−1)4 1

32 = 1− 1
4 + 1

9 ≈ 0.8611.

The upper estimate to the error is |E3| ≤ a4 = 1
42 = 1

16 = 0.0625.

30. We have S2 =
2∑

k=0

(−1)k 1
k! = (−1)0 1

0! + (−1)1 1
1! + (−1)2 1

2! = 1− 1 + 1
2 = 0.5000.

The upper estimate to the error is |E2| ≤ a3 = 1
3! =

1
6 ≈ 0.1667.

31. We have S3 =
3∑

k=1

(−1)k+1 1
k4 = (−1)2 1

14 + (−1)3 1
24 + (−1)4 1

34 = 1− 1
16 + 1

81 ≈ 0.9498.

The upper estimate to the error is |E3| ≤ a4 = 1
44 = 1

256 ≈ 0.0039. .

32. We have

S3 =
3∑

k=1

(−1)k+1
(

1√
k

)k

= (−1)2
(

1√
1

)1

+(−1)3
(

1√
2

)2

+(−1)4
(

1√
3

)3

= 1− 1
2+

1
3
√
3
≈ 0.6925.

The upper estimate to the error is |E3| ≤ a4 =
(

1√
4

)4

= 0.0625.

33. We have

S2 =
2∑

k=0

(−1)k 1
k!

(
1
3

)k
= (−1)0 1

0!

(
1
3

)0
+ (−1)1 1

1!

(
1
3

)1
+ (−1)2 1

2!

(
1
3

)2
= 1− 1

3 + 1
18 ≈ 0.7222.

The upper estimate to the error is |E2| ≤ a3 = 1
3!

(
1
3

)3
= 1

6 · 1
27 ≈ 0.00617.

34. We have

S2 =
2∑

k=0

(−1)k 1
k!

(
1
2

)k
= (−1)0 1

0!

(
1
2

)0
+ (−1)1 1

1!

(
1
2

)1
+ (−1)2 1

2!

(
1
2

)2
= 1− 1

2 + 1
8 = 0.6250.

The upper estimate to the error is |E2| ≤ a3 = 1
3!

(
1
2

)3
= 1

6 · 1
8 ≈ 0.0208.

35. We have

S2 =

2∑

k=0

(−1)k
1

2k + 1

(
1

3

)2k+1

= (−1)0
1

2 · 0 + 1

(
1

3

)2·0+1

+ (−1)1
1

2 · 1 + 1

(
1

3

)2·1+1

+ (−1)2
1

2 · 2 + 1

(
1

3

)2·2+1

=
1

3
− 1

3

(
1

3

)3

+
1

5

(
1

3

)5

=
1

3
− 1

81
+

1

1215
≈ 0.3218.

The upper estimate to the error is |E2| ≤ a3 = 1
2·3+1

(
1
3

)2·3+1
= 1

7

(
1
3

)7
= 1

15309 ≈ 6.53× 10−5.
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36. We have S3 =
3∑

k=1

(−1)k+1 1
kk = (−1)2 1

11 + (−1)3 1
22 + (−1)4 1

33 = 1− 1
4 + 1

27 ≈ 0.7870.

The upper estimate to the error is |E3| ≤ a4 = 1
44 ≈ 0.0039.

37. Since
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1

2k is a constant multiple of an alternating harmonic series

which converges, the given series also converges. Further
∞∑

k=1

ak =
∞∑

k=1

1
2k , the series of absolute

values, is a constant multiple of the harmonic series which diverges, so it diverges too. Since

the original series converges, but does not converge absolutely, it is conditionally convergent.

38. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1

3k−4 . We have lim
n→∞

an = lim
n→∞

1
3n−4 = 0. Further, by

the Algebraic Ratio Test,

an+1

an
=

1
3(n+1)−4

1
3n−4

=
3n− 4

3n− 1
< 1 for n ≥ 1.

So the an are nonincreasing. By the Alternating Series Test, the original series converges.

Consider now the series of absolute values
∞∑

k=1

ak =
∞∑

k=1

1
3k−4 . We compare the nth term of this

series with that of the harmonic series
∞∑

k=1

bk =
∞∑

k=1

1
k . We have

lim
n→∞

an
bn

= lim
n→∞

1
3n−4

1
n

= lim
n→∞

n

3n− 4
= lim

n→∞
1

3− 4
n

=
1

3
.

Since the limit is a positive number and the series
∞∑

k=1

bk diverges, the series
∞∑

k=1

ak also

diverges by the Limit Comparison Test. This means that the original series is convergent but

not absolutely convergent. So in other words it is conditionally convergent.

39. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 sin k
k2+1 . Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

sin k
k2+1 . We have

∣
∣
∣
sinn
n2+1

∣
∣
∣ ≤ 1

n2+1 < 1
n2 . So, by the Comparison Test, comparing with

the p-series
∞∑

k=1

bk =
∞∑

k=1

1
k2 which (since p = 2 > 1) is convergent, we see that the series of

absolute values
∞∑

k=1

ak is convergent. This means that the original series is

absolutely convergent.

40. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 cos k
k2 . Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

cos k
k2 . We have

∣
∣ cosn

n2

∣
∣ ≤ 1

n2 . So, by the Comparison Test, comparing with the

p-series
∞∑

k=1

bk =
∞∑

k=1

1
k2 which (since p = 2 > 1) is convergent, we see that the series of absolute

values
∞∑

k=1

ak is convergent. This means that the original series is absolutely convergent.
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41. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1
(
1
5

)k
. Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

(
1
5

)k
. It converges since it is a geometric series with |r| = 1

5 < 1. This means that

the original series is absolutely convergent.

42. The series is
∞∑

k=1

(−1)
k+1

ak =
∞∑

k=1

(−1)
k+1 5k

6k+1 . Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

5k

6k+1 . Rewriting this as
∞∑

k=1

1
6 · 5k

6k =
∞∑

k=1

1
6

(
5
6

)k
we see that converges because it is

the geometric series
∞∑

k=1

ark with a = 1
6 and |r| =

∣
∣ 5
6

∣
∣ = 5

6 < 1. This means that the original

series is absolutely convergent .

43. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 ek

k . We have

lim
n→∞

an = lim
n→∞

en

n
= lim

x→∞
ex

x
= lim

x→∞
ex

1
= ∞ 6= 0,

using L’Hôpital’s rule on a related function of an. Since the limit is nonzero, by the Divergence

Test, the series diverges.

44. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+12k

k2 . We have

lim
n→∞

an = lim
n→∞

2n

n2
= lim

x→∞
2x

x2
= lim

x→∞
2x ln 2

2x
= lim

x→∞
2x(ln 2)2

2
= ∞ 6= 0,

using L’Hôpital’s rule on a related function of an. Since the limit is nonzero, by the Divergence

Test, the series diverges.

45. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1

k(k+1) . Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

1
k(k+1) . The nth term of this series satisfies an = 1

n(n+1) <
1
n2 for all n ≥ 1. Now

the series
∞∑

k=1

bk =
∞∑

k=1

1
k2 converges being a convergent p-series (since p = 2 > 1), so by the

Comparison Test, the series of absolute values converges. This means that the original series is

absolutely convergent.

46. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1

k
√
k+3

. Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

1
k
√
k+3

. The nth term of this series satisfies an = 1
n
√
n+3

< 1
n
√
n
= 1

n3/2 for all

n ≥ 1. Now the series
∞∑

k=1

bk =
∞∑

k=1

1
k3/2 converges being a convergent p-series (since p = 3

2 > 1),

so by the Comparison Test, the series of absolute values converges. This means that the

original series is absolutely convergent.
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47. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1
√
k

k2+1 . Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

√
k

k2+1 . The nth term of this series behaves like an =
√
n

n2+1 = n1/2

n2(1+ 1
n2 )

≈ 1
n3/2 for

large n. We compare with the series
∞∑

k=1

bk =
∞∑

k=1

1
k3/2 . We have

lim
n→∞

an
bn

= lim
n→∞

√
n

n2+1
1

n3/2

= lim
n→∞

n2

n2 + 1
= lim

n→∞
1

1 + 1
n2

= 1.

Since the limit is a positive number, and the series
∞∑

k=1

bk is convergent (it is a convergent

p-series with p = 3
2 > 1), by the Limit Comparison Test, the series of absolute values

∞∑

k=1

ak is

also convergent. This means that the original series is absolutely convergent.

48. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1
√
k

k+1 . Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

√
k

k+1 . The nth term of this series behaves like an =
√
n

n+1 = n1/2

n(1+ 1
n )

≈ 1
n1/2 for large

n. We compare with the series
∞∑

k=1

bk =
∞∑

k=1

1
k1/2 . We have

lim
n→∞

an
bn

= lim
n→∞

√
n

n+1
1√
n

= lim
n→∞

n

n+ 1
= lim

n→∞
1

1 + 1
n

= 1.

Since the limit is a positive number and the series
∞∑

k=1

bk is a divergent p-series (since

0 < p = 1
2 < 1), by the Limit Comparison Test, the series of absolute values is divergent as

well. Next we need to examine the original series for convergence. We have

lim
n→∞

an = lim
n→∞

√
n

n+1 = lim
n→∞

1√
n+ 1√

n

= 0. Consider a related function of an, f(x) =
√
x

x+1 . We

examine the derivative:

f ′(x) =
(x + 1) · 1

2
√
x
−√

x · 1
(x+ 1)2

=
x+ 1− 2x

2
√
x(x+ 1)2

=
1− x

2
√
x(x+ 1)2

≤ 0, for x ≥ 1.

The function is a nonincreasing one for x ≥ 1, which means that the terms of the original series
are nonincreasing for n ≥ 1. By the Alternating Series Test, we see that the original series
must be convergent. However, since the series of absolute values is divergent, this means that

the original series must be conditionally convergent.

49. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 ln k
k . Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

ln k
k . This series diverges by the Integral Test. Using f(x) = ln x

x which is a

continuous, positive and decreasing function (since f ′(x) =
x· 1x−ln x·1

x2 = 1−ln x
x2 ≤ 0) on [e,∞),

and for which ak = f(k) for all values of k ≥ 3, we have

I =

∫ ∞

3

f(x) dx = lim
b→∞

∫ b

3

lnx dx

x
= lim

b→∞

1

2

[
lnx2

]
∣
∣
∣

b

3
= lim

b→∞

1

2

(
ln b2 − ln 32

)
= ∞.
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So the improper integral I diverges, showing that the series of absolute values also diverges.
Since the series of absolute values diverges, we must continue to see if the original series is
convergent. We have

lim
n→∞

an = lim
n→∞

lnn

n
= lim

x→∞
lnx

x
= lim

x→∞

1
x

1
= 0,

using L’Hôpital’s rule on a related function of an. Next we examine the derivative of the
related function:

f ′(x) =
x · 1

x − lnx · 1
x2

=
1− lnx

x2
< 0, for x ≥ 3,

recalling that ln e = 1. This means that for n ≥ 3, the an are nonincreasing. So by the
Alternating Series Test, the original series converges. However, since the series of absolute

values is divergent, this means that the original series is conditionally convergent.

50. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 ln k
k3 . Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

ln k
k3 . The series

∞∑

k=1

dk =
∞∑

k=1

1
k3/2 is a convergent p-series since p = 3

2 > 1. We have

lim
n→∞

an
dn

= lim
n→∞

lnn
n3

1
n3/2

= lim
n→∞

lnn

n3/2
= lim

x→∞
lnx

x3/2
= lim

x→∞

1
x

3
2x

1/2
= lim

x→∞
2

3x3/2
= 0,

using L’Hôpital’s rule on a related function of the ratio of nth terms of the two series. By the
result of Problem 60, in end of chapter exercises of Section 4, we conclude that the series of
absolute values is convergent. But this means that the original series is

absolutely convergent.

51. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 1
kek . Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

1
kek . We compare with the series

∞∑

k=1

bk =
∞∑

k=1

1
k2 which is a convergent p-series

(since p = 2 > 1). We have an = 1
nen < 1

n2 if en > n. (To see that this is true for all n, let
f(x) = ex − x. Then f ′(x) = ex − 1 > 0 for x > 0. This means the function f(x) is an
increasing one for x > 0, and in turn this shows ex > x for x > 0. ) We see that the series of
absolute values is convergent by the Comparison Test, so the original series must be

absolutely convergent.

52. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1

ek
. Consider the series of absolute values

∞∑

k=1

ak =
∞∑

k=1

1
ek
. This is a geometric series that converges because |r| = 1

e < 1, since e > 1.

Since the series of absolute values converges, the original series must be

absolutely convergent.

Applications and Extensions

53. The series is
∞∑

k=2

(−1)kak =
∞∑

k=2

(−1)k

k lnk . The series of absolute values is
∞∑

k=2

ak =
∞∑

k=2

1
k ln k .

Consider the function f(x) = 1
x ln x , which is defined, positive, and decreasing on [2,∞), and

such that ak = f(k) for all k ≥ 2. We have I =
∫∞
2

f(x) dx = lim
b→∞

∫ b

2
dx

x ln x . Let u = lnx, then

du = dx
x . Continuing,

I = lim
b→∞

∫ ln b

ln 2

du

u
= lim

b→∞
[lnu]

∣
∣
∣

ln b

ln 2
= lim

b→∞
[ln(ln b)− ln(ln 2)] = ∞.
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Since the improper integral I diverges, by the Integral Test, the series of absolute values also
diverges. Next, we examine the original series for convergence. We have
lim
n→∞

an = lim
n→∞

1
n lnn = 0. Also, consider the derivative of the related function of an:

f ′(x) = − 1

x2 lnx
− 1

x2(ln x)2
< 0 for x ≥ 2.

So the an are nonincreasing. By the Alternating Series Test, the original series converges. But

since it is not absolutely convergent, it is conditionally convergent.

54. The series is
∞∑

k=2

(−1)kak =
∞∑

k=2

(−1)k

k(ln k)2 . The series of absolute values is

∞∑

k=2

ak =
∞∑

k=2

1
k(ln k)2 . Consider the function f(x) = 1

x(lnx)2 , which is defined, positive, and

decreasing on [2,∞), and such that ak = f(k) for all k ≥ 2. We have

I =
∫∞
2

f(x) dx = lim
b→∞

∫ b

2
dx

x(lnx)2 . Let u = lnx, then du = dx
x . Continuing,

I = lim
b→∞

∫ ln b

ln 2

du

u2
= lim

b→∞

∫ ln b

ln 2

u−2 du = lim
b→∞

[
u−2+1

−2 + 1

]ln b

ln 2

= − lim
b→∞

(
1

ln b
− 1

ln 2

)

= 0.

Since the improper integral I converges, by the Integral Test, the series of absolute values also

converges. But this means that the original series is absolutely convergent.

55. The series is
∞∑

k=1

ak =
∞∑

k=1

cos k
3k−1 . The series of absolute values is

∞∑

k=1

|ak| =
∞∑

k=1

∣
∣ cos k
3k−1

∣
∣ =

∞∑

k=1

3 · |cos k|
3k

. We have 3 · |cosn|
nk ≤ 3 · 1

3k
= 3
(
1
3

)k
for all n ≥ 1, since |cosn| ≤ 1 for all n ≥ 1.

Since
∣
∣ 1
3

∣
∣ = 1

3 < 1, the geometric series
∞∑

k=1

3 ·
(
1
3

)k
converges. So, by the Comparison Test, we

see that the series of absolute values is convergent. This means that the original series
∞∑

k=1

ak is

absolutely convergent .

56. The series is
∞∑

k=1

(−1)k+1 tan−1 k
k . The series of absolute values is

∞∑

k=1

ak =
∞∑

k=1

tan−1 k
k . Its

terms are all nonzero since tan−1 n > 0 for n ≥ 1. Comparing this series with
∞∑

k=1

bk =
∞∑

k=1

1
k we

have

lim
n→∞

an
bn

= lim
n→∞

tan−1 n
n
1
n

= lim
n→∞

tan−1 n =
π

2
.

Since the limit is a positive real number and the series
∞∑

k=1

bk diverges because it is a harmonic

series, we conclude that the series of absolute values
∞∑

k=1

ak also diverges by the Limit

Comparison Test. Next, we check to see if the original series converges or not. We have

lim
n→∞

an = lim
n→∞

tan−1 n

n
= lim

x→∞
tan−1 x

x
= lim

x→∞

1
1+x2

1
= 0,

by using L’Hôpital’s rule on a related function of an, f(x) =
tan−1 x

x . We have, examining its
derivative:

f ′(x) =
x · 1

1+x2 − tan−1 x · 1
x2

=
x− (1 + x2) tan−1 x

x2(1 + x2)
≤ 0
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whenever x ≤ (1 + x2) tan−1 x, or equivalently, whenever tan−1 x ≥ x
1+x2 . We prove that this is

true for all x ≥ 0. Let x0 ≥ 0. The value of the function tan−1 x at x = x0 can be represented
as a definite integral:

tan−1 x0 =

∫ x0

0

dx

1 + x2

since tan−1 0 = 0. The function g(x) = 1
1+x2 is a nonincreasing function of x for x ≥ 0 since

g′(x) = − 2x

(1 + x2)2
≤ 0

for x ≥ 0. So the smallest value of g(x) = 1
1+x2 on the interval [0, x0] is g(x0) =

1
1+x2

0
. So we

have

tan−1 x0 =

∫ x0

0

dx

1 + x2
≥
∫ x0

0

dx

1 + x2
0

=
1

1 + x2
0

∫ x0

0

dx =
x0

1 + x2
0

.

That is, x0

1+x2
0
≤ tan−1 x0, or x0 ≤ (1 + x2

0) tan
−1 x0. Since x0 ≥ 0 was an arbitrary point, it

follows that x ≤ (1 + x2) tan−1 x for all x ≥ 0, i.e., f ′(x) ≤ 0 for all x ≥ 0. This means in the
original series the an are nonincreasing for n ≥ 1 and so the original series is convergent by the
Alternating Series Test. However, the series of absolute values has been shown above to be

divergent, so the original series is conditionally convergent.

57. The series is
∞∑

k=1

ak =
∞∑

k=1

(−1)k+1

k1/k . We have lim
n→∞

an = lim
n→∞

1
n1/n = 1

lim
n→∞

n1/n . To evaluate

lim
n→∞

n1/n, set y = n1/n. Then ln y = 1
n lnn. We have

lim
n→∞

ln y = lim
n→∞

lnn

n
= lim

x→∞
lnx

x
= lim

x→∞

1
x

1
= lim

x→∞
1

x
= 0,

using L’Hôpital’s rule on a related function of the ratio. So lim
n→∞

ln y = ln lim
n→∞

y = 0 gives

lim
n→∞

y = lim
n→∞

n1/n = 1.

Since lim
n→∞

an = 1 6= 0, by the Divergence Test, the series will be divergent .

58. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1
(

k
k+1

)k

. We have

lim
n→∞

an = lim
n→∞

(
n

n+ 1

)n

= lim
n→∞

1
(
1 + 1

n

)n =
1

lim
n→∞

(
1 + 1

n

)n =
1

e
6= 0,

using the limit definition of e. Since the limit is nonzero, by the Divergence Test, the series will

be divergent.

59. The series is 1− 1
2! +

1
3! − 1

4! +
1
5! − · · · =

∞∑

k=1

(−1)k+1 1
k! . The series of absolute values is

∞∑

k=1

ak =
∞∑

k=1

1
k! . the nth term of this series satisfies an = 1

n! ≤ 1
n2 when n! ≥ n2. Let n ≥ 4. We

estimate as follows:

n! = n · (n− 1) · (n− 2)(n− 3) · · · · 3 · 2 · 1
≥ n · (n− 1) · (n− 2) · 1 · 1 · 1 · · · · 1 · 1 · 1
= n(n− 1)(n− 2).



8.5 Alternating Series; Absolute Convergence 8-115

Next, we demonstrate (for n ≥ 4) that n(n− 1)(n− 2) ≥ n2:

n(n− 1)(n− 2) ≥ n2

n(n2 − 3n+ 2) ≥ n2

n2 − 3n+ 2 ≥ n

n2 − 4n+ 2 ≥ 0

n2 − 4n+ 4− 2 ≥ 0

(n− 2)2 − 2 ≥ 0

(n− 2)2 ≥ 2.

That is, n− 2 ≤ −
√
2 or n− 2 ≥

√
2. Keeping the positive root solution, we have

n ≥ 2 +
√
2 ≈ 3.414 which concurs with our initial assumption that n ≥ 4. So we have shown

the desired inequality, that is n! > n2 for n ≥ 4. Since the series
∞∑

k=1

bk =
∞∑

k=1

1
k2 is a convergent

p-series (since p = 2 > 1), by the Comparison Test, the series of absolute values converges,

which means the original series is absolutely convergent.

60. The series is 1− 1
32 + 1

52 − 1
72 + · · · =

∞∑

k=1

(−1)k+1 1
(2k−1)2 . The series of absolute values is

∞∑

k=1

ak =
∞∑

k=1

1
(2k−1)2 . The nth term of this series satisfies an = 1

(2n−1)2 < 1
n2 , since 2n− 1 > n

for n > 1. Since the series
∞∑

k=1

bk =
∞∑

k=1

1
k2 is a convergent p-series (since p = 2 > 1), by the

Comparison Test, the series of absolute values converges, which means the original series is

absolutely convergent.

61. (a) Since 1
2 − 1

3 + 1
22 − 1

32 + 1
23 − 1

33 + · · · =
∞∑

k=1

(
1
2k − 1

3k

)
, the series cannot be written in

the form
∞∑

k=1

(−1)kak. Thus the Alternating Series Test is not applicable.

(b)
∞∑

k=1

(
1
2k

− 1
3k

)
=

∞∑

k=1

1
2k

−
∞∑

k=1

1
3k
, which is the difference of two convergent series and thus

converges.

(c)
∞∑

k=1

1
2k

=
1
2

1− 1
2

= 1 and
∞∑

k=1

1
3k

=
∞∑

k=1

1
3

1− 1
3

= 1
2 , so

∞∑

k=1

(
1
2k

− 1
3k

)
= 1− 1

2 =
1

2
.

62. (a) To apply the Alternating Series Test, ak must be nonincreasing. But for

∞∑

k=1

(−1)kak where







ak =
1

k
, if k is odd

ak =
1

k2
, if k is even

a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1 ≥ · · · is not true, since

a1 = 1, a2 =
1

4
, a3 =

1

3
, a4 =

1

16
, a5 =

1

5
, . . .
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(b)
S =

∞∑

k=1

(−1)
k
ak where







ak =
1

k
, if k is odd

ak =
1

k2
, if k is even

=

∞∑

k=1

[

− 1

2k − 1
+

1

(2k)
2

]

=
∞∑

k=1

(

− 1

2k − 1

)

+
∞∑

k=1

1

(2k)2

=

∞∑

k=1

1

(2k)
2 −

∞∑

k=1

1

2k − 1

But

∞∑

k=1

1

2k − 1
=

1

1
+

1

3
+

1

5
+ · · ·

=
1

2

(
1

1
+

1

1
+

1

3
+

1

3
+

1

5
+

1

5
+ · · ·

)

>
1

2

(
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · ·

)

So

∞∑

k=1

1

2k − 1
>

1

2

∞∑

n=1

1

n

Now
∞∑

n=1

1
n is the harmonic series, which diverges.

So
∞∑

k=1

1
2k−1 diverges, since its terms are greater than those of a divergent series.

Therefore the original series diverges, since it is a convergent series minus a divergent series.

63. The series expands as
∞∑

k=1

(−1)k+1

k = 1− 1
2 + 1

3 − 1
4 + · · · . So positive terms are of the form

∞∑

k=1

1
2k−1 . Since the nth term of this series satisfies 1

2n−1 > 1
2n for n ≥ 1, and the series

∞∑

k=1

1
2k ,

being a constant multiple of the divergent harmonic series is divergent, the series of positive
terms also diverges by the Comparison Test, as was needed to be proved.

64. The series expands as
∞∑

k=1

(−1)k+1

k = 1− 1
2 + 1

3 − 1
4 + · · · . So negative terms are of the form

− 1
2

∞∑

k=1

1
k , which, being a constant multiple of the divergent harmonic series is divergent. So the

series of negative terms diverges as was needed to be proved.

65. We group terms of the alternating harmonic series as follows: S1 = 1;
S2 = 1 +

(
− 1

2 − 1
4 − 1

6 − 1
8

)
≈ −0.0416667; S3 = S1 + S2 +

(
1
3

)
≈ +0.2916663;

S4 = S1 + S2 + S3 +
(
− 1

10 − 1
12 − 1

14 − 1
16

)
≈ 0.02559557, and so on. That is, for odd and even

indices,

S2n−1 = S1 + S2 + · · ·+ S2n−2 +

(
1

2n− 1

)

and

S2n = S1 + S2 + · · ·+ S2n−1 +

(

− 1

8n− 6
− 1

8n− 4
− 1

8n− 2
− 1

8n

)

.



8.5 Alternating Series; Absolute Convergence 8-117

We show that the terms of the sequence {Sn} are decreasing and bounded from below by 0.
Using the Algebraic Difference Test,

S2n − S2n−1 = S2n−1 −
1

8n− 6
− 1

8n− 4
− 1

8n− 2
− 1

8n
− 1

2n− 1
. (1)

Examining equation (1), that the quantity on the right side will be negative for n ≥ 1, proving
that the sequence is a decreasing one. By its construction, the sequence is bounded from below

by 0, so it converges. The sum to which the series
∞∑

k=1

Sk it converges is 0 since the limit of the

sequence {Sn} of partial sums is 0. So we have managed to find a way to group the terms of
the alternating harmonic series to produce a series whose sum is 0.

66. By trial and error, we find that 1 + 1
3 + 1

5 + · · ·+ 1
13 < 2 < 1 + 1

3 + 1
5 + · · ·+ 1

15 . This
means we can come close to 2 using the first 7 terms of the positive odd denominator numbers.
Subsequently, we form sum groupings as in Problem 65, starting from n = 15. This way, we
will be able to form groupings whose eventual sum will be 2.

67. We create blocks of numbers that sum to a little above 1, and then blocks that sum to a
little under 1, and so on; adding these blocks up, one gets the sum to be infinite. This can be
done because the sum of the positive terms of the conditionally convergent alternating
harmonic series diverges, and the sum of the negative terms of the conditionally convergent
alternating harmonic series diverges as well.

68. We have the series of absolute values of e−x cosx+ e−2x cos 2x+ e−3x cos 3x+ · · · satisfy
(since |cosθ| ≤ 1),

|e−x cosx|+|e−2x cos 2x|+|e−3x cos 3x|+· · · ≤ e−x+e−2x+e−3x+· · · =
∞∑

k=1

(
1
e

)kx
=

∞∑

k=1

[(
1
e

)x]k
.

This last is a geometric series that converges since 0 < |r| =
(
1
e

)x
< 1 for all x > 0 (since

ex > 1 for x > 0). By the Comparison Test, the series of absolute values converges, so the
original series converges absolutely, as was needed to be shown.

69. The nth term of the series of absolute values of the series

1 + r cos θ+ r2 cos(2θ) + r3 cos(3θ) + · · · satisfies |rn cosnθ| ≤ |r|n. Since
∞∑

k=1

|r|k is a geometric

series that is convergent when 0 < |r| < 1, or −1 < r < 1, we find that the series of absolute

values converges, and the original series absolutely converges for − 1 < r < 1. Also, since the

geometric series diverges when |r| ≥ 1, we conclude that the given series diverges for |r| ≥ 1.

70. The alternating harmonic series is conditionally convergent, so its terms can be rearranged
to obtain different kinds of sums, as illustrated in the statement of the problem.

71. N = 1 + 1
2 + 1

3 + 1
4 + · · · , and N − 1 are both divergent harmonic series. They can be

added and the sums rearranged to produce any number one wishes. (See for example
Problems 65-67 where we rearranged the alternating harmonic series, whose series of absolute
values is the harmonic series. We were able to rearrange terms to obtain any sum we wanted.)
Only series which are absolutely convergent can be added together and rearranged at will to
produce a convergent series with a unique sum. (See p.686 for the list of properties of
absolutely convergent series.)

72. The series will either converge or diverge. For instance consider the divergent harmonic

series
∞∑

k=1

1
k and the divergent (constant term) series

∞∑

k=1

1. The sum will diverge, since the

partial sum is Sn = n+ 1 + 1
2 + 1

3 + · · ·+ 1
n , and lim

n→∞
Sn = ∞. Their difference will diverge as

well, since the partial sum will be
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Sn = (1− 1) +
(
1− 1

2

)
+
(
1− 1

3

)
+
(
1− 1

4

)
+ · · ·+

(
1− 1

n

)
= 0 + 1

2 + 3
4 + · · ·+ n−1

n =
n∑

k=1

k
k+1 .

Since lim
n→∞

an = lim
n→∞

n
n+1 = 1 6= 0, by the Divergence Test, the difference series also diverges.

Now consider the divergent harmonic series
∞∑

k=1

1
k and the series

∞∑

k=1

1
k+1 which, being the

harmonic series from the second term forward, also diverges. Then their difference will
converge, and this is seen as follows. The nth partial sum of the difference of these series will be

Sn =

(
1

1
− 1

2

)

+

(
1

2
− 1

3

)

+ · · ·+
(

1

n− 1
− 1

n

)

+

(
1

n
− 1

n+ 1

)

= 1− 1

n+ 1

which converges to 1, since

lim
n→∞

Sn = lim
n→∞

(

1− 1

n+ 1

)

= 1− 0 = 1.

So the series which is the term by term difference of the two series also converges.
These examples demonstrate that nothing conclusive can be said about the convergence or
divergence when two divergent series are added or subtracted term by term from each other.

73. The summand in the series
∞∑

k=1

1
k(k+1) can be split up into partial fractions as

∞∑

k=1

(
1
k − 1

k+1

)

. The nth partial sum has the form

Sn =
(
1
1 − 1

2

)
+
(
1
2 − 1

3

)
+ · · ·+

(
1

n−2 − 1
n−1

)

+
(

1
n−1 − 1

n

)

= 1− 1
n , due to the telescoping.

We have lim
n→∞

Sn = lim
n→∞

(
1− 1

n

)
= 1. Since the limit of the sequence {Sn} of partial sums is 1,

it means the series sums to 1.

74. To show the series
∞∑

k=1

(ak + bk) converges absolutely, consider the absolute value of the nth

term. We have |an + bn| ≤ |an|+ |bn|, by the Triangle Inequality. Let the sequence of partial

sums of
∞∑

k=1

|ak| be {Sn} and the sequence of partial sums of
∞∑

k=1

|bk| be {S′
n}, and the sequence

of partial sums of
∞∑

k=1

|ak + bk| be {S′′
n}. Then, since we have

0 ≤ S′′
n =

n∑

k=1

|ak + bk| ≤
n∑

k=1

|ak|+ |bk| =
n∑

k=1

|ak|+
n∑

k=1

|bk| = Sn + S′
n

and (by assumption) the sequences {Sn} and {S′
n} converge, it follows that the sequence {S′′

n}
is also convergent. Since absolutely convergent series can be rearranged and regrouped at will

without changing the sum, it follows that
∞∑

k=1

(ak + bk) =
∞∑

k=1

ak +
∞∑

k=1

bk.

75. An absolutely convergent series can be rearranged at will (see Problem 78 below), so one
may group all positive terms together, and all the negative terms together, and the sum of the
series will not be affected. Since the entire series has a finite sum, it means that each of the
component series will also have a finite sum, and so will converge separately.

76. Let the conditionally convergent series be
∞∑

k=1

ak. We assume the terms are nonzero; none

of the arguments below will be affected by a few zero terms. Note that bn = an+|an|
2 are all the
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positive nth terms, and cn = an−|an|
2 are all the negative nth terms. Also note that

an = bn + cn. Suppose that the series of positive terms is convergent. Then, because its terms

are all positive, it is also absolutely convergent. Since
∞∑

k=1

ak converges conditionally and
∞∑

k=1

bk

converges absolutely, then
∞∑

k=1

ck converges absolutely, because |cn| = 1
2 (|an − |an||) ≤

1
2 (an + |an|) = bn so by the Comparison Test, if

∞∑

k=1

bk converges absolutely, then so must

∞∑

k=1

ck. But since an = bn + cn this must mean that
∞∑

k=1

ak converges absolutely (by the result

of Problem 74) which contradicts its conditional convergence. This contradiction was a result

of assuming that
∞∑

k=1

bk was convergent, so that must be false. This means that the series of

positive terms diverges. But since cn = an − bn it means that
∞∑

k=1

ck must also be divergent.

So, finally, we have shown that the series of positive terms and the series of negative terms
both diverge separately.

77. The nth term of the series
∞∑

k=1

ck is

|cn| =
{

1
an , n even
1
bn , n odd

Let d = min{a, b}. Since a > 1 and b > 1, we have 1
d < 1 and thus |cn| ≤ 1

dn . Since
1
d < 1, the

series
∞∑

k=1

1
dk is a convergent geometric series, so

∞∑

k=1

|ck| converges. This means that
∞∑

k=1

ck

converges absolutely.

78. If the series
∞∑

k=1

ak is absolutely convergent, then the series of absolute values
∞∑

k=1

|ak| = L

must be convergent to a finite number (say) L. Since the sequence of partial sums {Sn} is also
convergent to the limit L, this means for every ǫ > 0, there must be an N1 such that for
n > N1 we have

|Sn − L| =
∣
∣
∣
∣
∣
Sn −

∞∑

k=1

|ak|
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∞∑

k≥N1+1

|ak|

∣
∣
∣
∣
∣
∣

<
ǫ

2
.

That is, for any ǫ > 0, there exists an N1 such that
∞∑

k=N1+1

|ak| < ǫ
2 . Let f : N → N be a

permutation on the indices of the series, that is a one to one and onto map defined on the

positive integers. This achieves the rearrangement of the series from
∞∑

k=1

ak to
∞∑

k=1

af(k). Since

the series of absolute values is convergent, it means that the sequence of partial sums
Sn = |a1|+ |a2|+ · · ·+ |an| is bounded from above by some real number, say K. Then the
sequence of partial sums of the rearrangements S′

n = |af(1)|+ |af(2)|+ · · ·+ |af(n)| is also
bounded from above by the some number K ′. Since {S′

n} is a bounded from above and
monotonically increasing sequence (since all its terms are positive), it will converge.
To show that the limits are the same, we use the fact that there exists some N2 ≥ N1 such that
among the terms af(1), af(2), · · · , af(N2) we shall find all of the terms a1, a2, · · · , aN1 . For
n > N2, let D be the (finite) set of subscripts k ∈ {f(1), f(2), f(3), · · ·f(n)} that do not match
up with any of the {1, 2, · · ·N1}. Then for n > N2 ≥ N1, we have

∣
∣
∣
∣
∣

n∑

k=1

|af(k)| −
N1∑

k=1

|ak|
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑

D
|af(k)|

∣
∣
∣
∣
∣
≤
∑

D
|af(k)| ≤

∞∑

k=N1+1

|ak| <
ǫ

2
,
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where the final inequality follows from the fact that all the terms |af(k)| with k ∈ D are to be
found among the set {|aN1+1|, |aN1+2|, · · · }, since N1 ≤ N2 < n and D, which is a finite set,
only contains elements not in the set {1, 2, 3, · · · , N1}. Now, we compute:

∣
∣
∣
∣
∣

n∑

k=1

|af(k)| − L

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n∑

k=1

|af(k)| −
N1∑

k=1

|ak|+
N1∑

k=1

|ak| − L

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

n∑

k=1

|af(k)| −
N1∑

k=1

|ak|
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

N1∑

k=1

|ak| − L

∣
∣
∣
∣
∣
<

ǫ

2
+

ǫ

2
= ǫ.

This shows that the series of absolute values obtained by a rearrangement of the original series
converges to L. So we have shown that a rearrangement of the original absolutely convergent
series will result in a series which itself is absolutely convergent to the same limit as the
original series.

79. The proof of this result is identical in every respect to the proof carried out in the
textbook, pages 680-681 (Alternating Series Test); the only change is that instead of writing

the alternating series as
∞∑

k=1

(−1)k+1ak with ak > 0 in the textbook, it is written as
∞∑

k=1

ak in

this problem. (That is, the minus signs are now included in the terms ak themselves.) So, we
have to be careful about putting absolute value signs around the terms while importing the
proof from the book to this problem. For instance, in the text, the hypothesis for
nondecreasing terms is written as ak+1 ≤ ak while in the problem the hypothesis for
nondecreasing terms applies to the absolute values: |ak+1| ≤ |ak| for all k ≥ 1. As in the book,
form the series {S2n} of partial sums and show that it is nondecreasing; form the series
{S2n+1} of partial sums and show that it is nonincreasing; finally show that both these series
tend to the same limit as n → ∞.

Challenge Problems

80. The series can be written as
∞∑

k=1

(−1)kak =
∞∑

k=1

sin (−1)k

k =
∞∑

k=1

(−1)k sin
(
1
k

)
, since

sin(−θ) = − sin θ. The series of absolute values is
∞∑

k=1

ak =
∞∑

k=1

sin
(
1
k

)
. Note that the terms of

the series are nonzero because sin
(
1
n

)
> 0 for n ≥ 1. Comparing this series to the divergent

harmonic series,
∞∑

k=1

bk =
∞∑

k=1

1
k , we have

lim
n→∞

an
bn

= lim
n→∞

sin
(
1
n

)

1
n

= lim
x→0

sinx

x
= 1,

employing the substitution x = 1
n , and using the standard limit result at the end. Since the

limit is a positive number and the series
∞∑

k=1

bk is divergent, by the Limit Comparison Test, we

see that the series
∞∑

k=1

ak must be divergent. So the series of absolute values diverges. Next, we

need to see if the original series itself converges. The nth term satisfies
lim
n→∞

an = lim
n→∞

sin 1
n = 0. Also, if f(x) = sin 1

x is a related function of the nth term of the

series, examining its derivative yields f ′(x) = − 1
x2 cos

1
x < 0 for x > 1 (recall that for θ between

0 and 1 radians, cos θ is a positive function). This shows that the reated function, and the
sequence it is related to, are nonincreasing. So by the Alternating Series Test, the original
series converges. But since the series of absolute values has been shown above to be divergent,

this means that the original series is conditionally convergent.
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81. The series is
∞∑

k=2

(−1)kak =
∞∑

k=2

(−1)k

p√k3+1
. The absolute value series is

∞∑

k=2

ak =
∞∑

k=2

1
(n3+1)1/p

.

The nth term of the series behaves like

an =
1

(n3 + 1)1/p
=

1

n3/p
(
1 + 1

n3

)1/p
≈ 1

n3/p

for large n. So we compare with the series
∞∑

k=2

bk =
∞∑

k=2

1
k3/p . We have

lim
n→∞

an
bn

= lim
n→∞

1
(n3+1)3/p

1
n3/p

= lim
n→∞

(
n3

n3 + 1

)1/p

= lim
n→∞

1
(
1 + 1

n3

)1/p
= 1.

Since the limit is a positive number and the series
∞∑

k=2

bk =
∞∑

k=2

1
kq is a convergent “q-series”

since for 2 < p < 3, we have q = 3
p > 1, it means that the absolute value series is also

convergent by the Limit Comparison Test. This in turn implies that the original series is

absolutely convergent if 2 < p < 3.

If p ≥ 3, then the large n behavior of the nth term is 1
n3/p = 1

nq where q ≤ 1. We compare with

the divergent series
∞∑

k=2

bk = 1
kq for q ≤ 1; the computation is identical to the one shown above,

except the conclusion is that the original series diverges if p ≥ 3.

82. The series is
∞∑

k=2

(−1)kak =
∞∑

k=2

(−1)kk(1−k)/k. The series of absolute values is

∞∑

k=2

ak =
∞∑

k=2

k(1−k)/k =
∞∑

k=2

k1/k

k . Comparing with the divergent harmonic series
∞∑

k=2

bk =
∞∑

k=2

1
k

we have

lim
n→∞

an
bn

= lim
n→∞

n1/n

n
1
n

= lim
n→∞

n1/n = 1,

where the reader is referred to Problem 57 for the evaluation of the final limit. Since the limit

is a positive number, and the series
∞∑

k=2

bk diverges, by the comparison test, the series of

absolute values diverges as well. Next, we check to see if the original series is convergent. We

have lim
n→∞

an = lim
n→∞

n1/n

n = 0. Let f(x) = x1/x

x be a related function of the an. Let y = x1/x.

Then ln y = 1
x lnx. Differentiating, we have

y′

y
=

x · 1
x − lnx · 1

x2
=

1− lnx

x2
.

Next, examine the derivative of f(x) = x1/x

x = y
x :

f ′(x) =
y′

x
− y

x2
=

x1/x

x2
(1− lnx)− x1/x

x2
=

x1/x

x2
(− lnx) < 0,

whenever x > 1. Since the related function is decreasing the series is nonincreasing for n ≥ 1.
By the Alternating Series Test, the original series converges. However, since the series of

absolute values diverges as seen above, the original series is conditionally convergent.
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83. The series is
∞∑

k=2

(−1)k

(ln k)ln k . The series of absolute values is
∞∑

k=2

ak =
∞∑

k=2

1
(lnk)ln k . We have

(lnn)lnn =
(

eln(lnn)
)lnn

=
(
elnn

)ln(lnn)
= nln(lnn),

since (ea)b =
(
eb
)a
. Since lnn is an increasing function, so is ln(lnn). So there will exist some

n > 2 for which ln(lnn) ≥ 2. Solving, we find that n ≥ ee
2 ≈ 1618.18. So we see that the nth

term of this series satisfies 1
(lnn)lnn < 1

n2 for n ≥ 1619. Since the p-series
∞∑

k=2

bk =
∞∑

k=2

1
k2

converges (p = 2 > 1), we see by the Comparison Test that the series of absolute values also
converges. (We note that convergence does not depend on the omission of a finite number of
terms from the comparison, in this instance the first 1618 terms, recalling the series starts with

n = 2.) But this means that the original series is absolutely convergent.

84. The series is
∞∑

k=1

(−1)k+1
√
k

k+1 . We have lim
n→∞

|an| = lim
n→∞

√
n

n+1 = lim
n→∞

1√
n+ 1√

n

= 0. Let

f(x) =
√
x

x+1 be a related function of the absolute value of the nth term of the series. Then,
examining the derivative, we have

f ′(x) =
(x+ 1) · 1

2
√
x
−√

x · 1
(x+ 1)2

=
x+ 1− 2x

2
√
x(x + 1)2

=
1− x

2
√
x(x + 1)2

≤ 0

for x ≥ 1. Since the function is nonincreasing, this means the sequence {|ak|} is nonincreasing,
or |ak+1| ≤ |ak| for k ≥ 1. By the result of Problem 79, we see that the series converges.

85. The series is
∞∑

k=1

ak =
∞∑

k=1

(−1)k+1 k
(k+1)2 . We have

lim
n→∞

|an| = lim
n→∞

n
(n+1)2 = lim

n→∞
1

(√
n+ 1√

n

)2 = 0. Let f(x) = x
(x+1)2 be a related function of the

absolute value of the nth term of the series. Then, examining the derivative, we have

f ′(x) =
(x+ 1)2 · 1− x · 2(x+ 1) · 1

(x+ 1)4
=

(x+ 1)

(x+ 1)4
[x+ 1− 2x] =

1− x

(1 + x)3
≤ 0

for x ≥ 1. Since the function is nonincreasing, this means the sequence {|ak|} is nonincreasing
or |ak+1| ≤ |ak| for k ≥ 1. By the result of Problem 79, we see that the series converges.

86. The series is
∞∑

k=2

(−1)kak =
∞∑

k=2

(−1)k ln k+1
k . We have

lim
n→∞

an = lim
n→∞

ln
n+ 1

n
= ln lim

n→∞
n+ 1

n
= ln lim

n→∞

(

1 +
1

n

)

= ln(1 + 0) = 0.

Let f(x) = ln x+1
x be a related function of the absolute value of the nth term of the series.

Then, examining the derivative, we have

f ′(x) =
x

x+ 1
· x · 1− (x+ 1) · 1

x2
= − 1

x(x+ 1)
≤ 0

for x ≥ 1. Since the function is nonincreasing, this means the sequence {|ak|} is nonincreasing
or |ak+1| ≤ |ak| for k ≥ 1. By the result of Problem 79, we see that the series converges.
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87. (a) Since lim
n→∞

an = 0, we have lim
n→∞

∆an = lim
n→∞

(an − an+1) = 0. We are given that the

sequence {∆an} decreases. Therefore, by the Alternating Series Test,
∞∑

k=1

(−1)k+1∆ak is a

convergent alternating series.

(b) Let Rn =
∞∑

k=n+1

(−1)k+1ak. Rn is a well defined value since
∞∑

k=1

(−1)k+1ak is a convergent

alternating series. Expanding Rn, we have

Rn = (−1)n+2an+1 + (−1)n+3an+2 + (−1)n+4an+3 + (−1)n+5an+4 + · · ·
= (−1)n+2[an+1 − an+2 + an+3 − an+4 + · · · ]
= (−1)n+2[(an+1 − an+2) + (an+3 − an+4) + · · · ].

Since the sequence {an} decreases, each of the pairs grouped in this last expression is positive,
so the absolute value of Rn is given by

|Rn| = an+1 − an+2 + an+3 − an+4 + · · · .
Rewriting this produces

|Rn| =
an
2

+
1

2
[−an + 2an+1 − 2an+2 + 2an+3 − 2an+4 + · · · ] (1)

=
an
2

+
1

2
[(−an + an+1) + (an+1 − an+2) + (−an+2 + an+3) + · · · ]

=
an
2

+
1

2
[−(an − an+1) + (an+1 − an+2)− (an+2 − an+3) + · · · ]

=
an
2

+
1

2
[−∆an +∆an+1 −∆an+2 +∆an+3 − · · · ] (2)

=
an
2

+
1

2

∞∑

k=1

(−1)k∆ak+n−1,

as was required to be shown. Rewriting equation (2) produces

|Rn| =
an
2

+
1

2
[(−∆an +∆an+1) + (−∆an+2 +∆an+3) + · · · ].

Since {∆an} is a decreasing sequence, each of the pairs grouped in this last expression is
negative, so we have

|Rn| <
an
2
.

(c) Use equation (1) from part (b) to rewrite the absolute value of Rn as follows:

|Rn| =
an+1

2
+

1

2
[an+1 − 2an+2 + 2an+3 − 2an+4 + · · · ]

=
an+1

2
+

1

2
[(an+1 − an+2) + (−an+2 + an+3) + (an+3 − an+4) + · · · ]

=
an+1

2
+

1

2
[∆an+1 −∆an+2 +∆an+3 − · · · ] (3)

=
an+1

2
+

1

2

∞∑

k=1

(−1)k+1∆ak+n,

as was required to be shown. Rewriting equation (3) produces

|Rn| =
an+1

2
+

1

2
[(∆an+1 −∆an+2) + (∆an+3 −∆an+4) + · · · ].

Since {∆an} is a decreasing sequence, each of the pairs grouped in this last expression is
positive, so we have

|Rn| >
an+1

2
.
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AP
R©

Practice Problems

1. Evaluate each of the series as follow:

I. The series
∞∑

k=1

(−1)
k 1
k2 is an alternating series, with an = 1

n2 . We begin by

confirming that lim
n→∞

(an) = lim
n→∞

1
n2 = 0. Next, using the Algebraic Ratio test, we

verify that the terms ak = 1
k2 are nonincreasing.

Since an+1

an
=

1
(n+1)2

1
n2

=
(

n
n+1

)2

< 1 for all n ≥ 1, the terms ak are nonincreasing.

By the Alternating Series Test, the series converges .

II. The series
∞∑

k=1

(−1)
k( 5

3

)k
is an alternating series, where an =

(
5
3

)n
. We check

lim
n→∞

(an) = lim
n→∞

(
5
3

)n
= ∞.

Since lim
n→∞

(an) 6= 0, by the Test for Divergence, the series diverges .

III. The series
∞∑

k=1

(−1)
k 1√

k
is an alternating series, where an = 1√

n
= 1

n1/2 . We check

lim
n→∞

(an) = lim
n→∞

1
n1/2 = 0.

Next, using the Algebraic Ratio test, we verify that the terms ak = 1
k1/2 are

nonincreasing.

Since an+1

an
=

1

(n+1)1/2

1

n1/2

= n1/2

(n+1)1/2
=
(

n
n+1

)1/2

= 1 for all n ≥ 1

the terms ak are nonincreasing. By the Alternating Series Test, the series
converges .

CHOICE C

2. The error, En, of a convergent Alternating Series using n terms is numerically less than
or equal to the (n+ 1)st term of the series (i.e., |En| ≤ an+1).

Here the maximum error incurred by using the first three non-zero terms to approximate

the sum of the series is less than or equal to the 4th term. |En| ≤ a4 = 4
104 = 0.0004 .

CHOICE C

3. The error, En, of a convergent Alternating Series using n terms is numerically less than
or equal to the (n+ 1)st term of the series (i.e., |En| ≤ an+1).

Here, |En| < 0.001 ≤ an+1 ≤ 1
(n+1)3

.

1

(n+ 1)
3 ≤ 1

1000

(n+ 1)3 ≥ 1000

n+ 1 ≥ 10

n ≥ 9

n = 9

CHOICE B

4. I. We begin by testing the series for absolute convergence.

The series of absolute values is
∞∑

k=1

∣
∣
∣
(−1)k+13

k

∣
∣
∣ = 3

∞∑

k=1

1
k .

This is a p-series which converges if p > 1 and diverges if p ≤ 1.

Here,
∞∑

k=1

∣
∣
∣
(−1)k+13

k

∣
∣
∣ diverges, i.e., it is not absolutely convergent .
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We need to apply the Alternating Series test to determine if the given series is
conditionally convergent.

The series
∞∑

k=1

(−1)
k 1
k2 is an alternating series, where an = 1

n2 .

We begin by confirming that lim
n→∞

(an) = lim
n→∞

3
n = 0. Next, using the Algebraic

Ratio test, we verify that the terms ak = 3
k are nonincreasing.

Since an+1

an
=

1
(n+1)

1
n

=
(

n
n+1

)

=
(

1
1+ 1

n

)

= 1 for all n ≥ 1 the terms ak are

nonincreasing. By the Alternating Series Test, the series converges.

Thus it is conditionally convergent .

II. We begin by testing the series for absolute convergence.

The series of absolute values is
∞∑

k=1

∣
∣
∣(−1)

k+1( 1
k

)4/3
∣
∣
∣ =

∞∑

k=1

1
k4/3 .

This is a p-series which converges if p > 1 and diverges if p ≤ 1.

Here, since p = 4
3 > 1,

∞∑

k=1

∣
∣
∣(−1)

k+1( 1
k

)4/3
∣
∣
∣ converges.

The series
∞∑

k=1

(−1)
k+1( 1

k

)4/3
is absolutely convergent .

III. We begin by testing the series for absolute convergence.

The series of absolute values is
∞∑

k=1

∣
∣
∣(−1)

k( 3
4

)k
∣
∣
∣ =

∞∑

k=1

(
3
4

)k
.

This is a convergent Geometric Series.

The series
∞∑

k=1

(−1)
k( 3

4

)k
is absolutely convergent .

CHOICE A

5. (a)
∞∑

k=0

(−1)
k

k!
=

(−1)
0

0!
+

(−1)
1

1!
+

(−1)
2

2!
+

(−1)
3

3!
+

(−1)
4

4!

= 1− 1 +
1

2
− 1

6
+

1

24

(b) The series
∞∑

k=1

(−1)k

k! is an alternating series, where an = 1
n! . We check

lim
n→∞

(an) = lim
n→∞

1
n! = 0.

Next, using the Algebraic Ratio test, we verify that the terms ak = 1
k! are

nonincreasing.

Since an+1

an
=

1
(n+1)!

1
n!

= n!
(n+1)! =

n!
(n+1)n! =

1
n+1 ≤ 1 for all n ≥ 1,

the terms ak are nonincreasing. By the Alternating Series Test, the series
converges .

(c) The error En of a convergent Alternating Series using n terms is numerically less
than or equal to the (n+ 1)st term of the series (i.e., |En| ≤ an+1).

Here, |En| < 0.0001 ≤ an+1 ≤ 1
(n+1)! .

1

10, 000
≤ 1

(n+ 1)!

(n+ 1)! ≤ 10, 000

7! = 5, 040

8! = 40, 320
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Since 8! is the least factorial to exceed 10,000,

n+ 1 = 8

n = 7

Since the series begins with k = 0, n = 7 would be the 8th term.

8 terms

6. This series has both positive and negative terms, but it is not an alternating series. Use

the Absolute Convergence Test to investigate the series
∞∑

k=1

∣
∣
∣
cos (2k)

4k

∣
∣
∣. Since

∣
∣
∣
cos (2n)

4n

∣
∣
∣ ≤ 1

4n

for all n, and since
∞∑

k=1

1
4k is a convergent Geometric Series, then by the Comparison Test

for Convergence, the series
∞∑

k=1

∣
∣
∣
cos (2k)

4k

∣
∣
∣ converges.

That is,
∞∑

k=1

cos (2k)
4k

is absolutely convergent .

8.6 Ratio Test; Root Test

Concepts and Vocabulary

1. False: We have
∣
∣
∣
an+1

an

∣
∣
∣ =

∣
∣
∣
cos(n+1)π

cosnπ

∣
∣
∣ = 1 for all n, so lim

n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1. This means the Ratio

Test is inconclusive, and you cannot conclude divergence as claimed.

2. False: For a counterexample, consider the series
∞∑

k=1

ak =
∞∑

k=1

1
k2 . We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
(n+1)2

1
n2

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n2

(n+ 1)2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

1 + 1
n

∣
∣
∣
∣

2

= 1,

whereas (see p.572)
∞∑

k=1

1
k2 = π2

6 . So the value of lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ has no relation to the actual

value of the sum
∞∑

k=1

ak.

3. False: If lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1, then the Ratio Test is inconclusive. For a counterexample,

consider the series
∞∑

k=1

ak =
∞∑

k=1

1
k . We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
n+1
1
n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n

n+ 1

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

1 + 1
n

∣
∣
∣
∣
= 1.

However,
∞∑

k=1

ak =
∞∑

k=1

1
k being the harmonic series, diverges.

4. False: Since the Root Test works by extracting the nth root, a series that has an nth power
in its nth term (as opposed to one that has an nth root in its nth term) works well with the
Root Test (providing, of course, the Root Test is applicable in the first place).
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Skill Building

5.
∞∑

k=1

ak =
∞∑

k=1

4k2−1
2k is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

4(n+1)2−1
2n+1

4n2−1
2n

=
2n

2n+1
·
[
4(n2 + 2n+ 1)− 1

4n2 − 1

]

=
1

2

(
4n2 + 8n+ 3

4n2 − 1

)

.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞
1

2

∣
∣
∣
∣

4n2 + 8n+ 3

4n2 − 1

∣
∣
∣
∣
=

1

2
lim
n→∞

∣
∣
∣
∣

4 + 8
n + 3

n2

4− 1
n2

∣
∣
∣
∣
=

1

2
·
∣
∣
∣
∣

4 + 0 + 0

4− 0

∣
∣
∣
∣
=

1

2
< 1.

Since the limit is less than 1, the series converges by the Ratio Test.

6.
∞∑

k=1

ak =
∞∑

k=1

1
(2k+1)2k

is a series of nonzero terms. The ratio of the n+ 1st and the nth

term is
an+1

an
=

1
(2(n+1)+1)2n+1

1
(2n+1)2n

=
(2n+ 1)2n

(2n+ 3)2n+1
=

1

2

(
2n+ 1

2n+ 3

)

.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞
1

2

∣
∣
∣
∣

2n+ 1

2n+ 3

∣
∣
∣
∣
=

1

2
lim
n→∞

∣
∣
∣
∣

2 + 1
n

2 + 3
n

∣
∣
∣
∣
=

1

2
·
∣
∣
∣
∣

2 + 0

2 + 0

∣
∣
∣
∣
=

1

2
< 1.

Since the limit is less than 1, the series converges by the Ratio Test.

7.
∞∑

k=1

ak =
∞∑

k=1

k
(
2
3

)k
is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

(n+ 1)
(
2
3

)n+1

n
(
2
3

)n =

(
2

3

)
n+ 1

n
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

(
2

3

) ∣
∣
∣
∣

n+ 1

n

∣
∣
∣
∣
= lim

n→∞
2

3
·
∣
∣
∣
∣
1 +

1

n

∣
∣
∣
∣
=

2

3
· |1 + 0| = 2

3
< 1.

Since the limit is less than 1, the series converges by the Ratio Test.

8.
∞∑

k=1

ak =
∞∑

k=1

5k

k2 is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

5n+1

(n+1)2

5n

n2

=
n2

(n+ 1)2
· 5

n+1

5n
= 5

n2

(n+ 1)2
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞
5

∣
∣
∣
∣

n2

(n+ 1)2

∣
∣
∣
∣
= 5 lim

n→∞

∣
∣
∣
∣
∣

1
(
1 + 1

n

)2

∣
∣
∣
∣
∣
= 5 ·

∣
∣
∣
∣

1

(1 + 0)2

∣
∣
∣
∣
= 5 > 1.

By the Ratio Test, since the limit is greater than 1, the series diverges.
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9.
∞∑

k=1

ak =
∞∑

k=1

10k

(2k)! is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

10n+1

(2(n+1))!

10n

(2n)!

=
10n+1

10n
· (2n)!

(2n+ 2)!
= 10 · (2n)!

(2n+ 2)(2n+ 1)(2n)!
=

10

(2n+ 2)(2n+ 1)
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

10

(2n+ 2)(2n+ 1)

∣
∣
∣
∣
= 0.

Since the limit is less than 1, the series converges by the Ratio Test.

10.
∞∑

k=1

ak =
∞∑

k=1

(2k)!
5k3k−1 is a series of nonzero terms. The ratio of the n+ 1st and the nth

term is

an+1

an
=

(2(n+1))!
5n+1·3(n+1)−1

(2n)!
5n·3n−1

=
5n

5n+1
·3

n−1

3n
· (2n+ 2)!

(2n)!
=

1

5
·1
3
· (2n+ 2)(2n+ 1)(2n)!

(2n)!
=

1

15
(2n+2)(2n+1).

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

15
(2n+ 2)(2n+ 1)

∣
∣
∣
∣
= ∞.

Since the limit is ∞, the series diverges by the Ratio Test.

11.
∞∑

k=1

ak =
∞∑

k=1

k
(2k−2)! is a series of nonzero terms. The ratio of the n+ 1st and the nth

term is

an+1

an
=

n+1
(2(n+1)−2)!

n
(2n−2)!

=
n+ 1

n
· (2n− 2)!

(2n)!
=

n+ 1

n
· (2n− 2)!

2n(2n− 1)(2n− 2)!
=

n+ 1

n
· 1

2n(2n− 1)
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n+ 1

n
· 1

2n(2n− 1)

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n+ 1

n

∣
∣
∣
∣
· lim
n→∞

∣
∣
∣
∣

1

2n(2n− 1)

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
1 +

1

n

∣
∣
∣
∣
· 0 = |1 + 0| · 0 = 1 · 0 = 0.

Since the limit is less than 1, the series converges by the Ratio Test.

12.
∞∑

k=1

ak =
∞∑

k=1

(k+1)!
3k is a series of nonzero terms. The ratio of the n+1st and the nth term is

an+1

an
=

(n+2)!
3n+1

(n+1)!
3n

=
3n

3n+1
· (n+ 2)!

(n+ 1)!
=

1

3

(n+ 2)(n+ 1)!

(n+ 1)!
=

1

3
(n+ 2).

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

3
(n+ 2)

∣
∣
∣
∣
= ∞.

By the Ratio Test, since the limit is ∞, the series diverges.
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13.
∞∑

k=1

ak =
∞∑

k=1

2k

k(k+1) is a series of nonzero terms. The ratio of the n+ 1st and the nth

term is

an+1

an
=

2n+1

(n+1)(n+2)

2n

n(n+1)

=
2n+1

2n
· n(n+ 1)

(n+ 1)(n+ 2)
= 2 · n

n+ 2
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

2n

n+ 2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

2

1 + 2
n

∣
∣
∣
∣
= 2 > 1.

Since the limit is greater than 1, the series diverges by the Ratio Test.

14.
∞∑

k=1

ak =
∞∑

k=1

k!
k2(k+1)2 is a series of nonzero terms. The ratio of the n+ 1st and the nth

term is

an+1

an
=

(n+1)!
(n+1)2(n+2)2

n!
n2(n+1)2

=
(n+ 1)!

n!
· n2(n+ 1)2

(n+ 1)2(n+ 2)2
=

(n+ 1)n!

n!
· n2

(n+ 2)2
=

(n+ 1)n2

(n+ 2)2
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(n+ 1)n2

(n+ 2)2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
(n+ 1) · 1

(
1 + 2

n

)2

∣
∣
∣
∣
∣

= ∞.

By the Ratio Test, since the limit is ∞, the series diverges.

15.
∞∑

k=1

ak =
∞∑

k=1

k3

k! is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

(n+1)3

(n+1)!

n3

n!

=
n!

(n+ 1)!
· (n+ 1)3

n3
=

n!

(n+ 1)n!
· (n+ 1)3

n3
=

1

n+ 1
· (n+ 1)3

n3
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

n+ 1
· (n+ 1)3

n3

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

n+ 1

∣
∣
∣
∣
· lim
n→∞

∣
∣
∣
∣
∣

(

1 +
1

n

)3
∣
∣
∣
∣
∣
= |0| · |1| = 0.

By the Ratio Test, since the limit is less than 1, the series converges.

16.
∞∑

k=1

ak =
∞∑

k=1

k!
kk+1 is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

(n+1)!
(n+1)n+2

n!
nn+1

=
(n+ 1)!

n!
· nn+1

(n+ 1)n+2
=

(n+ 1)n!

n!
· nn+1

(n+ 1)n+2
=

(
n

n+ 1

)n+1

.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n

n+ 1
·
(

n

n+ 1

)n∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

1 + 1
n

∣
∣
∣
∣
· lim
n→∞

∣
∣
∣
∣
∣

1
(
1 + 1

n

)n

∣
∣
∣
∣
∣
= |1| ·

∣
∣
∣
∣

1

e

∣
∣
∣
∣
=

1

e
< 1.

By the Ratio Test. since the limit is less than 1, the series converges.
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17. ak = (−1)k k2

2k
6= 0 for all k ≥ 1.

an+1 = (−1)n+1 (n+1)2

2n+1 and an = (−1)n n2

2n .

So

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

(n+1)2

2n+1

n2

2n

=
(n+ 1)

2

2n+1
· 2

n

n2
=

n2 + 2n+ 1

n2
· 2n

2 · 2n =
1

2

(

1 +
2

n
+

1

n2

)

.

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

[
1

2

(

1 +
2

n
+

1

n2

)]

=
1

2
.

Since 1
2 < 1, the series

∞∑

k=1

(−1)
k k2

2k converges .

18. ak = (−1)
k k
ek

6= 0 for all k ≥ 0.

an+1 = (−1)
n+1 n+1

en+1 and an = (−1)
n n
en .

So
∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

n+1
en+1

n
en

=
n+ 1

en+1
· e

n

n
=

n+ 1

n
· en

e · en =
1

e

(

1 +
1

n

)

.

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞
1

e

(

1 +
1

n

)

=
1

e
.

Since 1
e < 1, the series

∞∑

k=1

(−1)k k
ek

converges .

19. ak = (−1)
k lnk

3k 6= 0 for all k ≥ 2.

an+1 = (−1)n+1 ln(n+1)
3n and an = (−1)n lnn

3n .

So

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

ln(n+1)
3n+1

lnn
3n

=
ln(n+ 1)

3n+1
· 3n

lnn
= · 3n

3 · 3n =
1

3
· ln(n+ 1)

lnn

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

[
1

3
· ln(n+ 1)

lnn

]

.

This is an indeterminate limit of the form ∞
∞ , so we use L’Hôpital’s Rule:

lim
n→∞

[
1

3
· ln(n+ 1)

lnn

]

= lim
n→∞

(

1

3
·

1
n+1
1
n

)

= lim
n→∞

(
1

3
· n

n+ 1

)

lim
n→∞

(
1

3
· 1

1 + 1
n

)

=
1

3

Since 1
3 < 1, the series

∞∑

k=2

(−1)k ln k
3k

converges .
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20. ak = (−1)
k ln k

k! 6= 0 for all k ≥ 2.

an+1 = (−1)
n+1 ln(n+1)

(n+1)! and an = (−1)
n lnn

n! .

So

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

ln(n+1)
(n+1)!

lnn
n!

=
ln(n+ 1)

(n+ 1)!
· n!

lnn
=

ln(n+ 1)

lnn
· n!

(n+ 1)!
=

ln(n+ 1)

lnn
· n!

(n+ 1) · n!

=
ln(n+ 1)

lnn
· 1

n+ 1
.

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

[
ln(n+ 1)

lnn
· 1

n+ 1

]

= lim
n→∞

ln(n+ 1)

lnn
· lim
n→∞

1

n+ 1
.

lim
n→∞

ln(n+1)
lnn is in the indeterminate form ∞

∞ , so L’Hôpital’s Rule is applicable.

lim
n→∞

ln(n+ 1)

lnn
= lim

n→∞

1
n+1
1
n

= lim
n→∞

n

n+ 1
= 1.

lim
n→∞

1

n+ 1
= 0.

Therefore

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞
ln(n+ 1)

lnn
· lim
n→∞

1

n+ 1
= 1 · 0 = 0.

Since 0 < 1, the series
∞∑

k=2

(−1)
k ln k

k! converges .

21. ak = (−1)
k 5k

3k−1 6= 0 for all k ≥ 1

an+1 = (−1)
n+1 5n+1

3n an = (−1)
n 5n

3n−1 and an = (−1)
n 5n

3n−1 .

So

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

5n+1

3n

5n

3n−1

=
5n+1

3n
· 3

n−1

5n
=

5 · 5n
5n

· 3n−1

3 · 3n−1
=

5

3
.

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞
5

3
=

5

3
.

Since 5
3 > 1, the series

∞∑

k=1

(−1)
k 5k

3k−1 diverges .

22. ak = (−1)k 3k+4
2k−1 6= 0 for all k > 0.

an+1 = (−1)
n+1 3n+1+4

2(n+1)−1 and an = (−1)
n 3n+4

2n−1 .

So

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

3n+1+4
2n

3n+4
2n−1

=
3n+1 + 4

2n
· 2n−1

3n + 4
=

3 · 3n + 4

2n
· 2n

2(3n + 4)
=

3 · 3n + 4

2 · 3n + 8
.
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Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞
3 · 3n + 4

2 · 3n + 8
= lim

n→∞

3 + 4
3n

2 + 8
3n

=
3

2
> 1.

Since 3
2 > 1, the series

∞∑

k=1

(−1)k 3k+4
2k−1 diverges .

23.
∞∑

k=1

ak =
∞∑

k=1

3k−1

k·2k is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

3n

(n+1)·2n+1

3n−1

n·2n
=

3n

3n−1
· 2n

2n+1
· n

n+ 1
= 3 · 1

2
· n

n+ 1
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

3

2
· n

n+ 1

∣
∣
∣
∣
=

3

2
lim
n→∞

∣
∣
∣
∣

1

1 + 1
n

∣
∣
∣
∣
=

3

2
· |1| = 3

2
> 1.

By the Ratio Test, since the limit is greater than 1, the series diverges.

24.
∞∑

k=1

ak =
∞∑

k=1

k(k+2)
3k

is a series of nonzero terms. The ratio of the n+ 1st and the nth

term is
an+1

an
=

(n+1)(n+3)
3n+1

n(n+2)
3n

=
3n

3n+1
· (n+ 1)(n+ 3)

n(n+ 2)
=

1

3
· (n+ 1)(n+ 3)

n(n+ 2)
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

3
· (n+ 1)(n+ 3)

n(n+ 2)

∣
∣
∣
∣
=

1

3
lim
n→∞

∣
∣
∣
∣
∣

(
1 + 1

n

) (
1 + 3

n

)

(
1 + 2

n

)

∣
∣
∣
∣
∣
=

1

3
· |1| = 1

3
< 1.

By the Ratio Test, since the limit is less than 1, the series converges.

25.
∞∑

k=1

ak =
∞∑

k=1

k
ek is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

n+1
en+1

n
en

=
en

en+1
· n+ 1

n
=

1

e
· n+ 1

n
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

e
· n+ 1

n

∣
∣
∣
∣
=

1

e
lim
n→∞

∣
∣
∣
∣
1 +

1

n

∣
∣
∣
∣
=

1

e
· |1| = 1

e
< 1.

By the Ratio Test, since the limit is less than 1, the series converges.

26.
∞∑

k=1

ak =
∞∑

k=1

ek

k3 is a seris of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

en+1

(n+1)3

en

n3

=
en+1

en
· n3

(n+ 1)3
= e · n3

(n+ 1)3
.
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Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
e · n3

(n+ 1)3

∣
∣
∣
∣
= e lim

n→∞

∣
∣
∣
∣
∣

1
(
1 + 1

n

)3

∣
∣
∣
∣
∣
= e · |1| = e > 1.

By the Ratio Test, since the limit is greater than 1, the series diverges.

27.
∞∑

k=1

ak =
∞∑

k=1

k · 2k is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

(n+ 1) · 2n+1

n · 2n = 2 · n+ 1

n
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
2 · n+ 1

n

∣
∣
∣
∣
= 2 lim

n→∞

∣
∣
∣
∣
1 +

1

n

∣
∣
∣
∣
= 2 · |1| = 2 > 1.

Since the limit is greater than 1, by the Ratio Test, the series diverges.

28.
∞∑

k=1

ak =
∞∑

k=1

4k

k is a series of nonzero terms. The ratio of the n+ 1st and the nth term is

an+1

an
=

4n+1

n+1
4n

n

=
4n+1

4n
· n

n+ 1
= 4 · n

n+ 1
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
4 · n

n+ 1

∣
∣
∣
∣
= 4 lim

n→∞

∣
∣
∣
∣

1

1 + 1
n

∣
∣
∣
∣
= 4 · |1| = 4 > 1.

Since the limit is greater than 1, by the Ratio Test, the series diverges.

29.
∞∑

k=1

ak =
∞∑

k=1

(
2k+1
5k+1

)k

is a series of nonzero terms. Since the nth term involves an nth

power, we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

(
2n+ 1

5n+ 1

)n∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

2n+ 1

5n+ 1

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

2 + 1
n

5 + 1
n

∣
∣
∣
∣
=

∣
∣
∣
∣

2

5

∣
∣
∣
∣
=

2

5
< 1.

Since the limit is less than 1, by the Root Test, the series converges.

30.
∞∑

k=1

ak =
∞∑

k=1

(
3k−1
2k+1

)k

is a series of nonzero terms. Since the nth term involves an nth

power, we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

(
3n− 1

2n+ 1

)n∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

3n− 1

2n+ 1

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

3− 1
n

2 + 1
n

∣
∣
∣
∣
=

∣
∣
∣
∣

3

2

∣
∣
∣
∣
=

3

2
> 1.

Since the limit is greater than 1, by the Root Test, the series diverges.
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31.
∞∑

k=1

ak =
∞∑

k=1

(
k
5

)k
is a series of nonzero terms. Since the nth term involves an nth power,

we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣

(n

5

)n∣
∣
∣ = lim

n→∞

∣
∣
∣
n

5

∣
∣
∣ = ∞.

Since the limit is greater than 1, by the Root Test, the series diverges.

32.
∞∑

k=1

ak =
∞∑

k=1

π2k

kk is a series of nonzero terms. Since the nth term involves an nth power, we

apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

π2n

nn

∣
∣
∣
∣
= lim

n→∞
n

√
∣
∣
∣
∣

π2

n

∣
∣
∣
∣

n

= lim
n→∞

∣
∣
∣
∣

π2

n

∣
∣
∣
∣
= 0.

Since the limit is less than 1. by the Root Test, the series converges.

33.
∞∑

k=2

ak =
∞∑

k=2

(
ln k
k

)k
is a series of nonzero terms. Since the nth term involves an nth power,

we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

(
lnn

n

)n∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

lnn

n

∣
∣
∣
∣
= lim

x→∞

∣
∣
∣
∣

lnx

x

∣
∣
∣
∣
= lim

x→∞

∣
∣
∣
∣

1
x

1

∣
∣
∣
∣
= lim

x→∞

∣
∣
∣
∣

1

x

∣
∣
∣
∣
= 0,

using L’Hôpital’s rule on a related function of the nth root of the nth term of the series. Since
the limit is less than 1, by the Root Test, the series converges.

34.
∞∑

k=2

ak =
∞∑

k=2

(
1

ln k

)k
is a series of nonzero terms. Since the nth term involves an nth power,

we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

(
1

lnn

)n∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

lnn

∣
∣
∣
∣
= 0.

Since the limit is less than 1, by the Root Test, the series converges.

35. The nth term of
∞∑

k=2

(−1)k (ln k)k

2k
is an = (−1)n (lnn)n

2n 6= 0 for n ≥ 2.

Since an involves an nth power, we use the Root Test.

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣
(−1)

n (lnn)
n

2n

∣
∣
∣
∣
= lim

n→∞
lnn

2
= ∞ > 1.

The series
∞∑

k=2

(−1)
k (ln k)k

2k
diverges .

36. The nth term of
∞∑

k=2

(−1)
k 2k+1

ek
is an = (−1)

n 2n+1

en 6= 0 for n ≥ 1.

Since an involves an nth power, we use the Root Test.

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣
(−1)

n 2n+1

en

∣
∣
∣
∣
= lim

n→∞
21+

1
n

e
=

2

e
< 1.
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The series
∞∑

k=1

(−1)
k 2k+1

ek
converges .

37. The nth term of
∞∑

c=1
(−1)

k(k+1
k

)k
is an = (−1)

n(n+1
n

)n 6= 0 for n ≥ 1.

Since an involves an nth power, we use the Root Test.

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣
(−1)

n

(
n+ 1

n

)n∣
∣
∣
∣
= lim

n→∞

(
n+ 1

n

)

= 1.

The Root Test is inconclusive for the series
∞∑

c=1
(−1)

k(k+1
k

)k
.

38. The nth term of
∞∑

c=1
(−1)k

(
2k+3
k+1

)k

is an = (−1)n
(

2n+3
n+1

)n

6= 0 for n ≥ 1.

Since an involves an nth power, we use the Root Test.

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣
(−1)

n

(
2n+ 3

n+ 1

)n∣
∣
∣
∣
= lim

n→∞
2n+ 3

n+ 1
= 2 > 1.

The series
∞∑

k=1

(−1)
k
(

2k+3
k+1

)k

diverges .

39. The nth term of
∞∑

c=1
(−1)

k kk

e2k
is an = (−1)

n nn

e2n 6= 0 for n ≥ 1.

Since an involves an nth power, we use the Root Test.

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣
(−1)n

(n)n

e2n

∣
∣
∣
∣
= lim

n→∞
n

e2
=

1

e2
· lim
n→∞

n = ∞ > 1.

The series
∞∑

k=1

(−1)
k kk

e2k
diverges .

40. The nth term of
∞∑

k=2

(−1)
k k ln k

ek is an = (−1)
n n lnn

en 6= 0 for n ≥ 2.

Since an involves an nth power, we use the Root Test.

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣
(−1)

nn lnn

en

∣
∣
∣
∣
= lim

n→∞
n

√
√
√
√

[

(n lnn)
1/n

e

]n

= lim
n→∞

(n lnn)
1/n

e

=
1

e
· lim
n→∞

(n lnn)1/n =
1

e
· lim
n→∞

[

n1/n · (lnn)1/n
]

=
1

e
· lim
n→∞

n1/n · lim
n→∞

(lnn)1/n.

We consider the two limits separately:

For lim
n→∞

n1/n let y = n1/n, so ln y = ln
(
n1/n

)
= lnn

n .

Now lim
n→∞

ln y = lim
n→∞

lnn
n , which is indeterminate of the form ∞

∞ , so we use L’Hôpital’s Rule:

lim
n→∞

lnn

n
= lim

n→∞

(
1
n

)

1
= lim

n→∞
1

n
= 0.

Then

lim
n→∞

n1/n = lim
n→∞

y = lim
n→∞

eln y = e
lim

n→∞
ln y

= e0 = 1.
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For lim
n→∞

(lnn)
1/n

, let z = (lnn)
1/n

, so ln z = ln(lnn)
1/n

= ln(lnn)
n .

Now lim
n→∞

ln z = lim
n→∞

ln(lnn)
n , which is indeterminate of the form ∞

∞ , so we use L’Hôpital’s Rule:

lim
n→∞

ln(lnn)

n
= lim

n→∞

1
lnn · 1

n

1
= lim

n→∞
1

n lnn
= 0.

Then
lim
n→∞

(lnn)
1/n

= lim
n→∞

z = lim
n→∞

eln z = e
lim

n→∞
ln z

= e0 = 1.

Therefore

lim
n→∞

n
√

|an| =
1

e
· lim
n→∞

n1/n · lim
n→∞

(lnn)1/n =
1

3
· 1 · 1 =

1

e
< 1.

The series converges .

41.
∞∑

k=1

ak =
∞∑

k=1

(√
k2+1
3k

)k

is a series of nonzero terms. Since the nth term involves an nth

power, we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
√
√
√

∣
∣
∣
∣
∣

(√
n2 + 1

3n

)n∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

√
n2 + 1

3n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

√

1

9
+

1

9n2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

√

1

9

∣
∣
∣
∣
∣
=

1√
9
=

1

3
< 1.

Since the limit is less than 1, by the Root Test, the series converges.

42.
∞∑

k=1

ak =
∞∑

k=1

(√
4k2+1
k

)k

is a series of nonzero terms. Since the nth term involves an nth

power, we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

√
√
√
√

∣
∣
∣
∣
∣

(√
4n2 + 1

n

)n∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

√
4n2 + 1

n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

√

4 +
1

n2

∣
∣
∣
∣
∣
=
∣
∣
∣

√
4
∣
∣
∣ = 2 > 1.

Since the limit is greater than 1, by the Root Test, the series diverges.

43.
∞∑

k=1

ak =
∞∑

k=1

k2

2k is a series of nonzero terms. Since the nth term involves an nth power, we

apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

n2

2n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n2/n

2

∣
∣
∣
∣
=

1

2
lim
n→∞

(

n1/n
)2

=
1

2

(

lim
n→∞

n1/n
)2

=
1

2
·12 =

1

2
< 1.

(Here, and in the next three problems numbered 44, 45, and 46, and elsewhere below, we use
the following result: lim

n→∞
n1/n = 1. We can derive this as follows. Let y = n1/n. Then

ln y = 1
n lnn = lnn

n . We have

lim
n→∞

y = lim
n→∞

eln y = lim
n→∞

e
lnn
n = e

lim
n→∞

lnn
n = e

lim
x→∞

ln x
x = e

lim
x→∞

1/x
1 = e

lim
x→∞

1
x = e0 = 1,

using L’Hôpital’s rule on a related function of lnn
n . This proves the claimed result.)

Since the limit is less than 1, by the Root Test, the series converges.
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44.
∞∑

k=1

ak =
∞∑

k=1

k3

3k
is a series of nonzero terms. Since the nth term involves an nth power, we

apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

n3

3n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n3/n

3

∣
∣
∣
∣
=

1

3
lim
n→∞

(

n1/n
)3

=
1

3

(

lim
n→∞

n1/n
)3

=
1

3
·13 =

1

3
< 1,

where we used the result (see Problem 43) lim
n→∞

n1/n = 1. Since the limit is less than 1, by the

Root Test, the series converges.

45.
∞∑

k=1

ak =
∞∑

k=1

k4

5k
is a series of nonzero terms. Since the nth term involves an nth power, we

apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

n4

5n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n4/n

5

∣
∣
∣
∣
=

1

5
lim
n→∞

(

n1/n
)4

=
1

5

(

lim
n→∞

n1/n
)4

=
1

5
·14 =

1

5
< 1,

where we used the result (see Problem 43) lim
n→∞

n1/n = 1. Since the limit is less than 1, by the

Root Test, the series converges.

46.
∞∑

k=1

ak =
∞∑

k=1

k
3k

is a series of nonzero terms. Since the nth term involves an nth power, we

apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
n

3n

∣
∣
∣ = lim

n→∞

∣
∣
∣
∣

n1/n

3

∣
∣
∣
∣
=

1

3
lim
n→∞

n1/n =
1

3
· 1 =

1

3
< 1,

where we used the result (see Problem 43) lim
n→∞

n1/n = 1. Since the limit is less than 1, by the

Root Test, the series converges.

47.
∞∑

k=1

ak =
∞∑

k=1

10
(3k+1)k is a series of nonzero terms. Since the nth term involves an nth

power, we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

10

(3n+ 1)n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

101/n

3n+ 1

∣
∣
∣
∣
= lim

n→∞
101/n · lim

n→∞
1

3n+ 1
= 100 · 0 = 0.

Since the limit is less than 1, by the Root Test, the series converges.

48.
∞∑

k=1

ak =
∞∑

k=1

(
1 + 1

k

)k2

is a series of nonzero terms. Since the nth term involves an nth

power, we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
√
√
√

∣
∣
∣
∣
∣

(

1 +
1

n

)n2
∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(

1 +
1

n

)n∣
∣
∣
∣
= e > 1.

Since the limit is greater than 1, by the Root Test, the series diverges.
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49.
∞∑

k=1

ak =
∞∑

k=1

(k+1)(k+2)
k! is a series of nonzero terms. Since the nth term involves the

factorial, we could try the Ratio Test. The ratio of the n+ 1st and the nth term is

an+1

an
=

(n+2)(n+3)
(n+1)!

(n+1)(n+2)
n!

=
n!

(n+ 1)!
· (n+ 3)

(n+ 1)
=

n!

(n+ 1)n!
· (n+ 3)

(n+ 1)
=

(n+ 3)

(n+ 1)2
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(n+ 3)

(n+ 1)2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

n
(
1 + 3

n

)

n2
(
1 + 1

n

)2

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

n

∣
∣
∣
∣
· lim
n→∞

∣
∣
∣
∣
∣

(
1 + 3

n

)

(
1 + 1

n

)2

∣
∣
∣
∣
∣
= 0 · 1 = 0.

Since the limit is less than 1, by the Ratio Test, the series converges.

50.
∞∑

k=1

ak =
∞∑

k=1

k!
(3k+1)! is a series of nonzero terms. Since the nth term involves the factorial,

we could try the Ratio Test. The ratio of the n+ 1st and the nth term is

an+1

an
=

(n+1)!
(3(n+1)+1)!

n!
(3n+1)!

=
(3n+ 1)!

(3n+ 4)!
· (n+ 1)!

n!

=
(3n+ 1)!

(3n+ 4)(3n+ 3)(3n+ 2)(3n+ 1)!
· (n+ 1)n!

n!

=
(n+ 1)

(3n+ 4)(3n+ 3)(3n+ 2)
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(n+ 1)

(3n+ 4)(3n+ 3)(3n+ 2)

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

n
(
1 + 1

n

)

n3
(
3 + 4

n

) (
3 + 3

n

) (
3 + 2

n

)

∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

1

n2

∣
∣
∣
∣
· lim
n→∞

∣
∣
∣
∣
∣

(
1 + 1

n

)

(
3 + 4

n

) (
3 + 3

n

) (
3 + 2

n

)

∣
∣
∣
∣
∣

= 0 · 1

27
= 0.

Since the limit is less than 1, by the Ratio Test, the series converges.

51. The given series can be written as
∞∑

k=1

ak =
∞∑

k=1

k ln k
2k = 0 +

∞∑

k=2

k ln k
2k =

∞∑

k=2

k ln k
2k which is a

series of nonzero terms. Since the nth term involves an nth power, we could apply the Root
Test. Let us first establish a limit result: lim

n→∞
(lnn)1/n = 1. To prove this, set y = (lnn)1/n.

Then, ln y = 1
n ln(lnn) = ln(lnn)

n . We have

lim
n→∞

y = lim
n→∞

eln y = lim
n→∞

e
ln(lnn)

n = e
lim

n→∞

ln(ln n)
n = e

lim
x→∞

ln(ln x)
x = e

lim
x→∞

1
ln x

· 1
x

1 = e
lim

x→∞
1

x ln x = e0 = 1,

using L’Hôpital’s rule on a related function of ln(lnn)
n . This proves the required result.

Applying the Root Test, we have

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

n lnn

2n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n1/n(lnn)1/n

2

∣
∣
∣
∣
=

1

2
lim
n→∞

n1/n· lim
n→∞

(lnn)1/n =
1

2
·1·1 =

1

2
< 1.
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(Here, we also used the result, proved in Problem 43, that lim
n→∞

n1/n = 1, in addition to the

limit result proved above.) Since the limit is less than 1, by the Root Test, the series
converges.

The series
∞∑

k=2

k ln k
2k

which is a series of nonzero terms, can also be seen to converge using the

Ratio Test. The ratio of the n+ 1st and the nth term is

an+1

an
=

(n+1) ln(n+1)
2n+1

n lnn
2n

=
2n

2n+1
· n+ 1

n
· ln(n+ 1)

lnn
=

1

2
· n+ 1

n
· ln(n+ 1)

lnn
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

2
· n+ 1

n
· ln(n+ 1)

lnn

∣
∣
∣
∣
=

1

2
lim
n→∞

∣
∣
∣
∣
1 +

1

n

∣
∣
∣
∣
· lim
n→∞

∣
∣
∣
∣

ln(n+ 1)

lnn

∣
∣
∣
∣

=
1

2
· 1 · lim

x→∞

∣
∣
∣
∣

ln(x+ 1)

lnx

∣
∣
∣
∣
=

1

2
lim
x→∞

∣
∣
∣
∣
∣

1
x+1

1

∣
∣
∣
∣
∣

=
1

2
lim
x→∞

∣
∣
∣
∣

1

x+ 1

∣
∣
∣
∣
=

1

2
· 0 = 0,

using L’Hôpital’s rule on a related function of the last ratio. Since the limit is less than 1, by
the Ratio Test, the series converges , in agreement with the Root Test above.

52.
∞∑

k=1

ak =
∞∑

k=1

[
ln
(
e3 + 1

k

)]k
is a series of nonzero terms. Since the nth term involves an nth

power, we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

[

ln

(

e3 +
1

n

)]n∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
ln

(

e3 +
1

n

)∣
∣
∣
∣

= ln

[

lim
n→∞

e3 + lim
n→∞

1

n

]

= ln
[
e3 + 0

]
= 3 > 1.

Since the limit is greater than 1, by the Root Test, the series diverges.

53.
∞∑

k=1

ak =
∞∑

k=1

sink
(
1
k

)
is a series of nonzero terms (since sin θ is nonvanishing on the interval

0 < θ ≤ 1 rad). Since the nth term involves an nth power, we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣
sinn

(
1

n

)∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
sin

(
1

n

)∣
∣
∣
∣
=

∣
∣
∣
∣
sin

{

lim
n→∞

(
1

n

)}∣
∣
∣
∣
= | sin 0| = 0.

Since the limit is less than 1, by the Root Test, the series converges.

54.
∞∑

k=1

ak =
∞∑

k=1

kk

2k2 is a series of nonzero terms. Since the nth term involves an nth power, we

apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

nn

2n2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

nn/n

2n2/n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
n

2n

∣
∣
∣ = lim

x→∞

∣
∣
∣
x

2x

∣
∣
∣ = lim

x→∞

∣
∣
∣
∣

1

2x(ln 2)

∣
∣
∣
∣
= 0,

applying L’Hôpital’s rule to a related function of the nth root of the nth term of the series.
Since the limit is less than 1, by the Root Test, the series converges.
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55.
∞∑

k=1

ak =
∞∑

k=1

(1+ 1
k )

2k

ek
is a series of nonzero terms. Since the nth term involves an nth

power, we apply the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
√
√
√

∣
∣
∣
∣
∣

(
1 + 1

n

)2n

en

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(
1 + 1

n

)2

e

∣
∣
∣
∣
∣
=

1

e

[

lim
n→∞

(

1 +
1

n

)]2

=
1

e
· 12 = 1

e
< 1.

Since the limit is less than 1, by the Root Test, the series converges.

56.
∞∑

k=2

ak =
∞∑

k=2

2k(k+1)
k2(k+2) is a series of nonzero terms. It is not clear which test is the better

one. The presence of an nth power in the nth term indicates the Root Test; however the linear
factors might be easier to handle with the Ratio Test. Let us try the problem both ways.
Ratio Test: The ratio of the n+ 1st and the nth term is

an+1

an
=

2n+1(n+2)
(n+1)2(n+3)

2n(n+1)
n2(n+2)

=
2n+1

2n
· n2(n+ 2)2

(n+ 1)3(n+ 3)
= 2 · n2(n+ 2)2

(n+ 1)3(n+ 3)
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
2 · n2(n+ 2)2

(n+ 1)3(n+ 3)

∣
∣
∣
∣
= 2 lim

n→∞

∣
∣
∣
∣
∣

(
1 + 2

n

)2

(
1 + 1

n

)3 (
1 + 3

n

)

∣
∣
∣
∣
∣
= 2 · 1 = 2 > 1.

Since the limit is greater than 1, the series diverges by the Ratio Test.

Root Test: Examine the limit of the absolute value of the nth root of the nth term:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

2n(n+ 1)

n2(n+ 2)

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

2

n2/n
· (n+ 1)1/n

(n+ 2)1/n

∣
∣
∣
∣

= 2 lim
n→∞

(
1

n1/n

)2

· lim
n→∞

∣
∣
∣
∣
∣

n1/n ·
(
1 + 1

n

)1/n

n1/n ·
(
1 + 2

n

)1/n

∣
∣
∣
∣
∣

(1.1)

= 2 · 12 ·

∣
∣
∣
∣
∣
∣

lim
n→∞

(
1 + 1

n

)1/n

lim
n→∞

(
1 + 2

n

)1/n

∣
∣
∣
∣
∣
∣

= 2 · 12 · 1
1
= 2 > 1,

where the limit result from Problem 43 has been used to address the first factor’s limit (in

equation 8.1). Since the limit is greater than 1, the series diverges by the Root test, in

agreement with the analysis by the Ratio Test.

Applications and Extensions

57. For
∞∑

k=1

ak =
∞∑

k=1

1
k , the divergent harmonic series (whose divergence can be established

using the Integral Test), we have applying the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
n+1
1
n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n

n+ 1

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
(
1 + 1

n

)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1

1

∣
∣
∣
∣
= 1.

So the Ratio Test is inconclusive, even though we know by other means that the series diverges.
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58. For
∞∑

k=1

ak =
∞∑

k=1

1
k2 , a convergent p-series (since p = 2 > 1), we have applying the Ratio

Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
(n+1)2

1
n2

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n2

(n+ 1)2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
(
1 + 1

n

)2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1

12

∣
∣
∣
∣
= 1.

So the Ratio Test is inconclusive, even though we know by other means that the series
converges.

59. Consider the series
∞∑

k=1

ak =
∞∑

k=1

| sin k|
2k

. This series converges, because the nth term satisfies

an =
| sinn|
2n

≤ 1

2n
.

Comparing with the convergent geometric series
∞∑

k=1

bk =
∞∑

k=1

1
2k (convergent since |r| = 1

2 < 1),

we see by the Comparison Test that the series
∞∑

k=1

ak indeed converges. However, computing

the limit of the ratio of the absolute value of the n+ 1st and the nth term gives:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

| sin(n+1)|
2n+1

| sinn|
2n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

2n

2n+1
· sin(n+ 1)

sinn

∣
∣
∣
∣

=
1

2
lim
n→∞

∣
∣
∣
∣

sinn cos 1 + cosn sin 1

sinn

∣
∣
∣
∣

=
1

2
lim
n→∞

| cos 1 + cotn sin 1|,

where the addition formula sin(α+ β) = sinα cosβ + cosα sinβ has been used to simplify the
limit. As n → ∞, the limit of cotn does not exist, as on any interval [n, n+ π], cotn takes

values ranging from −∞ to +∞. So, we have an example of a series
∞∑

k=1

ak where

lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ 6= ∞ does not exist despite its being a convergent series.

60. A slight modification of the convergent series in Problem 59 produces an example of a

divergent series without a well-defined limit. Consider the series
∞∑

k=1

ak =
∞∑

k=1

| sin k|. That this
series is divergent is seen examining the limit of the nth term: lim

n→∞
an = lim

n→∞
| sinn|, which

does not exist as on any interval [n, n+ 2π], the function sinn takes all values from −1 to +1.

Since lim
n→∞

an 6= 0, the series
∞∑

k=1

ak is divergent as claimed, using the Divergence Test.

Computing the ratio of the absolute value of the n+ 1st and the nth term gives:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

sin(n+ 1)

sinn

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

sinn cos 1 + cosn sin 1

sinn

∣
∣
∣
∣
= lim

n→∞
| cos 1 + cotn sin 1|,

where the addition formula sin(α+ β) = sinα cosβ + cosα sinβ has been used to simplify the
limit. As n → ∞, the limit of cotn does not exist, as on any interval [n, n+ π], cotn takes

values ranging from −∞ to +∞. So, we have an example of a series
∞∑

k=1

ak where

lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ 6= ∞ does not exist despite its being a divergent series.
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61. (a) To apply the Ratio Test to the series
∞∑

k=1

ak =
∞∑

k=1

(−1)k3k

k! (note that the series has

nonzero terms) we find the ratio of the n+ 1st and the nth term to be

an+1

an
=

(−1)n+13n+1

(n+1)!

(−1)n3n

n!

=
(−1)n(−1)

(−1)n
· 3

n+1

3n
· n!

(n+ 1)n!
= (−1) · 3 · 1

n+ 1
= − 3

n+ 1
.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
− 3

n+ 1

∣
∣
∣
∣
= | − 3| · lim

n→∞

∣
∣
∣
∣

1

n+ 1

∣
∣
∣
∣
= 3 · 0 = 0.

Since the limit is less than 1, the series converges by the Ratio Test.

(b) Using a CAS, we directly evaluate the sum to be
∞∑

k=1

ak =
∞∑

k=1

(−1)k3k

k! =
1− e3

e3
.

62. The nth term of the series 1
3 − 23

32 + 33

33 − 43

34 + · · ·+ (−1)n−1n3

3n + · · · is an = (−1)n−1n3

3n . The
ratio of the n+ 1st and the nth term of the series is

an+1

an
=

(−1)n+1−1(n+1)3

3n+1

(−1)n−1n3

3n

=
(−1)n

(−1)n−1
· (n+ 1)3

n3
· 3n

3n+1
= (−1) · 1

3
·
(
n+ 1

n

)3

.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(−1)

3

(
n+ 1

n

)3
∣
∣
∣
∣
∣
=

1

3
lim
n→∞

(

1 +
1

n

)3

=
1

3
· 1 =

1

3
< 1.

Since the limit is less than 1, by the Ratio Test, we see that the series
∞∑

k=1

(−1)k+1k3

3k
converges.

63. Observe that for a fixed positive integer n,

an = n!
nn = 1·2·3···n

n·n·n···n =
(
1
n

) (
2
n

) (
3
n

)
· · ·
(
n
n

)
≤
(
1
n

)
· 1 · 1 · · · 1 = 1

n , which is convergent since

lim
n→∞

1
n = 0. Also, 0 < n!

nn , for all n ≥ 1. By the Squeeze Theorem, since

lim
n→∞

0 ≤ lim
n→∞

n!
nn ≤ lim

n→∞
1
n , we have lim

n→∞
n!
nn = 0.

64. For
∞∑

k=1

ak =
∞∑

k=1

1
k , since the terms are nonzero, the Root Test gives

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

1

n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

n1/n

∣
∣
∣
∣
= 1,

using the limit result from Problem 43. Likewise, for
∞∑

k=1

bk =
∞∑

k=1

1
k2 , since the terms are

nonzero, the Root Test gives

lim
n→∞

n
√

|bn| = lim
n→∞

n

√
∣
∣
∣
∣

1

n2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

n2/n

∣
∣
∣
∣
= lim

n→∞

(
1

n1/n

)2

=

(

lim
n→∞

1

n1/n

)2

= 12 = 1,

using, again, the limit result from Problem 43. So we find that the Root Test is inconclusive
for the limit value of 1, because it cannot distinguish between the divergent harmonic series
∞∑

k=1

1
k and the convergent p-series (convergent since p = 2 > 1)

∞∑

k=1

1
k2 .
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65.
∞∑

k=1

ak =
∞∑

k=1

xk

k2 is a series of nonzero terms if x 6= 0 (If x = 0, then the series becomes

∞∑

k=1

ak =
∞∑

k=1

0 = 0, so the series converges for x = 0.) The ratio of the n+ 1st and the nth

term is

an+1

an
=

xn+1

(n+1)2

xn

n2

=
n2

(n+ 1)2
· x

n+1

xn
=

n2

(n+ 1)2
· x.

Compute the limit of the absolute value of the ratio found above:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n2

(n+ 1)2
· x
∣
∣
∣
∣
= |x| · lim

n→∞

∣
∣
∣
∣

n2

(n+ 1)2

∣
∣
∣
∣
= |x| · lim

n→∞

∣
∣
∣
∣
∣

1
(
1 + 1

n

)2

∣
∣
∣
∣
∣
= |x| · |1| = |x|.

If |x| < 1, then the series converges by the Ratio Test, if |x| > 1, the series diverges by the
Ratio Test, while when |x| = 1, the Ratio Test is inconclusive. However, when |x| = 1, that is,

x = ±1, the series becomes either the p-series
∞∑

k=1

ak =
∞∑

k=1

1
k2 , which is known to converge

since p = 2 > 1, or the alternating series
∞∑

k=1

(−1)kak =
∞∑

k=1

(−1)k

k2 which converges by the

Alternating Series Test (since we have the nth term satisfy lim
n→∞

an = lim
n→∞

1
n2 = 0, and also

an+1

an
=

1
(n+1)2

1
n2

= n2

(n+1)2 < 1 for n ≥ 1). So finally, the range of values of x for which there will

be convergence is |x| ≤ 1, or, equivalently, −1 ≤ x ≤ 1.

66. For the series
∞∑

k=1

ak, with the property that lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = ∞, let

∣
∣
∣
an+1

an

∣
∣
∣ = f(n). Then

we have

|an+1| =
∣
∣
∣
∣

an+1

an
· an
an−1

· · · · a2
a1

· a1
∣
∣
∣
∣
= f(n)f(n− 1) · · · f(1)|a1|.

We examine the limit of the sequence of partial sums {Sn+1} =
n+1∑

k=1

ak of the series
∞∑

k=1

ak.

We have

lim
n→∞

|Sn+1| = lim
n→∞

∣
∣
∣
∣
∣

n+1∑

k=1

ak

∣
∣
∣
∣
∣
> lim

n→∞
|an+1| = lim

n→∞
f(n)f(n− 1) · · · f(1)|a1| = ∞,

since by hypothesis lim
n→∞

f(n) = ∞. This implies the sequence of partial sums {Sn+1} diverges,

so the series itself will diverge.

67. To prove the root test, let
∞∑

k=1

ak be a series with nonzero terms. Let lim
n→∞

n
√

|an| = L 6= ∞
exist. We consider three cases: 0 ≤ L < 1, L > 1 and L = 1.

0 ≤ L < 1: Let 0 ≤ L < r < 1. Let ǫ = r − L > 0. Since lim
n→∞

n
√

|an| = lim
n→∞

|an|1/n = L < ∞,

there exists some N > 0, such that if n > N , we have

∣
∣
∣|an|1/n − L

∣
∣
∣ < ǫ = r − L

L− r < |an|1/n − L < r − L

2L− r < |an|1/n < r,
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or |an| < rn. Now,
∞∑

k=0

rk is a geometric series and since 0 < r < 1, it is convergent to a sum of

1
1−r . Also, since |an| < rn for n > N , by the Comparison Test, the series

∞∑

k=N

|an| is convergent

as well. The series
∞∑

k=1

|an| differs from the series
∞∑

k=N

|an| by a finite number of terms, namely

N−1∑

k=1

|an|. Also,
N−1∑

k=1

|an| < ∞, since the an are finite for n < N . So, since the convergence or

divergence property of a series is not affected by the omission or addition of a finite number of

terms whose sum is finite, we conclude that the series
∞∑

k=1

|ak| converges absolutely, and so

converges.

L > 1: Since lim
n→∞

n
√

|an| = L > 1, we can find some n ≥ N such that |an|1/n > 1. This means

|an| > 1n = 1 for n ≥ N , and lim
n→∞

|an| ≥ 1 6= 0, so the series diverges by the Divergence Test.

This shows that when L > 1, the Root Test indicates that the series for which lim
n→∞

n
√

|an| = L

is a divergent series.

L = 1: To show that the Root Test for this case is inconclusive, we exhibit a convergent,
divergent, and a conditionally convergent series, all of which produce the limit 1. From

Problem 64, we saw that the divergent harmonic series
∞∑

k=1

1
k and the convergent p-series (with

p = 2 > 1)
∞∑

k=1

1
k2 both yielded lim

n→∞
n
√

|an| = 1, so the Root Test cannot distinguish between

them as far as convergence or divergence is concerned. Consider the conditionally convergent

alternating harmonic series
∞∑

k=1

ak =
∞∑

k=1

(−1)k+1 1
k . The terms are nonzero, so the Root Test

can be applied. We have |an| =
∣
∣
∣
(−1)n+1

n

∣
∣
∣ = 1

n for n ≥ 1, which brings us back to the same

calculation as for the harmonic series in Problem 64. So the Root Test gives the limit of 1 for
this conditionally convergent series as well.

68. (a) Let n = 2m be even, where m ≥ 1 is any positive integer. Then n+ 1 = 2m+ 1 is odd.
Since a2k = 1

2k , we have an = a2m = 1
2m . Since a2k−1 = 1

2k+1 , we have

an+1 = a2m+1 = a2(m+1)−1 =
1

2(m+1)+1
=

1

2m+2
.

By the Ratio Test, which is applicable since the terms of the series are nonzero, we have for
even n,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

2m→∞

∣
∣
∣
∣

a2m+1

a2m

∣
∣
∣
∣
= lim

m→∞

∣
∣
∣
∣

1
2m+2

1
2m

∣
∣
∣
∣
= lim

m→∞

∣
∣
∣
∣

2m

2m+2

∣
∣
∣
∣
= lim

m→∞

∣
∣
∣
∣

2m

2m · 22
∣
∣
∣
∣
=

1

4
.

Let n = 2m+ 1 be odd, where m ≥ 0 is zero or any positive integer. Then
n+ 1 = 2m+ 2 = 2(m+ 1) is even. Since a2k−1 = 1

2k+1 , we have

an = a2m+1 = a2(m+1)−1 = 1
2(m+1)+1 = 1

2m+2 . Since a2k = 1
2k
, we have an+1 = a2(m+1) =

1
2m+1 .

By the Ratio Test, which is applicable since the terms of the series are nonzero, we have for
odd n,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

2m+1→∞

∣
∣
∣
∣

a2(m+1)

a2m+1

∣
∣
∣
∣
= lim

m→∞

∣
∣
∣
∣

1
2m+1

1
2m+2

∣
∣
∣
∣
= lim

m→∞

∣
∣
∣
∣

2m+2

2m+1

∣
∣
∣
∣
= lim

m→∞

∣
∣
∣
∣

2m · 22
2m · 2

∣
∣
∣
∣
= 2.

We see that the Ratio Test produces two different limits for the case of n even or n odd. In

other words, lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ 6= ∞ does not exist, so the Ratio Test is not conclusive as to whether

the series converges or diverges.
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(b) We consider the cases of n even and n odd with the root test. If n is even, then n = 2m for

any positive integer m, and as in part (a), an = a2m = 1
2m . Applying the Root Test, which is

applicable since the terms of the series are nonzero, we have for even n

lim
n→∞

n
√

|an| = lim
2m→∞

2m
√

|a2m| = lim
m→∞

(
1

2m

) 1
2m

=

(
1

2

) 1
2

=
1√
2
.

If n is odd, then n = 2m+ 1 for or any positive integer (or zero) m, and as in part (a),
an = a2m+1 = 1

2m+2 . Applying the Root Test, which is applicable since the terms of the series
are nonzero, we have for odd n,

lim
n→∞

n
√

|an| = lim
2m+1→∞

2m+1
√

|a2m+1| = lim
m→∞

(
1

2m+2

) 1
(2m+1)

= lim
m→∞

1

2
m+2
2m+1

= lim
m→∞

2
− 1+ 2

m
2+ 1

m

= 2−
1
2 =

1√
2
.

Since the limits are the same for both even and odd n, and since the even and the odd cases
together comprise the entire series, we see that the Root Test gives us a limit which exists.

(c) Since the limit found by applying the Root Test in part (b) is less than 1, by the Root
Test, the series in question converges.

Challenge Problems

69. We have

∞∑

k=1

ak = 1+
2

22
+

3

33
+

1

44
+

2

55
+

3

66
+ · · · <

∞∑

k=1

bk = 1+
2

22
+

3

33
+

4

44
+

5

55
+

6

66
+ · · ·+ n

nn
+ · · · .

The nth term of the series to the right of the inequality is bn = n
nn . By the Root Test, which

applies since the terms of that series are nonzero, we have

lim
n→∞

n
√

|bn| = lim
n→∞

n

√
∣
∣
∣
n

nn

∣
∣
∣ = lim

n→∞
n1/n

n
= lim

n→∞
n1/n · lim

n→∞
1

n
= 1 · 0 = 0,

where we have used the limit result established in Problem 43. Since the limit is less than 1, by

the Root Test, the series
∞∑

k=1

bk converges, and then by the Comparison Test, we see that the

original series
∞∑

k=1

ak converges as well.

70. We have

∞∑

k=1

ak =
∞∑

k=1

(k + 1)2

(k + 2)!
=

∞∑

k=1

(k + 1)(k + 1)

(k + 2)(k + 1)(k!)
=

∞∑

k=1

(
k + 1

k + 2

)(
1

k!

)

<
∞∑

k=1

1

k!
,

since k+1
k+2 < 1 for k ≥ 1. Now,

∞∑

k=1

bk =
∞∑

k=1

1
k! is convergent since by the Ratio Test,

lim
n→∞

∣
∣
∣
∣

bn+1

bn

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
(n+1)!

1
n!

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n!

(n+ 1)!

∣
∣
∣
∣
= lim

n→∞
n!

(n+ 1)n!
= lim

n→∞
1

n+ 1
= 0.
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Since the limit is less than 1, by the Ratio Test, the series
∞∑

k=1

bk =
∞∑

k=1

1
k! converges, and by the

Comparison Test, so does the series
∞∑

k=1

ak.

Alternately, using the suggested hint, the Limit Comparison test may be used. The nth term of
the original series behaves like

an =
(n+ 1)2

(n+ 2)!
=

(n+ 1)(n+ 1)

(n+ 2)(n+ 1)(n!)
=

n+ 1

n+ 2
· 1

n!
≈ 1

n!
= bn

for large values of n. Comparing the series of positive terms
∞∑

k=1

ak with the series

∞∑

k=1

bk =
∞∑

k=1

1
k! , which is convergent as noted earlier, and also has positive terms, we have

lim
n→∞

an
bn

= lim
n→∞

n+1
n+2 · 1

n!
1
n!

= lim
n→∞

n+ 1

n+ 2
= lim

n→∞

1 + 1
n

1 + 2
n

=
1 + 0

1 + 0
= 1.

Since the limit is a positive real number, by the Limit Comparison Test, the original series
∞∑

k=1

ak converges.

71. The nth term of the series
∞∑

k=1

ck = a+ b + a2 + b2 + a3 + b3 + · · · is cn = an + bn. Since

0 < a < b, the terms of the series are all nonzero, and the Root Test may be applied. We have

lim
n→∞

n
√

|cn| = n
√

(an + bn) = b n

√

1 +

(
an

bn

)

= b lim
n→∞

[

1 +
(a

b

)n]1/n

= b
[

1 + lim
n→∞

(a

b

)n] lim
n→∞

1
n

= b(1 + 0)0 = b < 1,

where, in order to obtain lim
n→∞

(
a
b

)n
= 0, we used the fact that a < b, so that a

b < 1, and to

obtain the final inequality we used b < 1. Since the limit is less than 1, by the Root Test, the
series converges.

72. Since the Ratio Test indicates the series
∞∑

k=1

ak converges, it means lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = L < 1.

This means for any ǫ > 0 there exists an N such that if n ≥ N , then
∣
∣
∣
an+1

an
− L

∣
∣
∣ < ǫ, that is,

L− ǫ < |an+1|
|an| < L+ ǫ. We have

|an| =
|an|

|an−1|
· |an−1|
|an−2|

· · · |aN+1|
|aN | · |aN |.

Applying the inequality above to each of the fractional terms, we get

(L− ǫ)n−N · |aN | < |an| < (L+ ǫ)n−N · |aN |
or, taking the nth root, (L− ǫ)1−

N
n · |aN | 1

n < n
√

|an| < (L + ǫ)1−
N
n |aN | 1

n .
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Taking the limit as n → ∞ on this string of inequalities, we have

lim
n→∞

(L− ǫ)1−
N
n · lim

n→∞
|aN | 1

n ≤ lim
n→∞

n
√

|an| ≤ lim
n→∞

(L + ǫ)1−
N
n · lim

n→∞
|aN | 1

n

(L − ǫ)
lim

n→∞
(1−N

n ) · |aN | lim
n→∞

1
n ≤ lim

n→∞
n
√

|an| ≤ (L+ ǫ)
lim

n→∞
(1−N

n ) · |aN | lim
n→∞

1
n

(L− ǫ)1|aN |0 ≤ lim
n→∞

n
√

|an| ≤ (L+ ǫ)1|aN |0

L− ǫ ≤ lim
n→∞

n
√

|an| ≤ L+ ǫ.

Since this is valid for any ǫ > 0, in the limit, as ǫ → 0+, since lim
ǫ→0+

(L − ǫ) = L and

lim
ǫ→0+

(L + ǫ) = L, by the Squeeze Theorem, we have lim
n→∞

n
√

|an| = L < 1 since L < 1 by

assumption. So by the Root Test, the series converges.
We have shown that if the Ratio Test indicates a series converges, then so will the Root Test.
That the converse is not true can be seen from Problem 68, where a series is seen to converge
by the Root Test, but the Ratio Test is inconclusive.

AP
R©

Practice Problems

1. I. k2

(3k+1)! > 0 for k ≥ 1; an+1 = (n+1)2

[3(n+1)+1]! and an = n2

(3n+1)! .

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

(n+1)2

[3(n+1)+1]!

n2

(3n+1)!

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(n+ 1)
2
(3n+ 1)!

(3n+ 4)!n2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

(n+ 1)
2
(3n+ 1)!

n2(3n+ 4)(3n+ 3)(3n+ 2)(3n+ 1)!

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
n+ 1

n

)2

· 1

(3n+ 4)(3n+ 3)(3n+ 2)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(

1 +
1

n

)2

· 1

(3n+ 4)(3n+ 3)(3n+ 2)

∣
∣
∣
∣
∣
.

So lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = lim

n→∞

∣
∣
∣

(
1 + 1

n

)2 · 1
(3n+4)(3n+3)(3n+2)

∣
∣
∣ = 0 < 1.

Since the limit is less than 1, the series
∞∑

k=1

k2

(3k+1)! converges .

II. kk

k! > 0 for k ≥ 1; an+1 = (n+1)n+1

(n+1)! and an = nn

n! .

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

(n+1)n+1

(n+1)!

nn

n!

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(n+ 1)
n+1

n!

nn(n+ 1)!

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

(n+ 1)
n
(n+ 1)n!

nn(n+ 1)!

∣
∣
∣
∣

=

∣
∣
∣
∣

(
n+ 1

n

)n

· (n+ 1)!

(n+ 1)!

∣
∣
∣
∣
=

∣
∣
∣
∣

(

1 +
1

n

)n∣
∣
∣
∣
, so lim

n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(

1 +
1

n

)n∣
∣
∣
∣
= e > 1.

Since the limit is greater than 1, the series
∞∑

k=1

kk

k! diverges .

III. k
(
2
3

)k
> 0 for k ≥ 1; an+1 = (n+ 1)

(
2
3

)n+1
and an = n

(
2
3

)n
.

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

(n+ 1)
(
2
3

)n+1

n
(
2
3

)n

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

2

3

(
n+ 1

n

)∣
∣
∣
∣
=

∣
∣
∣
∣

2

3

(

1 +
1

n

)∣
∣
∣
∣
.
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So lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = lim

n→∞

∣
∣2
3

(
1 + 1

n

)∣
∣ = 2

3 < 1.

Since the limit is less than 1, the series
∞∑

k=1

k
(
2
3

)k
converges .

CHOICE C: I and III only

2. I. (−1)k
√
k

k+1 6= 0 for k ≥ 1; an+1 = (−1)n+1√n+1
n+2 and an = (−1)n

√
n

n+1 .

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

(−1)n+1√n+1
n+2

(−1)k
√
n

n+1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
n+ 1

n+ 2

)√

n+ 1

n

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1 + 1
n

1 + 2
n

·
(

1 +
1

n

)1/2
∣
∣
∣
∣
∣
.

So lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = lim

n→∞

∣
∣
∣
1+ 1

n

1+ 2
n

·
(
1 + 1

n

) 1
2

∣
∣
∣ = 1.

Since lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1, the Ratio Test provides no information about the series

∞∑

k=1

(−1)k
√
k

k+1 .

II. 1
k ln k > 0 for k ≥ 2; an+1 = 1

(n+1) ln(n+1) and an = 1
n lnn .

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
(n+1) ln(n+1)

1
n lnn

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n lnn

(n+ 1) ln(n+ 1)

∣
∣
∣
∣
,

which is indeterminate of the form ∞
∞ , so we use L’Hôpital’s Rule:

lim
n→∞

∣
∣
∣
∣

n lnn

(n+ 1) ln(n+ 1)

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

lnn+ n · 1
n

ln(n+ 1) + n+1
n+1

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1 + lnn

1 + ln(n+ 1)

∣
∣
∣
∣
,

which is indeterminate of the from ∞
∞ , so we use L’Hôpital’s Rule again:

lim
n→∞

∣
∣
∣
∣

1 + lnn

1 + ln(n+ 1)

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
n
1

n+1

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n+ 1

n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
1 +

1

n

∣
∣
∣
∣
= 1

Since lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1, the Ratio Test provides no information about the series

∞∑

k=2

1
k lnk .

III. k2+3k
k+1 > 0 for k ≥ 1; an+1 = (n+1)2+3(n+1)

n+2 and an = n2+3n
n+1 .

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(n+1)2+3(n+1)
n+2

n2+3n
n+1

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

(n+ 1)(n+ 4)(n+ 1)

n(n+ 3)(n+ 2)

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
∣

(
1 + 1

n

)(
1 + 4

n

)(
1 + 1

n

)

1
(
1 + 3

n

)(
1 + 2

n

)

∣
∣
∣
∣
∣
= 1

Since lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1, the Ratio Test provides no information about the series

∞∑

k=1

k2+3k
k+1 .

CHOICE D: I, II, and III
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3. I. k!
100k > 0 for k ≥ 1; an+1 = (n+1)!

100n+1 and an = n!
100n .

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

(n+1)!
100n+1

n!
100n

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

(n+ 1)!100n

100n+1n!

∣
∣
∣
∣
=

∣
∣
∣
∣

(n+ 1)n!100n

100n(100)n!

∣
∣
∣
∣
=

∣
∣
∣
∣

n+ 1

100

∣
∣
∣
∣
.

So lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = lim

n→∞

∣
∣n+1
100

∣
∣ = ∞ > 1.

Since lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ > 1, by the Ratio Test the series

∞∑

k=1

k!
100k

diverges .

II. 20k

2k2 > 0 for k ≥ 1; an = 20n

2n2 .

Since an involves an nth power, we use the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√

20n

2n2 = lim
n→∞

∣
∣
∣
∣

20n/n

2n2/n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

20

2n

∣
∣
∣
∣
= 0 < 1

Since lim
n→∞

n
√

|an| < 1, by the Root Test, the series
∞∑

k=1

20k

2k2 converges .

III. We choose a p-series for comparison by examining how the terms of the series
behave for large values of n:
√
n

n3 + 1
=

√
n

√
n
(

n5/2 + 1√
n

) ≈ 1

n5/2

So we compare the series
∞∑

k=1

√
k

k3+1 to the convergent p-series
∞∑

k=1

1
k5/2 and use the

Limit Comparison Test, with an =
√
n

n3+1 and bn = 1
n5/2 .

lim
n→∞

an
bn

= lim
n→∞

√
n

n3+1
1

n5/2

= lim
n→∞

n3

n3 + 1
= lim

n→∞

(
1

1 + 1
n3

)

= 1

Since lim
n→∞

an

bn
= 1 and 0 < 1 < ∞ and

∞∑

k=1

1
k5/2 converges, by the Limit Comparison

Test
∞∑

k=1

√
k

k3+1 also converges .

CHOICE A: I only

4. ek

kk > 0 for k ≥ 1; an = en

nn .

Since an involves an nth power, we use the Root Test.

lim
n→∞

n
√

|an| < 1 = lim
n→∞

n

√

en

nn
= lim

n→∞

∣
∣
∣
∣

en/n

nn/n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
e

n

∣
∣
∣ = 0 < 1.

Since lim
n→∞

n
√

|an| < 1, by the Root Test the series
∞∑

k=1

ek

kk converges .

5. 1
kp > 0 for k ≥ 1; an+1 = 1

(n+1)p and an = 1
np .

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1
(n+1)p

1
np

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

np

(n+ 1)
p

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(
n

n+ 1

)p∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(
1

1 + 1
n

)p∣
∣
∣
∣
= 1p = 1

Since lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1, the Ratio Test provides no information about the series

∞∑

k=1

1
kp .
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8.7 Summary of Tests

Concepts and Vocabulary

1. False: The series
∞∑

k=1

1
kp converges if p > 1 but diverges if p = 1 (it then becomes the

divergent harmonic series).

2. False: According to the Test for Divergence,
∞∑

k=1

ak diverges if lim
n→∞

an 6= 0. The test says

nothing if lim
n→∞

an = 0. For instance, the convergent p-series
∞∑

k=1

ak =
∞∑

k=1

1
k2 (convergent

because p = 2 > 1), and the divergent harmonic series
∞∑

k=1

ak =
∞∑

k=1

1
k both satisfy lim

n→∞
an = 0.

3. True: This is the statement of the theorem on Absolute Convergence Test, see Chapter 8,
Section 8.5, p.684.

4. False: For a counterexample, consider the alternating harmonic series,
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 1
k . Then the absolute value series

∞∑

k=1

ak =
∞∑

k=1

1
k is divergent as it

is the harmonic series. However, since lim
n→∞

an = 0 and by the Algebraic Ratio test an+1

an
< 1

for n ≥ 1 means the terms of the series are nonincreasing, by the Alternating Series Test, we

see that the series
∞∑

k=1

(−1)k+1ak converges. (This is called conditional convergence.)

5. False: For deciding convergence via the Ratio Test, it is not important that
∣
∣
∣
an+1

an

∣
∣
∣ < 1; we

need to require that lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ < 1. For example the divergent harmonic series

∞∑

k=1

ak =
∞∑

k=1

1
k

satisfies
∣
∣
∣
an+1

an

∣
∣
∣ =

∣
∣
∣

n
n+1

∣
∣
∣ < 1 for n ≥ 1, while lim

n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = lim

n→∞

∣
∣
∣

n
n+1

∣
∣
∣ = lim

n→∞

∣
∣
∣

1
1+ 1

n

∣
∣
∣ = 1 means

that the Ratio Test is in fact inconclusive in regards to the harmonic series’ convergence or
divergence (rather the Integral Test can be used to show the harmonic series diverges).

6. 0 < ak ≤ bk : This follows from the statement of the Comparison Test for Convergence, see
Section 8.4, p. 672.

Skill Building

7. The series is
∞∑

k=1

9k3+5k2

k5/2+4
. We have

lim
n→∞

an = lim
n→∞

9n3 + 5n2

n5/2 + 4
= lim

n→∞

n3
(
9 + 5

n

)

n5/2
(
1 + 4

n5/2

) = lim
n→∞

[

n1/2 · 9 + 5
n

1 + 4
n5/2

]

= ∞.

Since the limit of the nth term is nonzero, the series diverges by the Divergence Test.
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8. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1

√
2k+1

. The series of absolute values is

∞∑

k=1

ak =
∞∑

k=1

1√
2k+1

. The nth term behaves like

an =
1√

2n+ 1
=

1

n1/2
√

2 + 1
n1/2

≈ 1

n1/2

for large values of n. So we compare with the divergent p-series
∞∑

k=1

bk =
∞∑

k=1

1
k1/2 , which is

divergent since 0 < p = 1
2 < 1. We have

lim
n→∞

an
bn

= lim
n→∞

1

n1/2
√

2+ 1

n1/2

1
n1/2

= lim
n→∞

1
√

2 + 1
n1/2

=
1√
2
.

Since the limit is a positive real number, by the Limit Comparison Test, the series of absolute

values
∞∑

k=1

ak diverges.

Let’s investigate whether the original series converges. We have lim
n→∞

an = lim
n→∞

1√
2n+1

= 0.

Also by the Algebraic Ratio Test,

an+1

an
=

1√
2(n+1)+1

1√
2n+1

=

√
2n+ 1√
2n+ 3

< 1

for all n ≥ 1. So the terms of the series are nonincreasing as well. By the Alternating Series
Test, the original series converges. But since the series of absolute values diverges, the original

series is conditionally convergent.

9. The series is 6 + 2 + 2
3 + 2

9 + 2
27 + · · · = 6 + 2 +

∞∑

k=1

2
3k

= 8 +
∞∑

k=1

2
3 ·
(
1
3

)k−1
. The latter term

is a geometric series of the form
∞∑

k=1

ark−1 with a = 2
3 and r = 1

3 . Since |r| < 1, it converges to

a sum of a
1−r = 2/3

1−1/3 = 2/3
2/3 = 1. The original series converges to a sum of 8 + 1 = 9, which is

finite, so the series is convergent. Since all terms of the original series are positive, the series is

also absolutely convergent.

10. The series is
∞∑

k=1

ak =
∞∑

k=1

1
k2 sin

π
k . The series of absolute values is

∞∑

k=1

|ak| =
∞∑

k=1

1
k2

∣
∣sinπ

k

∣
∣.

We have

|an| =
1

n2

∣
∣
∣sin

π

n

∣
∣
∣ ≤ 1

n2
= bn

since | sin θ| ≤ 1 for 0 < θ = π
n ≤ π. By comparing with the series

∞∑

k=1

bk =
∞∑

k=1

1
k2 , which is a

convergent p-series (since p = 2 > 1), the series of absolute values converges by the Comparison

Test, which means the original series converges absolutely.

11. The series is
∞∑

k=1

ak =
∞∑

k=1

3k+1
k3+1 . The nth term behaves like

an =
3n+ 2

n3 + 1
=

n
(
3 + 2

n

)

n3
(
1 + 1

n3

) ≈ 1

n2
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for large values of n. We compare with the convergent p-series
∞∑

k=1

bk =
∞∑

k=1

1
k2 , which is

convergent since p = 2 > 1. We have

lim
n→∞

an
bn

= lim
n→∞

3n+2
n3+1

1
n2

= lim
n→∞

3n3 + 2n2

n3 + 1
= lim

n→∞

3 + 2
n

1 + 1
n3

= 3.

Since the limit is a positive real number, the series is convergent by the Limit Comparison

Test. And since all the terms of the series are positive, it is also absolutely convergent.

12. The series is 1 + 22+1
23+1 + 32+1

33+1 + 42+1
43+1 + · · · =

∞∑

k=1

ak =
∞∑

k=1

k2+1
k3+1 . The nth term behaves like

an =
n2 + 1

n3 + 1
=

n2
(
1 + 1

n2

)

n3
(
1 + 1

n3

) ≈ 1

n

for large values of n. We compare with the divergent harmonic series
∞∑

k=1

bk =
∞∑

k=1

1
k . We have

lim
n→∞

an
bn

= lim
n→∞

n2+1
n3+1

1
n

= lim
n→∞

n3 + n

n3 + 1
= lim

n→∞

1 + 1
n2

1 + 1
n3

= 1.

Since the limit is a positive real number, by the Limit Comparison Test, the series diverges.

13. The series is
∞∑

k=1

ak =
∞∑

k=1

k+4
k
√
3k−2

. The nth term behaves like

an =
n+ 4

n
√
3n− 2

=
n
(
1 + 4

n

)

n3/2
√

3− 2
n

≈ 1

n1/2

for large values of n. We compare with the divergent p-series (divergent since 0 < p = 1
2 < 1)

∞∑

k=1

bk =
∞∑

k=1

1
k1/2 . We have

lim
n→∞

an
bn

= lim
n→∞

n+4
n
√
3n−2
1√
n

= lim
n→∞

n+ 4√
n
√
3n− 2

= lim
n→∞

1 + 4
n

√

3− 2
n

=
1√
3
.

Since the limit is a positive real number, by the Limit Comparison Test, the series diverges.

14. The series is
∞∑

k=1

ak =
∞∑

k=1

sin k
k3 . The series of absolute values is

∞∑

k=1

|ak| =
∞∑

k=1

| sin k|
k3 . We

have

|an| =
| sinn|
n3

≤ 1

n3
= bn,

since | sinn| ≤ 1 for n ≥ 1. Comparing with the convergent p-series
∞∑

k=1

bk =
∞∑

k=1

1
k3 , which is

convergent since p = 3 > 1, we see by the Comparison Test that the series of absolute values

converges. This means the original series is absolutely convergent.
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15. The series
∞∑

k=1

ak =
∞∑

k=1

32k−1

k2+2k is a series of nonzero terms. We apply the Ratio Test. The

ratio of the n+ 1st and the nth term of the series is

an+1

an
=

32(n+1)−1

(n+1)2+2(n+1)

32n−1

n2+2n

=
32n+1

32n−1
· n2 + 2n

(n2 + 2n+ 1) + 2n+ 1
=

9n2 + 18n

n2 + 4n+ 2
.

The limit of the absolute value of the ratio found above is

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞
9n2 + 18n

n2 + 4n+ 2
= lim

n→∞

9 + 18
n

1 + 4
n + 2

n2

= 9 > 1.

Since the limit is greater than 1, by the Ratio Test, the series diverges.

16. The series
∞∑

k=1

ak =
∞∑

k=1

5k

k! is a series of nonzero terms. By the Ratio Test, we have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

5n+1

(n+1)!

5n

n!

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

5n+1

5n
· n!

(n+ 1)!

∣
∣
∣
∣
= 5 lim

n→∞

∣
∣
∣
∣

n!

(n+ 1)n!

∣
∣
∣
∣
= 0.

Since the limit is less than 1, by the Ratio Test, the series converges. Since all the terms are

positive, the series is also absolutely convergent.

17. The series is
∞∑

k=1

ak =
∞∑

k=1

(
1 + 2

k

)k
. We have

lim
n→∞

an = lim
n→∞

(

1 +
2

n

)n

= lim
n′→∞

(

1 +
1

n′

)2n′

= lim
n′→∞

[(

1 +
1

n′

)n′]2

=

[

lim
n′→∞

(

1 +
1

n′

)n′]2

= e2 6= 0

where n′ = n
2 . Since the limit of the nth term is nonzero, the series diverges by the

Divergence Test.

18. The series is
∞∑

k=1

ak =
∞∑

k=1

k2+4
ek

is a series of nonzero terms. By the Ratio Test, we have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(n+1)2+4
en+1

n2+4
en

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

en

en+1
· (n+ 1)2 + 4

n2 + 4

∣
∣
∣
∣
=

1

e
lim
n→∞

∣
∣
∣
∣
∣

(
1 + 1

n

)2
+ 4

n2

1 + 4
n2

∣
∣
∣
∣
∣
=

1

e
·|1| < 1.

Since the limit is less than 1, by the Ratio Test, the series converges. Also, since the terms of

the series are all positive, this means the series is absolutely convergent.

19. The series is 2
3 − 3

4 · 1
2 +

4
5 · 1

3 − 5
6 · 1

4 + · · · =
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 k+1
k+2 · 1

k . The series

of absolute values is
∞∑

k=1

ak =
∞∑

k=1

k+1
k+2 · 1

k . Comparing with the divergent harmonic series

∞∑

k=1

bk =
∞∑

k=1

1
k , we have

lim
n→∞

an
bn

= lim
n→∞

n+1
n+2 · 1

n
1
n

= lim
n→∞

n+ 1

n+ 2
= lim

n→∞

1 + 1
n

1 + 2
n

= 1.
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Since the limit is a positive real number, by the Limit Comparison Test, the absolute value
series diverges.

Next, we examine the original series
∞∑

k=1

(−1)k+1ak for convergence. We have

lim
n→∞

an = lim
n→∞

n+ 1

n+ 2
· 1
n
= lim

n→∞

1 + 1
n

1 + 2
n

· lim
n→∞

1

n
= 1 · 0 = 0.

By the Algebraic Ratio Test, we have

an+1

an
=

n+2
n+3 · 1

n+1
n+1
n+2 · 1

n

=
n(n+ 2)2

(n+ 1)2(n+ 3)
< 1

provided the following holds:

n(n+ 2)2 < (n+ 1)2(n+ 3)

n(n2 + 4n+ 4) < (n2 + 2n+ 1)(n+ 3)

n3 + 4n2 + 4n < n3 + 2n2 + n+ 3n2 + 6n+ 3

4n2 + 4n < 5n2 + 7n+ 3

that is, n2 + 3n+ 3 > 0,

which is the case for n ≥ 1. So the terms of the series are nonincreasing. By the Alternating
series Test, the original series converges. Since the series of absolute values diverges, the

original series is conditionally convergent.

20. The series is 2 + 3
2 · 1

4 + 4
3 · 1

42 + 5
4 · 1

43 + · · · =
∞∑

k=1

k+1
k · 1

4k−1 =
∞∑

k=1

k+1
k 4k−1 =

∞∑

k=1

ak. Since

the nth term behaves like

an =
n+ 1

n 4n−1
=

1

4n−1

(

1 +
1

n

)

≈ 1

4n−1

for large n, we compare with the series
∞∑

k=1

bk =
∞∑

k=1

3
4k−1 =

∞∑

k=1

3
(
1
4

)k−1
which is a convergent

geometric series since |r| = 1
4 < 1. Now, we have

an =
n+ 1

n

(
1

4n−1

)

=
n+ 1

3n

(
3

4n−1

)

=
n+ 1

3n
bn <

n+ n

3n
bn =

2

3
bn < bn

for all n ≥ 1. So by the Comparison Test, the series
∞∑

k=1

ak converges. The terms of the series

are positive, so this means that the series also converges absolutely.

21. The series is 1 + 1·3
2! + 1·3·5

3! + 1·3·5·7
4! + · · · . Note that

1 · 3 · 5 · 7
4!

=
1 · 2 · 3 · 4 · 5 · 6 · 7 · 8

(2 · 4 · 6 · 8)4! =
8!

24[1 · 2 · 3 · 4]4! =
8!

24 · (4!)(4!) ,

so the nth term of the series can be written as an = (2n)!
2n·(n!)(n!) . By the Ratio Test, which is
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indicated since factorials are involved, and the terms of the series are nonzero, we have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(2(n+1))!
2n+1·(n+1)!(n+1)!

(2n)!
2n·(n!)(n!)

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

2n

2n+1
· n!

(n+ 1)!
· n!

(n+ 1)!
· (2(n+ 1))!

(2n)!

∣
∣
∣
∣

=
1

2
lim
n→∞

∣
∣
∣
∣

n!

(n+ 1)n!
· n!

(n+ 1)n!
· (2n+ 2)(2n+ 1)(2n)!

(2n)!

∣
∣
∣
∣

=
1

2
lim
n→∞

∣
∣
∣
∣

(2n+ 2)(2n+ 1)

(n+ 1)(n+ 1)

∣
∣
∣
∣
=

1

2
lim
n→∞

∣
∣
∣
∣
∣

(
2 + 2

n

) (
2 + 1

n

)

(
1 + 1

n

) (
1 + 1

n

)

∣
∣
∣
∣
∣

=
1

2
· 4 = 2 > 1.

Since the limit is greater than 1, by the Ratio Test, the series
∞∑

k=1

ak diverges.

22. The series is 1√
1·2·3 + 1√

2·3·4 + 1√
3·4·5 + · · · =

∞∑

k=1

ak =
∞∑

k=1

1√
k(k+1)(k+2)

. The nth term

satisfies

an =
1

√

n(n+ 1)(n+ 2)
=

1

n3/2
√
(
1 + 1

n

) (
1 + 2

n

) <
1

n3/2
= bn

for n ≥ 1. By comparing with the series
∞∑

k=1

bk =
∞∑

k=1

1
k3/2 , which is a convergent p-series (since

p = 3
2 > 1), by the Comparison Test, we see that the original series

∞∑

k=1

ak converges. Since the

terms of the series
∞∑

k=1

ak are all positive, this series is also absolutely convergent.

23. The series
∞∑

k=1

ak =
∞∑

k=1

k!
(2k)! is a series of nonzero terms and has factorials, so the use of

the Ratio Test is indicated. The ratio of the n+ 1st and nth term of the series is

an+1

an
=

(n+1)!
(2(n+1))!

n!
(2n)!

=
(n+ 1)!

n!
· (2n)!

(2(n+ 1))!
=

(n+ 1)n!

n!
· (2n)!

(2n+ 2)(2n+ 1)(2n)!
=

(n+ 1)

(2n+ 2)(2n+ 1)
.

Taking the limit of the absolute value of the ratio found above gives

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n+ 1

(2n+ 2)(2n+ 1)

∣
∣
∣
∣
= lim

n→∞
1

2n+ 2
· lim
n→∞

1 + 1
n

2 + 1
n

= 0 · 1
2
= 0.

Since the limit is less than 1, by the Ratio Test, the series is convergent. Additionally, the

terms of the series are all positive, so this means that the series is also absolutely convergent.

24. The series is
∞∑

k=1

ak =
∞∑

k=1

k3e−k4

. Now the function f(x) = x3e−x4

is defined on [1,∞), is

continuous, and decreasing for all x ≥ 1, since

f ′(x) = 3x2e−x4

+ x3(−4x3)e−x4

= (3x2 − 4x6)e−x4

< 0

when 3x2 − 4x6 < 0, or 3 < 4x4, or x > 4

√
3
4 , but

4

√
3
4 < 1. So, for x ≥ 1, the series decreases,

as claimed. Also, f(k) = ak for all integers k ≥ 1. By the Integral Test, we have

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

x3e−x4

dx.
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Let u = e−x4

. Then du = −4x3e−x4

dx. Continuing, we have

I = −1

4
lim
b→∞

∫ e−b4

e−1

du = −1

4
lim
b→∞

[u]
∣
∣
∣

e−b4

e−1
= −1

4
lim
b→∞

(

e−b4 − e−1
)

= −1

4

(
0− e−1

)
=

1

4e
.

Since the improper integral I converges, by the Integral Test, the series converges as well. Since

the terms of the series are all positive, the series is absolutely convergent.

25. The series is
∞∑

k=1

ak =
∞∑

k=1

1√
k+100

. Comparing with the divergent p-series
∞∑

k=1

bk =
∞∑

k=1

1√
k
,

which diverges since 0 < p = 1
2 < 1, we have

lim
n→∞

an
bn

= lim
n→∞

1√
n+100

1√
n

= lim
n→∞

√
n√

n+ 100
= lim

n→∞
1

1 + 100√
n

= 1.

Since the limit is a positive real number, the series diverges by the Limit Comparison Test.

26. The series is
∞∑

k=1

ak =
∞∑

k=1

k2+5k
3+5k2 . We have

lim
n→∞

an = lim
n→∞

n2 + 5n

3 + 5n2
= lim

n→∞

1 + 5
n

3
n2 + 5

=
1

5
6= 0.

Since the limit of the nth term is nonzero, the series diverges by the Divergence Test.

27. The series is
∞∑

k=1

ak =
∞∑

k=1

1
3
√
k4+4

. We have

an =
1

3
√
n4 + 4

<
1

3
√
n4

=
1

n4/3
= bn.

Comparing the series with the convergent p-series
∞∑

k=1

bk =
∞∑

k=1

1
k4/3 , which is convergent since

p = 4
3 > 1, we see that the original series

∞∑

k=1

ak is convergent by the Comparison Test.

Further, since all the terms of
∞∑

k=1

ak are positive, the series is absolutely convergent.

28. The series can be written as
∞∑

k=1

ak =
∞∑

k=1

1
11

(
− 3

2

)k
=

∞∑

k=1

(−1)k 1
11

(
3
2

)k
. We have

lim
n→∞

|an| =
1

11
lim
n→∞

(
3

2

)n

= ∞ 6= 0,

using the result stated in Section 8.1, p. 639, and proved in Section 8.1, Problem 140, that
lim
n→∞

rn = ∞ if |r| > 1. Since the limit of the absolute value of the nth term is nonzero, the

series diverges by the Divergence Test.

29. The series is 1
3 − 2

4 + 3
5 − 4

6 + · · · =
∞∑

k=1

(−1)k+1 k
k+2 . We have

lim
n→∞

|an| = lim
n→∞

n

n+ 2
= lim

n→∞
1

1 + 2
n

= 1 6= 0.
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Since the limit of the absolute value of the nth term is nonzero, the series diverges by the

Divergence Test.

30. The series can be written

∞∑

k=1

ak =

∞∑

k=1

k(−4)3k

5k
=

∞∑

k=1

(−1)3k
k(4)3k

5k
=

∞∑

k=1

[(−1)3]k
k(43)k

5k
=

∞∑

k=1

(−1)kk

(
64

5

)k

.

We have

lim
n→∞

|an| = lim
n→∞

n ·
(
64

5

)n

= lim
n→∞

n · lim
n→∞

(
64

5

)n

= ∞,

since both limits are separately ∞ (for the second limit, we use the result quoted in Problem
28 above). Since the limit of the absolute value of the nth term is nonzero, the series

diverges by the Divergence Test.

31. The series is
∞∑

k=1

(−1)kak =
∞∑

k=1

(
− 1

k

)k
=

∞∑

k=1

(−1)k 1
kk . The series of absolute values is

∞∑

k=1

ak =
∞∑

k=1

1
kk , the “k to the k series”. You could use the Table 6, p.698 to assert

convergence. However, that this is convergent can be directly deduced using the root test (note
that the terms of the series of absolute values are nonzero, and the nth term has an nth power,
so the Root Test is applicable) :

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

1

nn

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

n

∣
∣
∣
∣
= 0 < 1.

Since the limit is less than 1, by the Root Test, the series of absolute values converges, which

means the original series is absolutely convergent.

32. The series is
∞∑

k=1

ak =
∞∑

k=1

5
2k+1 . We have

an =
5

2n + 1
<

5

2n
= bn.

Comparing with the series
∞∑

k=1

bk =
∞∑

k=1

5
2k

=
∞∑

k=1

5
2

(
1
2

)k−1
, which is a convergent geometric

series (since |r| = 1
2 < 1), we see that the original series converges by the Comparison Test.

Since the terms of the original series are all positive, we conclude that series must be

absolutely convergent.

33. The series
∞∑

k=1

ak =
∞∑

k=1

e−k2

is a series of nonzero terms. Since the nth term has an nth

power, the Root Test would be ideal to use:

lim
n→∞

n
√

|an| = lim
n→∞

(∣
∣
∣e−n2

∣
∣
∣

)1/n

= lim
n→∞

∣
∣e−n

∣
∣ = 0 < 1.

Since the limit is less than 1, by the Root Test, the series converges. Since its terms are all

positive, the series also converges absolutely.
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34. The series is sin
√
1

13/2
+ sin

√
2

23/2
+ sin

√
3

33/2
+ · · · =

∞∑

k=1

ak =
∞∑

k=1

sin
√
k

k3/2 . The series of absolute

values is
∞∑

k=1

|ak| =
∞∑

k=1

| sin
√
k|

k3/2 . We have

|an| =
| sin√n|
n3/2

≤ 1

n3/2
= bn,

since | sin√n| ≤ 1 for all n ≥ 1. Comparing with the convergent (since p = 3
2 > 1) p-series

∞∑

k=1

bk =
∞∑

k=1

1
k3/2 , by the Comparison Test, we see the series of absolute values is convergent,

which means that the original series must be absolutely convergent.

35. The series is
∞∑

k=2

(−1)k+1ak =
∞∑

k=2

(−1)k+1

k(ln k)3 . The series of absolute values is

∞∑

k=2

ak =
∞∑

k=2

1
k(ln k)3 . Consider the function f(x) = 1

x(lnx)3 which is defined, decreasing and

continuous on [2,∞), and for which ak = f(k) for all k ≥ 2. Applying the Integral Test, we
have

I =

∫ ∞

2

f(x) dx = lim
b→∞

∫ b

2

dx

x(ln x)3
.

Let u = lnx. Then du = dx
x . Continuing,

I = lim
b→∞

∫ ln b

ln 2

du

u3
= lim

b→∞

∫ ln b

ln 2

u−3 du = lim
b→∞

[
u−3+1

−3 + 1

]ln b

ln 2

= −1

2
lim
b→∞

[
1

u2

]ln b

ln 2

= −1

2
lim
b→∞

[
1

(ln b)2
− 1

(ln 2)2

]

= −1

2

[

0− 1

(ln 2)2

]

=
1

2(ln 2)2

Since the improper integral I converges, by the Integral Test, the series also converges.
Moreover, the terms of the series are all positive, so that the original series is

absolutely convergent.

36. The series
∞∑

k=1

ak =
∞∑

k=1

1
(2k)k

is a series of nonzero terms. Since its nth term involves an

nth power, the Root Test is the best choice:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

1

(2n)n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

2n

∣
∣
∣
∣
= 0.

Since the limit is less than 1, by the Root Test, the series converges. The terms of the series

are all positive, so this series also is absolutely convergent.

37. The series
∞∑

k=2

ak =
∞∑

k=2

(
ln k
1000

)k
is a series of nonzero terms. Since the nth term involves an

nth power, we use the Root Test:

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

(
lnn

1000

)n∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

lnn

1000

∣
∣
∣
∣
= ∞.
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By the Root Test, since the limit is greater than 1, the series diverges.

38. The series is

∞∑

k=1

ak =

∞∑

k=1

1

cosh2 k
=

∞∑

k=1

1
(

ek+e−k

2

)2 =

∞∑

k=1

4

e2k + e−2k + 2
.

Here the standard definition cosh k = ek+e−k

2 was used. We have

an =
4

e2n + e−2n + 2
<

4

e2n
= bn

since e−2n + 2 > 0 for n ≥ 1. Now, we can write the series
∞∑

k=1

bk as follows:

∞∑

k=1

bk =

∞∑

k=1

4

e2k
=

∞∑

k=1

4

(e2)k
=

∞∑

k=1

4

e2
·
(

1

e2

)k−1

.

We see that it is a geometric series of the form
∞∑

k=1

ark−1 with a = 4
e2 and |r| = 1

e2 < 1 so it

converges. By the Comparison Test, the original series also converges. Since the terms of the

original series are positive, it is absolutely convergent.

39. The series is
∞∑

k=1

ak =
∞∑

k=1

tan−1 k
k2 . The nth term satisfies

an =
tan−1 n

n2
<

π

2n2
= bn

since tan−1 n < π
2 for any n ≥ 1. Since the series

∞∑

k=1

bk =
∞∑

k=1

π
2k2 is a constant multiple of a

convergent p-series (convergent since p = 2 > 1), the original series also converges by the
Comparison Test. Since tan−1 n > 0 for all n ≥ 1, the terms of the original series are all

positive, which in turn means that the original series is also absolutely convergent.

40. The nth partial sum of the series
∞∑

k=1

(
√
k + 1−

√
k) is

Sn =
n∑

k=1

(
√
k + 1−

√
k)

= (
√
2−

√
1) + (

√
3−

√
2) + · · ·+ (

√
n−

√
n− 1) + (

√
n+ 1−

√
n)

=
√
n+ 1−

√
1.

Since lim
n→∞

Sn = ∞, the sequence {Sn} of partial sums diverges, which means that the series

diverges as well.
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41. The nth partial sum of the series
∑∞

k=4

(
1

k−3 − 1
k

)

is

Sn =

n∑

k=4

(
1

k − 3
− 1

k

)

=

(
1

1
− 1

4

)

+

(
1

2
− 1

5

)

+

(
1

3
− 1

6

)

+

(
1

4
− 1

7

)

+

(
1

5
− 1

8

)

+

+ · · ·+
(

1

n− 7
− 1

n− 4

)

+

(
1

n− 6
− 1

n− 3

)

+

(
1

n− 5
− 1

n− 2

)

+

+

(
1

n− 4
− 1

n− 1

)

+

(
1

n− 3
− 1

n

)

= 1 +
1

2
+

1

3
− 1

n− 2
− 1

n− 1
− 1

n
.

The limit of the sequence {Sn} is:

lim
n→∞

Sn = lim
n→∞

(

1 +
1

2
+

1

3
− 1

n− 2
− 1

n− 1
− 1

n

)

= 1 +
1

2
+

1

3
=

6 + 3 + 2

6
=

11

6
.

Since the sequence of partial sums {Sn} converges, the series converges as well, and the limit

of the sequence of partial sums is also the sum of the series, which is
11

6
.

42. The series is
∞∑

k=2

ln
(

k
k+1

)

=
∞∑

k=2

(ln k − ln(k + 1)) . The nth partial sum of the series is

Sn =
n∑

k=2

(ln k − ln(k + 1))

= (ln 1− ln 2) + (ln 2− ln 3) + · · ·+ (ln(n− 1)− lnn) + (lnn− ln(n+ 1))

= ln 1− ln(n+ 1) = − ln(n+ 1).

Since lim
n→∞

Sn = −∞, the sequence of partial sums {Sn} diverges, which in turn means that the

series diverges.

43. The series is

1 +
1 · 2
1 · 3 +

1 · 2 · 3
1 · 3 · 5 +

1 · 2 · 3 · 4
1 · 3 · 5 · 7 + · · · =

∞∑

k=1

2k · (k!)(k!)
(2k)!

,

where we use the fact that

1

1 · 3 · 5 · 7 · · · (2k − 1)
=

2 · 4 · 6 · 8 · · · (2k)
1 · 2 · 3 · 4 · · · (2k) =

2k · [1 · 2 · 3 · 4 · · · k]
(2k)!

=
2k · (k!)
(2k)!

.

Since the terms of the series are nonzero, and factorials are involved in the nth term, the Ratio
Test suggests itself to be used. The ratio of the n+ 1st and the nth term of the series is

an+1

an
=

2n+1·(n+1)!(n+1)!
(2(n+1))!

2n·(n!)(n!)
(2n)!

=
2n+1

2n
· (n+ 1)!

n!
· (n+ 1)!

n!
· (2n)!

(2(n+ 1))!

= 2 · (n+ 1)n!

n!
· (n+ 1)n!

n!
· (2n)!

(2n+ 2)(2n+ 1)(2n)!

= 2 · (n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)
.
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The limit of the absolute value of the ratio found above is

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= 2 lim

n→∞

∣
∣
∣
∣

(n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)

∣
∣
∣
∣
= 2 lim

n→∞

∣
∣
∣
∣
∣

(
1 + 1

n

) (
1 + 1

n

)

(
2 + 1

n

) (
2 + 1

n

)

∣
∣
∣
∣
∣
= 2

∣
∣
∣
∣

1 · 1
2 · 2

∣
∣
∣
∣
= 2 · 1

4
=

1

2
< 1.

Since the limit is less than 1, by the Ratio Test, the series converges.

44. (a) The series

∞∑

k=1

ak =
∞∑

k=1

[(
2

3

)k

− 2

k2 + 2k

]

=
∞∑

k=1

(
2

3

)k

−
∞∑

k=1

2

k2 + 2k

is the difference between two series
∞∑

k=1

bk =
∞∑

k=1

(
2
3

)k
and

∞∑

k=1

ck =
∞∑

k=1

2
k2+2k . We show below

that each of these series converges, so the original series must converge, which in turn justifies
our splitting the series into two parts (which is allowed only for absolutely convergent series).

The series
∞∑

k=1

bk =
∞∑

k=1

(
2
3

)k
=

∞∑

k=1

(
2
3

) (
2
3

)k−1
is a geometric series of the form

∞∑

k=1

ark−1, with

a = 2
3 , and r = 2

3 . Since |r| < 1, this series converges to a sum of

a

1− r
=

2/3

1− 2/3
=

2/3

1/3
= 2.

The nth term of the series
∞∑

k=1

ck =
∞∑

k=1

2
k2+2k satisfies

cn =
2

n2 + 2n
<

2

n2
= dn

for n ≥ 1. Since the series
∞∑

k=1

dk =
∞∑

k=1

2
k2 is a constant multiple of a convergent p-series (since

p = 2 > 1), by the Comparison Test, we see that the series
∞∑

k=1

ck converges. These calculations

show that the original series
∞∑

k=1

ak =
∞∑

k=1

bk −
∞∑

k=1

ck converges.

(b) We have already summed the series
∞∑

k=1

bk =
∞∑

k=1

(
2
3

)k
= 2 above. To sum the series

∞∑

k=1

ck =
∞∑

k=1

2
k2+2k , consider its nth partial sum, which can be simplified using partial fractions

and the telescoping nature of the terms as follows:

Sn =

n∑

k=1

2

k2 + 2k
=

n∑

k=1

2

k(k + 2)
=

n∑

k=1

(
1

k
− 1

k + 2

)

=

(
1

1
− 1

3

)

+

(
1

2
− 1

4

)

+

(
1

3
− 1

5

)

+ · · ·+

+

(
1

n− 2
− 1

n

)

+

(
1

n− 1
− 1

n+ 1

)

+

(
1

n
− 1

n+ 2

)

= 1 +
1

2
− 1

n+ 1
− 1

n+ 2
.

We have

lim
n→∞

Sn = lim
n→∞

(

1 +
1

2
− 1

n+ 1
− 1

n+ 2

)

=
3

2
.
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Since the sequence {Sn} of partial sums converges to a sum, the series converges to the same

sum, that is,
∞∑

k=1

ck = 3
2 . Finally, the required sum of the original series is

∞∑

k=1

ak =

∞∑

k=1

bk −
∞∑

k=1

ck = 2− 3

2
=

1

2
.

45. (a) The series

∞∑

k=1

ak =

∞∑

k=1

[(

−1

4

)k

+
3

k(k + 1)

]

=

∞∑

k=1

(

−1

4

)k

+

∞∑

k=1

3

k(k + 1)

is the sum of two series
∞∑

k=1

bk =
∞∑

k=1

(
− 1

4

)k
and

∞∑

k=1

ck =
∞∑

k=1

3
k(k+1) . We show below that each

of these series converges, so the original series converges as well, which justifies our splitting
the series into two parts (which is allowed only for absolutely convergent series). The series
∞∑

k=1

bk =
∞∑

k=1

(
− 1

4

)k
=

∞∑

k=1

(
− 1

4

) (
− 1

4

)k−1
is a geometric series of the form

∞∑

k=1

ark−1, with

a = − 1
4 and r = − 1

4 . Since |r| < 1, the series converges to a sum of

a

1− r
=

− 1
4

1−
(
− 1

4

) =
− 1

4

1 + 1
4

=
− 1

4
5
4

= −1

5
.

The nth term of the series
∞∑

k=1

ck =
∞∑

k=1

3
k(k+1) satisfies

cn =
3

n(n+ 1)
<

3

n2
= dn

for n ≥ 1. Since the series
∞∑

k=1

dk =
∞∑

k=1

3
k2 is a constant multiple of a convergent p-series (since

p = 2 > 1), by the Comparison Test, we see that the series
∞∑

k=1

ck converges. These calculations

demonstrate that the original series
∞∑

k=1

ak =
∞∑

k=1

bk +
∞∑

k=1

ck converges.

(b) We have already summed the series
∞∑

k=1

bk =
∞∑

k=1

(
− 1

4

)k
= − 1

5 above. To sum the series

∞∑

k=1

ck =
∞∑

k=1

3
k(k+1) consider its nth partial sum, which can be simplified using partial fractions

and the telescoping nature of the terms as follows:

Sn =
n∑

k=1

3

k(k + 1)
=

n∑

k=1

3

(
1

k
− 1

k + 1

)

= 3

(
1

1
− 1

2

)

+ 3

(
1

2
− 1

3

)

+ · · ·+ 3

(
1

n− 1
− 1

n

)

+ 3

(
1

n
− 1

n+ 1

)

= 3− 3

n+ 1
.

We have

lim
n→∞

Sn = lim
n→∞

(

3− 3

n+ 1

)

= 3.
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Since the sequence {Sn} of partial sums converges to a sum, the series converges to the same

sum, that is
∞∑

k=1

ck = 3. Finally, the required sum of the original series is

∞∑

k=1

ak =

∞∑

k=1

bk +

∞∑

k=1

ck = −1

5
+ 3 =

14

5
.

Challenge Problems

46. (a) The series is

1− 1− 1

2
+

1

3
+

1

3
− 1

9
− 1

4
+

1

27
+

1

5
− 1

81
− · · · .

The nth term of this series is

an =

[

(−1)n+1 1

n
+ (−1)n

1

3n−1

]

= (−1)n−1

[
1

n
− 1

3n

]

.

To show the series converges, we apply the Alternating Series Test. We have

lim
n→∞

|an| = lim
n→∞

(
1

n
− 1

3n

)

= 0− 0 = 0.

Also, by the Algebraic Difference Test,

|an+1|−|an| =
1

n+ 1
− 1

3n+1
− 1

n
+

1

3n
=

1

n+ 1
− 1

n
−1

3
· 1
3n

+
1

3n
=

n− n− 1

n(n+ 1)
+
2

3
· 1
3n

= − 1

n(n+ 1)
+

2

3n+1
< 0

provided

2

3n+1
<

1

n(n+ 1)

or, 2n(n+ 1) < 3n+1.

The left side of the inequality is a polynomial whose terms are {4, 12, 24, · · · } for
n = 1, 2, 3, · · · , while the right side of the inequality is an exponential series with terms
{9, 27, 81, · · · } for n = 1, 2, 3, · · · . So we see that the inequality is satisfied for n ≥ 1, so by the
Alternating Series Test, the series converges.
(b) Since the series converges to a sum, we can split up the nth term as two terms and sum

them separately, so that the sum of the series is
∞∑

k=1

ak =
∞∑

k=1

bk +
∞∑

k=1

ck. Here, the first sum

∞∑

k=1

bk =

∞∑

k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

is the alternating harmonic series, which we know to be a convergent series (using, for example,
the Alternating Series Test, or consulting the Table 6 on p.698). The alternating harmonic

series has a sum
∞∑

k=1

bk = ln 2 (see the note on p.681).

The second sum is

∞∑

k=1

ck =
∞∑

k=1

(−1)k

3k−1
=

−1

30
+

1

31
+

−1

32
+

1

33
+

−1

34
· · · = −1 +

1

3
− 1

9
+

1

27
− 1

81
+ · · · ,
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is a geometric series
∞∑

k=1

ck =
∞∑

k=1

(−1)k

3k−1 =
∞∑

k=1

(

− (−1)k−1

3k−1

)

=
∞∑

k=1

−
(
− 1

3

)k−1
of the form

∞∑

k=1

ark−1 with a = −1 and r = − 1
3 . Since |r| < 1, the geometric series also converges to a sum

a

1− r
=

−1

1−
(
− 1

3

) =
−1

1 + 1/3
= −3

4
.

So the sum of the original series is

∞∑

k=1

ak =

∞∑

k=1

bk +

∞∑

k=1

ck = ln 2− 3

4
.

47. The series is
∞∑

k=1

ak =
∞∑

k=1

ln k
2k3−1 . The nth term of this series satisfies

an =
lnn

2n3 − 1
<

n

2n3 − 1
= bn

since lnn < n for n ≥ 1. (To see this, let f(x) = lnx− x be a related function of lnn− n.
Then f ′(x) = 1

x − 1 ≤ 0 when x ≥ 1. So the function is decreasing for x ≥ 1. Since
f(1) = ln 1− 1 = 0− 1 = −1 < 0, and the function is decreasing for x ≥ 1, it means that
f(x) < 0 for all x ≥ 1, that is, lnx < x for all x ≥ 1. So, we have lnn < n for n ≥ 1 as well.)

Now the series
∞∑

k=1

bk converges by comparing it with the convergent p-series
∞∑

k=1

ck =
∞∑

k=1

1
k2 ,

which is convergent since p = 2 > 1. We have

lim
n→∞

bn
cn

= lim
n→∞

n
2n3−1

1
n2

= lim
n→∞

n3

2n3 − 1
= lim

n→∞
1

2− 1
n

=
1

2
.

Since the limit is a positive real number, by the Limit Comparison Test, the series
∞∑

k=1

bk

converges; and this in turn, via the Comparison Test, means that the original series
∞∑

k=1

ak

converges as well.

48. The series is
∞∑

k=1

ak =
∞∑

k=1

sin3
(
1
k

)
. Note that the terms of the series are positive, since

0 < 1
n ≤ 1 for 1 ≤ n < ∞, and sin θ is positive for θ = 1

n that satisfies 0 < θ ≤ 1 (radians). We

compare the series to
∞∑

k=1

bk =
∞∑

k=1

1
k3 , which is a convergent p-series since p = 3 > 1. We have

lim
n→∞

an
bn

= lim
n→∞

sin3
(
1
n

)

1
n3

= lim
n→∞

[

sin
(
1
n

)

1
n

]3

=

[

lim
n→∞

sin
(
1
n

)

1
n

]3

=

[

lim
x→0

sinx

x

]3

= 13 = 1,

where we made the substitution x = 1
n and used the standard limits result lim

x→0

sin x
x = 1. Since

the limit is a positive real number, by the Limit Comparison Test, the original series
∞∑

k=1

ak is

seen to converge.
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Note: We could instead have used the Comparison Test for convergence using the series
∞∑

k=1

bk,

since the nth term of the absolute value series
∞∑

k=1

|ak| satisfies

|an| =
∣
∣
∣
∣
sin

(
1

n

)∣
∣
∣
∣

3

≤ 1

n3

for all n ≥ 1, since | sin θ| < θ for θ = 1
n in the interval (0, 1]. Since the absolute value series

converges by the Comparison Test, the original series converges absolutely, and therefore
converges.

8.8 Power Series

Concepts and Vocabulary

1. True: The theorem regarding a power series in the form
∞∑

k=0

ak(x− c)k states that the series

converges either at x = c, or converges absolutely for all x, or converges absolutely on
|x− c| < R, where R is a positive number. (For a full statement, see p.602.)

2. True: This follows from the Ratio Test for convergence of a series.

3. True: This follows from the theorem concerning a power series in the form
∞∑

k=0

ak(x− c)k

with c = 0; see Problem 1 for the reasoning.

4. False: There is no reason that this happen. For example, the power series
∞∑

k=1

xk

k converges

absolutely if |x| < 1 since

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

xn+1

n+1
xn

n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

xn+1

xn
· n

n+ 1

∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣

n

n+ 1

∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣

1

1 + 1
n

∣
∣
∣
∣
= |x| < 1

for convergence by the Ratio Test, as claimed. This means the interval of convergence is
(−1, 1).

At x = 1, the series becomes
∞∑

k=1

1
k which, being the harmonic series, diverges.

At x = −1, the series becomes −
∞∑

k=1

(−1)k+1

k which, being a constant multiple of the convergent

alternating harmonic series also converges. So the power series is convergent on the interval
[−1, 1): that is, it is convergent at the one endpoint of its interval of convergence but not at the
other endpoint.

5. True: This follows from the theorem on the radius of convergence of a power series, which

says the power series
∞∑

k=0

ak(x− c)k converges absolutely for all |x− c| < R. The radius R here

is a property of the series and not of the value of c, which means that the power series will have
the same radius of convergence for any value of c.

6. False: If R is the radius of convergence of the power series
∞∑

k=0

ak(x − c)k, then
∞∑

k=0

akx
k

converges in the interval −R < x < R, while
∞∑

k=0

ak(x− 3)k converges in the interval
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−R < x− 3 < R, or simplifying, −R+ 3 < x < R+ 3. This shows that the two series have
different intervals of convergence.

7. False: This follows from the theorem on convergence and divergence of a power series,

which says that if a power series
∞∑

k=0

akxk converges for x0 6= 0, then it converges absolutely for

all numbers x for which |x| < |x0|, or −|x0| < x < |x0|. The endpoints −|x0| and |x0| have to
be examined separately, and if the series converges at |x0| = 8, then it does not follow that the
series also converges at −|x0| = −8.

8. True: From the theorem quoted in Problem 7, if |x0|=3, then the power series converges in
the interval −3 < x < 3, so it also converges for x = 1.

9. True: As in Problems 7 and 8, if the series converges for x = −4, this means |x0| = 4, so
since the series converges in the interval −4 < x < 4, it converges for x = 3 as well.

10. False: If the series converges for x = 3, then it may converge or diverge at x = 5 because

the radius of convergence of the series
∞∑

k=0

akx
k is not given or known. For instance, if the

radius of convergence is 4, then the series will diverge at x = 5, but if the radius of convergence
is 7, then the series will converge at x = 5.

11. False: Intervals of convergence for the power series
∞∑

k=0

akx
k could be of the form |x| ≤ R,

or [−R,R], if convergence at the endpoints can be demonstrated. So we can have intervals of
the form [−2, 2] or [−4, 4], but not [−2, 4]. This is because if the interval of convergence were
[−2, 4] it would mean the power series diverges for x < −2, but by the theorem on convergence
and divergence of a power series, it would then mean that the series also diverges for x > 2,
which would contradict the statement that it converges in the interval [−2, 4].

12. False: All that can be said is that if a power series diverges for x = x1, then it diverges for
all x > x1. It may or may not converge for x < x1. As an illustration, the power series

considered in Problem 4 above,
∞∑

k=1

xk

k diverges for x1 = 3, but it also diverges for x = 2, and

2 < 3. On the other hand, it converges at x = 1
2 , (since the radius of convergence of the power

series is 1), and 1
2 < 3 as well. So this shows that a series can either converge or diverge for x

values less than a certain value x1 that leads to divergence of the series.

Skill Building

13. The power series
∞∑

k=0

ak =
∞∑

k=0

kxk is a series of nonzero terms for k ≥ 1 if x 6= 0. (At

x = 0, the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(n+ 1)xn+1

nxn

∣
∣
∣
∣
= |x| lim

n→∞

(
n+ 1

n

)

= |x| lim
n→∞

(

1 +
1

n

)

= |x| < 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 1 or
−1 < x < 1.
For x = −1, the series becomes

∞∑

k=0

kxk =

∞∑

k=0

(−1)kk = 0 +−1 + 2− 3 + 4− · · ·
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which diverges since the sequence of partial sums is {Sn} = {0,−1, 1,−2, 2,−3, 3, · · ·}, and it
oscillates between growing positive and negative numbers as n grows large. Since the sequence
of partial sums is not convergent, the series is not convergent.
For x = 1, the series becomes

∞∑

k=0

kxk =
∞∑

k=0

k(1)k =
∞∑

k=0

k = ∞,

so it diverges.

Concluding, the power series
∞∑

k=0

kxk converges for −1 < x < 1.

14. The power series
∞∑

k=0

ak =
∞∑

k=0

kxk

3k is a series of nonzero terms for k ≥ 1 if x 6= 0. (At

x = 0, the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(n+1)xn+1

3n+1

nxn

3n

∣
∣
∣
∣
∣
=

|x|
3

lim
n→∞

n+ 1

n
=

|x|
3

lim
n→∞

(

1 +
1

n

)

=
|x|
3

< 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 3, or
−3 < x < 3.
For x = −3, the series becomes

∞∑

k=0

kxk

3k
=

∞∑

k=0

(−k)(−3)k

3k
=

∞∑

k=0

(−1)k+1k = 0 + 1− 2 + 3− 4 + · · · .

The sequence of partial sums of the series is {Sn} = {0, 1,−1, 2,−2, · · · } which oscillates
between growing positive and negative values as n grows large. Since the sequence of partial
sums does not converge, neither does the series.
For x = 3, the series becomes

∞∑

k=0

kxk

3k
=

∞∑

k=0

k3k

3k
=

∞∑

k=0

k = ∞,

so this series diverges.

Concluding, the power series
∞∑

k=0

kxk

3k converges for −3 < x < 3.

15. The power series
∞∑

k=0

ak =
∞∑

k=0

(x+1)k

3k
= 1 +

∞∑

k=1

(x+1)k

3k
is a series of nonzero terms if

x 6= −1. (At x = −1, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(x+1)n+1

3n+1

(x+1)n

3n

∣
∣
∣
∣
∣
=

1

3
|x+ 1| < 1

for convergence of the series by the Ratio Test. So the series converges for |x+ 1| < 3, or
−3 < x+ 1 < 3, or −4 < x < 2.
At x = −4, the series becomes

∞∑

k=0

(x+ 1)k

3k
=

∞∑

k=0

(−4 + 1)k

3k
=

∞∑

k=0

(−3)k

3k
=

∞∑

k=0

(−1)k = 1− 1 + 1− 1 + · · · .

The sequence of partial sums of the series is {Sn} = {1, 0, 1, 0, · · · } which oscillates between 1
and 0 for all n. Since the sequence of partial sums does not converge, neither does the series.
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At x = 2, the series becomes

∞∑

k=0

(x+ 1)k

3k
=

∞∑

k=0

(2 + 1)k

3k
=

∞∑

k=0

3k

3k
=

∞∑

k=0

1 = ∞,

so this series diverges.

Concluding, the power series
∞∑

k=0

(x+1)k

3k
converges for −4 < x < 2.

16. The power series
∞∑

k=1

ak =
∞∑

k=1

(x−2)k

k2 is a series of nonzero terms for x 6= 2. (At x = 2, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x−2)n+1

(n+1)2

(x−2)n

n2

∣
∣
∣
∣
∣
∣

= |x− 2| lim
n→∞

n2

(n+ 1)2

= |x− 2| lim
n→∞

1
(
1 + 1

n

)2 = |x− 2| 1

(1 + 0)2
= |x− 2| < 1

for convergence of the series by the Ratio Test. So the series converges for −1 < x− 2 < 1, or
1 < x < 3.
At x = 1, the series becomes

∞∑

k=1

(x − 2)k

k2
=

∞∑

k=1

(1− 2)k

k2
=

∞∑

k=1

(−1)k

k2

which is an alternating series whose nth term goes to zero as n → ∞; also the terms of the

series are nonincreasing, because by the Algebraic Ratio Test
∣
∣
∣
an+1

an

∣
∣
∣ = n2

(n+1)2 < 1 for n ≥ 1.

By the Alternating Series Test, the power series converges for x = 1.
At x = 3, the series becomes

∞∑

k=1

(x− 2)k

k2
=

∞∑

k=1

(3− 2)k

k2
=

∞∑

k=1

1

k2

which is a convergent p-series (since p = 2 > 1), so the power series converges for x = 3.

Concluding, the power series
∞∑

k=1

(x−2)k

k2 converges for 1 ≤ x ≤ 3.

17. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

xk

2k(k+1)
= 1+

∞∑

k=1

xk

2k(k+1)
is a series of nonzero terms for

x 6= 0. (At x = 0, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xn+1

2n+1(n+2)
xn

2n(n+1)

∣
∣
∣
∣
∣
∣

=
|x|
2

lim
n→∞

n+ 1

n+ 2
=

|x|
2

lim
n→∞

1 + 1
n

1 + 2
n

=
|x|
2

< 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 2, which means

the radius of convergence R = 2.
At x = −2, the series becomes

∞∑

k=0

xk

2k(k + 1)
=

∞∑

k=0

(−2)k

2k(k + 1)
=

∞∑

k=0

(−1)k

k + 1
=

∞∑

k′=1

(−1)k
′−1

k′
=

∞∑

k′=1

(−1)k
′+1

(−1)2k′
=

∞∑

k′=1

(−1)k
′+1

k′
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where k′ = k + 1; the series is the alternating harmonic series which converges. So the power
series converges for x = −2.
At x = 2, the series becomes

∞∑

k=0

xk

2k(k + 1)
=

∞∑

k=0

2k

2k(k + 1)
=

∞∑

k=0

1

k + 1
=

∞∑

k′=1

1

k′

where k′ = k + 1; the series is the harmonic series which diverges. So the power series diverges
for x = 2.
Concluding, the interval of convergence of the power series is −2 ≤ x < 2.

(b) Before we do the root test, it would be useful to prove the following result which shall be
used in several problems below: lim

n→∞
(n+ a)1/n = 1. To prove this, set y = (n+ a)1/n. Then

ln y = 1
n ln(n+ a) = ln(n+a)

n . We have, using L’Hôpital’s rule on a related function of the ratio:

lim
n→∞

y = lim
n→∞

eln y = lim
n→∞

eln(n+a)/n = lim
x→∞

eln(x+a)/x

= e
lim

x→∞
ln(x+a)/x

= e
lim

x→∞
1

x+a/1
= e

lim
x→∞

1
x+a = e0 = 1.

This proves the claimed result. (Note that this formula holds for any value of a, as the proof
does not restrict the value of a. For a < 0, we require a > −n, which for any fixed a occurs as
n → ∞. )
By the Root Test, using the limit result above for a = 1,

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

xn

2n(n+ 1)

∣
∣
∣
∣
= lim

n→∞
|x|

2(n+ 1)1/n
=

|x|
2

1

lim
n→∞

(n+ 1)1/n
=

|x|
2

< 1

for convergence of the series. So we get the same result as with the Ratio Test. Also, the
endpoint computations remain the same, so the radius of convergence of the power series is

R = 2 and the interval of convergence is −2 ≤ x < 2.

(c) Answers will vary.

18. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

(−1)k xk

2k(k+1) = 1 +
∞∑

k=1

(−1)k xk

2k(k+1) is a series of

nonzero terms for x 6= 0. (At x = 0, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(−1)n+1xn+1

2n+1(n+2)

(−1)nxn

2n(n+1)

∣
∣
∣
∣
∣
∣

=
|x|
2
|(−1)| lim

n→∞
n+ 1

n+ 2
=

|x|
2

lim
n→∞

1 + 1
n

1 + 2
n

=
|x|
2

< 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 2, which means

the radius of convergence is R = 2.
At x = −2, the series becomes

∞∑

k=0

(−1)k
xk

2k(k + 1)
=

∞∑

k=0

(−1)k(−2)k

2k(k + 1)
=

∞∑

k=0

(−1)k(−1)k2k

2k(k + 1)
=

∞∑

k=0

(−1)2k

k + 1
=

∞∑

k=0

1

k + 1
=

∞∑

k′=1

1

k′

using k′ = k + 1; the series is the harmonic series which diverges, so the power series diverges
for x = −2.
At x = 2, the series becomes

∞∑

k=0

(−1)k
xk

2k(k + 1)
=

∞∑

k=0

(−1)k2k

2k(k + 1)
=

∞∑

k=0

(−1)k

k + 1
=

∞∑

k′=1

(−1)k
′−1

k′
=

∞∑

k′=1

(−1)k
′+1

(−1)2k′
=

∞∑

k′=1

(−1)k
′+1

k′
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where k′ = k + 1; the series is the alternative harmonic series, which converges. So the power
series converges for x = 2. Concluding, the interval of convergence of the power series is

−2 < x ≤ 2.

(b) By the Root Test, using the limit result proved in Problem 17 (b) for a = 1, that is,
lim
n→∞

(n+ 1)1/n = 1, we have

lim
n→∞

n
√

|an| = lim
n→∞

n

√

|(−1)n
xn

2n(n+ 1)
| = |x|

2
lim
n→∞

1

(n+ 1)1/n
=

|x|
2

< 1

for convergence of the series. So we get the same result as with the Ratio Test. Also, the
endpoint computations remain the same, so the radius of convergence of the power series is

R = 2 and the interval of convergence is −2 < x ≤ 2.

(c) Answers will vary.

19. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

xk

k+5 = 1
5 +

∞∑

k=1

xk

k+5 is a series of nonzero terms for x 6= 0.

(At x = 0, the series converges to 1
5 .) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

xn+1

n+6
xn

n+5

∣
∣
∣
∣
∣
= |x| lim

n→∞
n+ 5

n+ 6
= |x| lim

n→∞

1 + 5
n

1 + 6
n

= |x| < 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 1, which means

the radius of convergence is R = 1.
At x = −1, the power series becomes

∞∑

k=0

xk

k + 5
=

∞∑

k=0

(−1)k

k + 5
=

∞∑

k′=5

(−1)k
′−5

k′
=

∞∑

k′=5

(−1)k
′+1

(−1)6k′
=

∞∑

k′=5

(−1)k
′+1

k′

where k′ = k + 5; this is an alternating harmonic series from the fifth term onward. Since the

alternating harmonic series
∞∑

k=1

(−1)k+1

k converges, and its convergence property is unaffected by

the removal of a finite number of terms, the power series converges for x = −1.
At x = 1, the power series becomes

∞∑

k=0

xk

k + 5
=

∞∑

k=0

(1)k

k + 5
=

∞∑

k=0

1

k + 5
=

∞∑

k′=5

1

k′

using k′ = k + 5; this is the harmonic series from the fifth term forward. Since the harmonic

series
∞∑

k=1

1
k diverges, and the divergence property remains unaffected by the removal of a finite

number of terms, the power series diverges for x = 1.

Concluding, the interval of convergence of the power series is −1 ≤ x < 1.

(b) By the Root Test, using the limit result proved in Problem 17 (b) for a = 5, that is,
lim
n→∞

(n+ 5)1/n = 1, we have

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

xn

n+ 5

∣
∣
∣
∣
= |x| lim

n→∞
1

(n+ 5)1/n
= |x| < 1

for convergence of the series. So we get the same result as with the Ratio Test. Also, the
endpoint computations remain the same, so the radius of convergence of the power series is

R = 1 and the interval of convergence is −1 ≤ x < 1.
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(c) Answers will vary.

20. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

xk

1+k2 = 1 +
∞∑

k=1

xk

1+k2 is a series of nonzero terms for

x 6= 0. (At x = 0, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xn+1

1+(n+1)2

xn

1+n2

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

1 + n2

1 + (n+ 1)2

= |x| lim
n→∞

1
n2 + 1

1
n2 +

(
1 + 1

n

)2 = |x| 0 + 1

0 + (1 + 0)2

= |x| < 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 1, which means

the radius of convergence is R = 1.
At x = −1, the power series becomes

∞∑

k=0

ak =

∞∑

k=0

xk

1 + k2
=

∞∑

k=0

(−1)k

1 + k2
.

This is an alternating series. The nth term satisfies

lim
n→∞

|an| = lim
n→∞

1

1 + n2
= 0.

Also, by the Algebraic Ratio Test,

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

1
1+(n+1)2

1
1+n2

=
1 + n2

1 + (n+ 1)2
< 1 for n ≥ 0.

So the terms are nonincreasing. By the Alternating Series Test, the power series converges for
x = −1.
At x = 1, the power series becomes

∞∑

k=0

ak =

∞∑

k=0

xk

1 + k2
=

∞∑

k=0

1

1 + k2
.

The nth term of the series satisfies

an =
1

1 + n2
<

1

n2
= bn for n ≥ 1.

Comparing with the convergent p-series
∞∑

k=1

bk =
∞∑

k=1

1
k2 , which is convergent since p = 2 > 1,

the series
∞∑

k=1

1
1+k2 converges. This means the series

∞∑

k=0

ak =

∞∑

k=0

1

1 + k2
= 1 +

∞∑

k=1

1

1 + k2

also converges, which means the power series converges for x = 1.

Concluding, the interval of convergence of the power series is −1 ≤ x ≤ 1.
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(b) By the Root Test, using the limit result proved in Problem 17 (b) for a = 0, that is,
lim
n→∞

n1/n = 1, we have

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

xn

1 + n2

∣
∣
∣
∣
= |x| lim

n→∞
1

(1 + n2)1/n
= |x| lim

n→∞
1

(n2)1/n
(

1
n2 + 1

)1/n

= |x| lim
n→∞

(
1

n1/n

)2

· 1
[

lim
n→∞

(
1
n2 + 1

)] lim
n→∞

1
n

= |x| · 12 · 1

[0 + 1]0
= |x| < 1

for convergence of the series. So we get the same result as with the Ratio Test. Also, the
endpoint computations remain the same, so the radius of convergence of the power series is

R = 1 and the interval of convergence is −1 ≤ x ≤ 1.

(c) Answers will vary.

21. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

k2xk

3k
is a series of nonzero terms for k ≥ 1 if x 6= 0. (At

x = 0, the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(n+1)2xn+1

3n+1

n2xn

3n

∣
∣
∣
∣
∣
=

|x|
3

lim
n→∞

(n+ 1)2

n2
=

|x|
3

lim
n→∞

(

1 +
1

n

)2

=
|x|
3

< 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 3, which means

the radius of convergence is R = 3.
At x = −3, the power series becomes

∞∑

k=0

ak =

∞∑

k=0

k2xk

3k
=

∞∑

k=0

k2(−3)k

3k
=

∞∑

k=0

(−1)kk2.

We have
lim
n→∞

|an| = lim
n→∞

n2 = ∞,

so the series diverges by the Divergence Test. This means the power series diverges for x = −3.
At x = 3, the power series becomes

∞∑

k=0

ak =

∞∑

k=0

k23k

3k
=

∞∑

k=0

k2.

Since
lim
n→∞

an = lim
n→∞

n2 = ∞,

the series diverges by the Divergence Test. So the power series diverges at x = 3.

Concluding, the interval of convergence of the power series is −3 < x < 3.

(b) By the Root Test, using the limit result proved in Problem 17 (b) for a = 0, that is,
lim
n→∞

n1/n = 1, we have

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

n2xn

3n

∣
∣
∣
∣
=

|x|
3

lim
n→∞

(

n1/n
)2

=
|x|
3

(

lim
n→∞

n1/n
)2

=
|x|
3

· 12 = |x|
3

< 1
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for convergence of the series. So we get the same result as with the Ratio Test. Also the
endpoint computations remain the same, so the radius of convergence of the power series is

R = 3 and the interval of convergence is −3 < x < 3.

(c) Answers will vary.

22. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

2kxk

3k
= 1 +

∞∑

k=1

2kxk

3k
is a series of nonzero terms for

x 6= 0. (At x = 0, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

2n+1xn+1

3n+1

2nxn

3n

∣
∣
∣
∣
∣
=

2

3
|x| < 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 3
2 , which

means the radius of convergence is R =
3

2
.

At x = − 3
2 , the power series becomes

∞∑

k=0

2kxk

3k
=

∞∑

k=0

2k
(
− 3

2

)k

3k
=

∞∑

k=0

(−1)k

which diverges since the sequence of partial sums {Sn} = {1, 0, 1, 0, · · · } has no limit, because
its terms oscillate between 1 and 0 for all n. So the power series diverges for x = − 3

2 .

At x = 3
2 , the series becomes

∞∑

k=0

2kxk

3k
=

∞∑

k=0

2k
(
3
2

)

3k
=

∞∑

k=0

1 = ∞.

So the power series diverges at x = 3
2 .

Concluding, the interval of convergence of the power series is −3

2
< x <

3

2
.

(b) By the Root Test, we have

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

2nxn

3n

∣
∣
∣
∣
=

2

3
|x| < 1

for convergence of the series. So we get the same result as with the Ratio Test. Also the
endpoint computations remain the same, so the radius of convergence of the power series is

R =
3

2
and the interval of convergence is −3

2
< x <

3

2
.

(c) Answers will vary.

23. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

kxk

2k+1 is a series of nonzero terms for k ≥ 1 if x 6= 0. (At

x = 0, the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(n+1)xn+1

2(n+1)+1
nxn

2n+1

∣
∣
∣
∣
∣
∣

= |x| · lim
n→∞

n+ 1

n
· lim
n→∞

2n+ 1

2n+ 3

= |x| · lim
n→∞

(

1 +
1

n

)

· lim
n→∞

(
2 + 1

n

2 + 3
n

)

= |x| · 1 · 1 < 1
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for convergence of the series by the Ratio Test. So the series converges for |x| < 1, which means

the radius of convergence is R = 1.
At x = −1, the series becomes

∞∑

k=0

ak =

∞∑

k=0

kxk

2k + 1
=

∞∑

k=0

k(−1)k

2k + 1
.

We have

lim
n→∞

|an| = lim
n→∞

n

2n+ 1
= lim

n→∞
1

2 + 1
n

=
1

2
6= 0.

By the Divergence Test, the series diverges. So the power series diverges for x = −1.
At x = 1, the power series becomes

∞∑

k=0

ak =
∞∑

k=0

kxk

2k + 1
=

∞∑

k=0

k(1)k

2k + 1
=

∞∑

k=0

k

2k + 1
.

We have

lim
n→∞

an = lim
n→∞

n

2n+ 1
=

1

2
6= 0

as above. By the Divergence Test, the series diverges. So the power series diverges for x = 1.

Concluding, the interval of convergence of the power series is −1 < x < 1.

(b) By the Root Test, we have

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

nxn

2n+ 1

∣
∣
∣
∣
= |x|· lim

n→∞
1

(
2 + 1

n

)1/n
= |x|· 1

lim
n→∞

(
2 + 1

n

) lim
n→∞

1
n

= |x|· 1
20

= |x| < 1

for convergence of the series. So we get the same result as with the Ratio Test. Also the
endpoint computations remain the same, so the radius of convergence of the power series is

R = 1 and the interval of convergence is −1 < x < 1.

(c) Answers will vary.

24. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

(6x)k = 1 +
∞∑

k=1

(6x)k is a series of nonzero terms for

x 6= 0. (At x = 0, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(6x)n+1

(6x)n

∣
∣
∣
∣
= |6x| < 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 1
6 , which

means the radius of convergence is R =
1

6
.

At x = − 1
6 , the series becomes

∞∑

k=0

ak =
∞∑

k=0

(6x)k =
∞∑

k=0

(

6 ·
[

−1

6

])k

=
∞∑

k=0

(−1)k

which diverges since the sequence of partial sums of the series, {Sn} = {1, 0, 1, 0, · · · } diverges
because the terms oscillate between 1 and 0 for all n. So the power series diverges when
x = − 1

6 .
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At x = 1
6 , the series becomes

∞∑

k=0

ak =

∞∑

k=0

(6k)k =

∞∑

k=0

(

6

[
1

6

])k

=

∞∑

k=0

(1)k = ∞.

So the series diverges when x = 1
6 .

Concluding, the interval of convergence of the power series is −1

6
< x <

1

6
.

(b) By the Root Test, we have

lim
n→∞

n
√

|an| = lim
n→∞

n
√

|(6x)n| = |6x| < 1

for convergence of the series. So we get the same result as with the Ratio Test. Also the
endpoint computations remain the same, so the radius of convergence of the power series is

R =
1

6
and the interval of convergence is −1

6
< x <

1

6
.

(c) Answers will vary.

25. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

(x− 3)k = 1 +
∞∑

k=1

(x− 3)k is a series of nonzero terms

for x 6= 3. (At x = 3, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(x− 3)n+1

(x− 3)n

∣
∣
∣
∣
= |x− 3| < 1

for convergence of the series by the Ratio Test. So the series converges for −1 < x− 3 < 1, or

2 < x < 4. So the radius of convergence of the series is R = 1.
At x = 2, the power series becomes

∞∑

k=0

(x− 3)k =

∞∑

k=0

(2 − 3)k =

∞∑

k=0

(−1)k

which diverges since the sequence of partial sums of the series, {Sn} = {1, 0, 1, 0, · · · } diverges
because the terms oscillate between 1 and 0 for all n. So the power series diverges when x = 2.
At x = 4, the power series becomes

∞∑

k=0

(x − 3)k =

∞∑

k=0

(4− 3)k =

∞∑

k=0

(1)k =

∞∑

k=0

1 = ∞.

So the series diverges when x = 4.

Concluding, the interval of convergence of the power series is 2 < x < 4. .

(b) By the Root Test, we have

lim
n→∞

n
√

|an| = lim
n→∞

n
√

|(x− 3)n| = |x− 3| < 1

for convergence of the series. So we get the same result as with the Ratio Test. Also the
endpoint computations remain the same, so the radius of convergence of the power series is

R = 1 and the interval of convergence is 2 < x < 4.

(c) Answers will vary.
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26. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

k(2x)k

3k
is a series of nonzero terms for k ≥ 1 if x 6= 0. (At

x = 0, the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(n+1)(2x)n+1

3n+1

n(2x)n

3n

∣
∣
∣
∣
∣
=

|2x|
3

lim
n→∞

n+ 1

n
=

|2x|
3

· lim
n→∞

(

1 +
1

n

)

=
|2x|
3

· 1 < 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 3
2 which means

that the radius of convergence of the series is R =
3

2
.

At x = − 3
2 , the series reduces to

∞∑

k=0

ak =
∞∑

k=0

k(2x)k

3k
=

∞∑

k=0

k
(
2
[
− 3

2

])k

3k
=

∞∑

k=0

(−1)kk.

We have
lim
n→∞

|an| = lim
n→∞

n = ∞.

By the Divergence Test, the series diverges. So the power series diverges at x = − 3
2 .

At x = 3
2 , the series reduces to

∞∑

k=0

ak =

∞∑

k=0

k(2x)k

3k
=

∞∑

k=0

k
(
2 · 3

2

)k

3k
=

∞∑

k=0

k = ∞.

This means the power series diverges at x = 3
2

Concluding, the interval of convergence of the power series is −3

2
< x <

3

2
.

(b) By the Root Test, using the limit result proved in Problem 17 (b) for a = 0, that is,
lim
n→∞

n1/n = 1, we have

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

n(2x)n

3n

∣
∣
∣
∣
=

∣
∣
∣
∣

2x

3

∣
∣
∣
∣
· lim
n→∞

n1/n =

∣
∣
∣
∣

2x

3

∣
∣
∣
∣
· 1 < 1

for convergence of the series. So we get the same result as with the Ratio Test. Also the
endpoint computations remain the same, so the radius of convergence of the power series is

R =
3

2
and the interval of convergence is −3

2
< x <

3

2
.

(c) Answers will vary.

27. The power series
∞∑

k=1

ak =
∞∑

k=1

xk

k3 is a series of nonzero terms for x 6= 0. (At x = 0, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xn+1

(n+1)3

xn

n3

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

n3

(n+ 1)3
= |x| lim

n→∞
1

(
1 + 1

n

) = |x| < 1

for convergence of the series by the Ratio Test. So the series converges for |x| < 1, and the

radius of convergence is R = 1. .
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At x = −1, the series becomes
∞∑

k=1

ak =
∞∑

k=1

(−1)k

k3 . The nth term of this series satisfies

lim
n→∞

|an| = lim
n→∞

|(−1)n|
n3

= lim
n→∞

1

n3
= 0.

By the Algebraic Ratio Test,

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

1
(n+1)3

1
n3

=
n3

(n+ 1)3
< 1

for n ≥ 1. Since the terms of the series are nonincreasing, and the nth term has 0 limit, the
series converges by the Alternating Series Test. So the power series converges for x = −1.

At x = 1, the series becomes
∞∑

k=1

ak =
∞∑

k=1

1
k3 . This is a convergent p-series which converges

since p = 3 > 1, so the power series converges for x = 1.

Concluding, the interval of convergence of the power series is −1 ≤ x ≤ 1.

28. The power series
∞∑

k=2

ak =
∞∑

k=2

xk

lnk is a series of nonzero terms for x 6= 0. (At x = 0, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xn+1

ln(n+1)
xn

lnn

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

lnn

ln(n+ 1)

= |x| lim
y→∞

ln y

ln(y + 1)
= |x| lim

y→∞

1
y
1

y+1

= |x| lim
y→∞

y + 1

y

= |x| lim
y→∞

(

1 +
1

y

)

= |x| < 1,

for convergence of the series by the Ratio Test, where we used a related function of the ratio
lnn

ln(n+1) in order to apply L’Hôpital’s rule. So the series converges for |x| < 1, and the radius of

convergence is R = 1.

At x = −1, the series becomes
∞∑

k=2

ak =
∞∑

k=2

(−1)k

lnk . The nth term of this series satisfies

lim
n→∞

|an| = lim
n→∞

|(−1)n|
lnn

= lim
n→∞

1

lnn
= 0.

By the Algebraic Ratio Test,

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

1
ln(n+1)

1
lnn

=
lnn

ln(n+ 1)
< 1

if n ≥ 2, since the natural logarithm function is an increasing function. Since the terms of the
series are nonincreasing, and the nth term has 0 limit, the series converges by the Alternating
Series Test. So the power series converges for x = −1.

At x = 1, the series becomes
∞∑

k=2

ak =
∞∑

k=2

1
ln k . The nth term of this series satisfies

an =
1

lnn
>

1

n
= bn

for n ≥ 2 since lnn < n for n ≥ 2. (This is proved as follows: f(x) = lnx− x is a decreasing
function of x for x ≥ 1, since f ′(x) = 1

x − 1 ≤ 0 for x ≥ 1, and since
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f(1) = ln 1− 1 = 0− 1 = −1 < 0, we have, because f(x) is decreasing, f(x) < 0 for all x ≥ 1,

that is, lnx < x for all x ≥ 1. This in turn means lnn < n for n ≥ 1. We restrict to n ≥ 2 to

ensure the denominator of the nth term stays nonzero.) So, comparing with the series
∞∑

k=2

bk =
∞∑

k=2

1
k , which diverges being the harmonic series from the second term onward, we see

by the Comparison Test that the original series diverges. So the power series is divergent for
x = 1.
Concluding, the interval of convergence of the power series is −1 ≤ x < 1.

29. The power series
∞∑

k=1

ak =
∞∑

k=1

(x−2)k

k3 is a series of nonzero terms for x 6= 2. (At x = 2, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x−2)n+1

(n+1)3

(x−2)n

n3

∣
∣
∣
∣
∣
∣

= |x− 2| lim
n→∞

n3

(n+ 1)3
= |x− 2| lim

n→∞
1

(
1 + 1

n

)3

= |x− 2| 1

(1 + 0)3
= |x− 2| < 1

for convergence of the series by the Ratio Test. So the series converges for −1 < x− 2 < 1, or

1 < x < 3. The radius of convergence of the series is R = 1.
At x = 1, the series becomes

∞∑

k=1

ak =
∞∑

k=1

(x− 2)k

k3
=

∞∑

k=1

(1− 2)k

k3
=

∞∑

k=1

(−1)k

k3
.

This series is convergent because it is absolutely convergent: the series of absolute values is
∞∑

k=1

|ak| =
∞∑

k=1

1
k3 , which converges as it is a convergent p-series with p = 3 > 1. So the power

series converges for x = 1.
At x = 3, the power series becomes

∞∑

k=1

ak =
∞∑

k=1

(x− 2)k

k3
=

∞∑

k=1

(3− 2)k

k3
=

∞∑

k=1

(1)k

k3
=

∞∑

k=1

1

k3

which converges as it is a convergent p-series with p = 3 > 1. So the power series converges for
x = 3.
Concluding, the interval of convergence of the power series is 1 ≤ x ≤ 3.

30. The power series
∞∑

k=0

ak =
∞∑

k=0

k(x−2)k

3k
is a series of nonzero terms for k ≥ 1 if x 6= 2. (At

x = 2, the series converges to 0.) We have

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

n(x − 2)n

3n

∣
∣
∣
∣
=

∣
∣
∣
∣

x− 2

3

∣
∣
∣
∣
lim
n→∞

n1/n =
|x− 2|

3
· 1 < 1

for convergence of the series by the Root Test (where we have used the result proved in
problem 17(b), that lim

n→∞
n1/n = 1). So the series converges for |x− 2| < 3, or −3 < x− 2 < 3,

or −1 < x < 5. The radius of convergence of the series is R = 3.
At x = −1, the series becomes

∞∑

k=0

ak =
∞∑

k=0

k(x− 2)k

3k
=

∞∑

k=0

k(−1− 2)k

3k
=

∞∑

k=0

k(−3)k

3k
=

∞∑

k=0

(−1)kk



8.8 Power Series 8-179

which diverges by the Divergence Test since lim
n→∞

|an| = lim
n→∞

n = ∞. So the power series

diverges for x = −1.
At x = 5, the power series becomes

∞∑

k=0

ak =

∞∑

k=0

k(x− 2)k

3k
=

∞∑

k=0

k(5− 2)k

3k
=

∞∑

k=0

k(3k)

3k
=

∞∑

k=0

k = ∞

since the sum of all the nonnegative integers is infinite. This means the power series diverges
for x = 5.
Concluding, the interval of convergence of the power series is −1 < x < 5.

31. The power series
∞∑

k=0

ak =
∞∑

k=0

(−1)k

(2k+1)!x
2k+1 is a series of nonzero terms for x 6= 0. (At

x = 0, the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(−1)n+1x2(n+1)+1

(2(n+1)+1)!

(−1)nx2n+1

(2n+1)!

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
(−1) · x

2n+3

x2n+1
· (2n+ 1)!

(2n+ 3)!

∣
∣
∣
∣

= |x|2 lim
n→∞

(2n+ 1)!

(2n+ 3)(2n+ 2)(2n+ 1)!
= |x|2 lim

n→∞
1

(2n+ 3)(2n+ 2)

= |x|2 · 0 = 0

which means the series converges by the Ratio Test regardless of the value of x, that is, for all

values of x. So the radius of convergence R = ∞ , and the interval of convergence is

−∞ < x < ∞.

32. The power series
∞∑

k=1

ak =
∞∑

k=1

(kx)k is a series of nonzero terms for x 6= 0. (At x = 0, the

series converges to 0.) We have

lim
n→∞

n
√

|an| = lim
n→∞

n
√

|(nx)n| = |x| lim
n→∞

n = ∞

if x 6= 0, so the series diverges by the Root Test if x 6= 0. When x = 0, the series becomes
∞∑

k=1

ak =
∞∑

k=1

0 = 0, so the series converges for x = 0. Concluding, the radius of convergence of

the series R = 0 and the series converges for x = 0.

33. The power series
∞∑

k=1

ak =
∞∑

k=1

kxk

ln(k+1) is a series of nonzero terms for x 6= 0. (At x = 0, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(n+1)xn+1

ln(n+2)

nxn

ln(n+1)

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

n+ 1

n
· lim
n→∞

ln(n+ 1)

ln(n+ 2)

= |x| lim
n→∞

(

1 +
1

n

)

· lim
y→∞

ln(y + 1)

ln(y + 2)
= |x| · 1 · lim

y→∞

1
y+1
1

y+2

= |x| lim
y→∞

y + 2

y + 1
= |x| lim

y→∞

1 + 2
y

1 + 1
y

= |x| · 1 + 0

1 + 0
= |x| · 1

= |x| < 1
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for convergence of the series by the Ratio Test, where we have used a related function of the
ratio in the last factor of the limit, in order to apply L’Hôpital’s rule to it. So the series

converges for −1 < x < 1, or the radius of convergence R = 1.

At x = −1, the series becomes
∞∑

k=1

ak =
∞∑

k=1

k(−1)k

ln(k+1) . The absolute value of the nth term satisfies

lim
n→∞

|an| = lim
n→∞

n

ln(n+ 1)
= lim

z→∞
z

ln(z + 1)
= lim

z→∞
1
1

(z+1)

= lim
z→∞

(z + 1) = ∞

where we apply L’Hôpital’s rule to a related function of the absolute value of the nth term of
the series. By the Divergence Test, the power series diverges for x = −1.

At x = 1, the power series becomes
∞∑

k=1

ak =
∞∑

k=1

k
ln(k+1) . Since lim

n→∞
an = lim

n→∞
|an| = ∞, we

see that it diverges too.

Concluding, the interval of convergence of the power series is −1 < x < 1.

34. The power series
∞∑

k=1

ak =
∞∑

k=1

xk

ln(k+1) is a series of nonzero terms for x 6= 0. (At x = 0, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xn+1

ln(n+2)

xn

ln(n+1)

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

ln(n+ 1)

ln(n+ 2)
= |x| lim

y→∞
ln(y + 1)

ln(y + 2)

= |x| lim
y→∞

1
y+1
1

y+2

= |x| lim
y→∞

y + 2

y + 1

= |x| lim
y→∞

1 + 2
y

1 + 1
y

= |x| · 1 + 0

1 + 0
= |x| · 1 < 1

for convergence of the series by the Ratio Test, where we have used a related function of the
ratio in the limit in order to apply L’Hôpital’s rule to it. So the series converges for

−1 < x < 1, or the radius of convergence R = 1.

At x = −1, the series becomes
∞∑

k=1

ak =
∞∑

k=1

(−1)k

ln(k+1) . The nth term of this series satisfies

lim
n→∞

|an| = lim
n→∞

1
ln(n+1) = 0. Also by the Algebraic Ratio Test, we have

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1
ln(n+1)

1
lnn

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

lnn

ln(n+ 1)

∣
∣
∣
∣
< 1

for n ≥ 1, since the natural logarithm function is an increasing function. So the series is
nonincreasing. By the Alternating Series Test, the series converges. So the power series
converges for x = −1.

At x = 1, the series reduces to
∞∑

k=1

ak =
∞∑

k=1

1
ln(n+1) . The nth term satisfies

an =
1

ln(n+ 1)
>

1

n+ 1
= bn

for n ≥ 1, where we have invoked the fact that ln(n+ 1) < n+ 1 for n ≥ 1 (see Problem 28 for
a proof of a similar fact, lnn < n for n ≥ 2; the proof here is analogous). Comparing with the

series
∞∑

k=1

bk =
∞∑

k=1

1
k+1 = 1

2 + 1
3 + 1

4 + · · · , which is the divergent harmonic series from the
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second term onward, by the Comparison Test, the series
∞∑

k=1

ak diverges. So the power series

diverges for x = 1.

Concluding, the interval of convergence of the power series is −1 ≤ x < 1.

35. The power series
∞∑

k=0

ak =
∞∑

k=0

k(k+1)xk

4k is a series of nonzero terms for k ≥ 1 if x 6= 0. (At

x = 0, the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(n+1)(n+2)xn+1

4n+1

n(n+1)xn

4n

∣
∣
∣
∣
∣
=

|x|
4

lim
n→∞

(
n+ 2

n

)

=
|x|
4

lim
n→∞

(

1 +
2

n

)

=
|x|
4

· 1 < 1

for convergence of the series by the Ratio Test. So the series converges for −4 < x < 4, or the

radius of convergence is R = 4. .
At x = −4, the series becomes

∞∑

k=0

ak =
∞∑

k=0

k(k + 1)(−4)k

4k
=

∞∑

k=0

(−1)kk(k + 1)

which diverges by the Divergence Test since lim
n→∞

|an| = lim
n→∞

|n(n+ 1)| = ∞, that is, a nonzero

limit. So the power series diverges for x = −4.
At x = 4, the series becomes

∞∑

k=0

ak =

∞∑

k=0

k(k + 1)4k

4k
=

∞∑

k=0

k(k + 1) = ∞

because the sum of product of consecutive nonnegative integers is infinite. (Alternately, we
could use lim

n→∞
an 6= 0 and conclude divergence based on the Divergence Test.) So the power

series diverges for x = 4.

Concluding, the interval of convergence of the power series is −4 < x < 4.

36. The power series
∞∑

k=1

ak =
∞∑

k=1

(−1)k(x−5)k

k(k+1) is a series of nonzero terms for x 6= 5. (At x = 5,

the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(−1)n+1(x−5)n+1

(n+1)(n+2)

(−1)n(x−5)n

n(n+1)

∣
∣
∣
∣
∣
∣

= |x− 5| lim
n→∞

n

n+ 2
= |x− 5| lim

n→∞
1

1 + 2
n

= |x− 5| · 1 < 1

for convergence of the series by the Ratio Test. So the series converges if −1 < x− 5 < 1, or

4 < x < 6. The radius of convergence is R = 1.
At x = 4, the series reduces to

∞∑

k=1

ak =
∞∑

k=1

(−1)k(4− 5)k

k(k + 1)
=

∞∑

k=1

(−1)k(−1)k

k(k + 1)
=

∞∑

k=1

1

k(k + 1)
.

The nth term of this series satisfies

an =
1

n(n+ 1)
<

1

n2
= bn

for n ≥ 1. By the Comparison Test, since
∞∑

k=1

bk =
∞∑

k=1

1
k2 converges, being a p-series for

p = 2 > 1, the series
∞∑

k=1

ak converges as well. So the power series converges for x = 4.
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At x = 6, the series reduces to

∞∑

k=1

ak =
∞∑

k=1

(−1)k(6− 5)k

k(k + 1)
=

∞∑

k=1

(−1)k(1)k

k(k + 1)
=

∞∑

k=1

(−1)k

k(k + 1)
.

We could deduce convergence by noting that the series of absolute values
∞∑

k=1

|ak| is just the
series at x = 4, which converges from the calculation above; since the series absolutely
converges, it converges. Alternately, the Alternating Series Test may be invoked: the nth term
of the series satisfies lim

n→∞
|an| = lim

n→∞
1

n(n+1) = 0; by the Algebraic Ratio Test,

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1
(n+1)(n+2)

1
n(n+1)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

n

n+ 2

∣
∣
∣
∣
< 1

for n ≥ 1, which means the absolute values of the terms of the series are nonincreasing. So it
converges by the Alternating Series Test, and the power series converges for x = 6.

Concluding, the interval of convergence of the power series is 4 ≤ x ≤ 6.

37. The power series
∞∑

k=0

ak =
∞∑

k=0

(−1)k (x−3)2k

9k = 1 +
∞∑

k=1

(−1)k (x−3)2k

9k is a series of nonzero

terms if x 6= 3. (At x = 3, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(−1)n+1(x−3)2(n+1)

9n+1

(−1)n(x−3)2n

9n

∣
∣
∣
∣
∣
=

|x− 3|2
9

< 1

for convergence of the series by the Ratio Test. So the series converges for |x− 3| < 3, or

−3 < x− 3 < 3, or 0 < x < 6. The radius of convergence is R = 3.
At x = 0, the series becomes

∞∑

k=0

ak =

∞∑

k=0

(−1)k
(0− 3)2k

9k
=

∞∑

k=0

(−1)k
(−1)2k(32)k

9k
=

∞∑

k=0

[(−1)3]k =

∞∑

k=0

(−1)k.

The sequence of partial sums is {Sn} = {1, 0, 1, 0, · · · }. Since the sequence of partial sums
oscillates between 0 and 1 for large n, it does not attain a limit, that is, it diverges, which in
turn means the series diverges. So the power series diverges for x = 0.
At x = 6, the series becomes

∞∑

k=0

ak =
∞∑

k=0

(−1)k
(6− 3)2k

9k
=

∞∑

k=0

(−1)k
(32)k

9k
=

∞∑

k=0

(−1)k.

This is identical to the series at x = 0, and since we showed that series diverges, this one does
too. So the power series diverges for x = 6.

Concluding, the interval of convergence of the power series is 0 < x < 6.

38. The power series
∞∑

k=0

ak =
∞∑

k=0

xk

ek
= 1 +

∞∑

k=1

xk

ek
is a series of nonzero terms for x 6= 0. (At

x = 0, the series converges to 1.) We have

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

xn

en

∣
∣
∣
∣
=

|x|
e

< 1

for convergence of the series by the Root Test. So the series converges for |x| < e, or

−e < x < e, and the radius of convergence is R = e. .
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At x = −e, the series becomes

∞∑

k=0

ak =

∞∑

k=0

(−e)k

ek
=

∞∑

k=0

(−1)k.

The sequence of partial sums of this series has the form {Sn} = {1, 0, 1, 0, · · · }, which is
nonconvergent since the terms of the series oscillate between 0 and 1 for large n. Since the
sequence of partial sums diverges, the series diverges. So the power series diverges for x = −e.
At x = e, the series becomes

∞∑

k=0

ak =
∞∑

k=0

ek

ek
=

∞∑

k=0

1 = ∞

since the sum of all the nonnegative integers is infinite. So the power series diverges for x = e.
Concluding, the interval of convergence of the power series is −e < x < e.

39. The power series
∞∑

k=0

ak =
∞∑

k=0

(−1)k (2x)k

k! = 1 +
∞∑

k=1

(2x)k

k! is a series of nonzero terms for

x 6= 0. (At x = 0, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(−1)n+1 (2x)n+1

(n+1)!

(−1)n (2x)n

n!

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
(−1) · 2x · n!

(n+ 1)!

∣
∣
∣
∣
= |2x| lim

n→∞
n!

(n+ 1)n!

= |2x| lim
n→∞

1

n+ 1
= 0

for any value of x. Since the limit is less than 1, by the Ratio Test, the series converges for any

value of x. This means the radius of convergence R = ∞ and the interval of convergence of

the power series is −∞ < x < ∞ .

40. The power series
∞∑

k=0

ak =
∞∑

k=0

(x+1)k

k! = 1 +
∞∑

k=1

(x+1)k

k! is a series of nonzero terms for

x 6= −1. (At x = −1, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x+1)n+1

(n+1)!

(x+1)n

n!

∣
∣
∣
∣
∣
∣

= |x+1| lim
n→∞

n!

(n+ 1)!
= |x+1| lim

n→∞
n!

(n+ 1)n!
= |x+1| lim

n→∞
1

n+ 1
= 0

for any value of x. Since the limit is less than 1, by the Ratio Test, the series converges for any

value of x. This means the radius of convergence R = ∞ and the interval of convergence of

the power series is −∞ < x < ∞ .

41. The power series
∞∑

k=0

ak =
∞∑

k=0

(−1)k (x−1)4k

k! = 1 +
∞∑

k=1

(−1)k (x−1)4k

k! is a series of nonzero

terms for x 6= 1. (At x = 1, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x−1)4(n+1)

(n+1)!

(x−1)4n

n!

∣
∣
∣
∣
∣
∣

= |(x− 1)4| lim
n→∞

n!

(n+ 1)!

= |x− 1|4 lim
n→∞

n!

(n+ 1)n!
= |x− 1|4 lim

n→∞
1

n+ 1
= 0
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for any value of x. Since the limit is less than 1, by the Ratio Test, the series converges for any

value of x. This means the radius of convergence R = ∞ and the interval of convergence of

the power series is −∞ < x < ∞ .

42. The power series
∞∑

k=1

ak =
∞∑

k=1

(x+1)k

k(k+1)(k+2) is a series of nonzero terms for x 6= −1 (At

x = −1, the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x+1)n+1

(n+1)(n+2)(n+3)

(x+1)n

n(n+1)(n+2)

∣
∣
∣
∣
∣
∣

= |x+1| lim
n→∞

n

n+ 3
= |x+1| lim

n→∞
1

1 + 3
n

= |x+1| · 1 < 1

for convergence of the series by the Ratio Test. So the series converges for −1 < x+ 1 < 1 or

−2 < x < 0, and the radius of convergence is R = 1.

At x = −2, the series becomes
∞∑

k=1

ak =
∞∑

k=1

(−1)k

k(k+1)(k+2) . The nth term of this series satisfies

lim
n→∞

|an| = lim
n→∞

1
n(n+1)(n+2) = 0. By the Algebraic Ratio Test,

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1
(n+1)(n+2)(n+3)

1
n(n+1)(n+2)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

n

n+ 3

∣
∣
∣
∣
< 1

for n ≥ 1. This means the absolute value of the terms of the series are nonincreasing. By the
Alternating Series Test, the series converges. So the power series converges for x = −2.

At x = 0, the power series reduces to
∞∑

k=1

ak =
∞∑

k=1

1
k(k+1)(k+2) . The nth term of this series

satisfies

an =
1

n(n+ 1)(n+ 2)
<

1

n3
= bn

for all n ≥ 1. Since the series
∞∑

k=1

bk =
∞∑

k=1

1
k3 is a convergent p-series because p = 3 > 1, by the

Comparison Test, the series
∞∑

k=1

ak converges. So the power series converges for x = 0.

Concluding, the interval of convergence of the power series is −2 ≤ x ≤ 0.

43. The power series
∞∑

k=1

ak =
∞∑

k=1

kkxk

k! is a series of nonzero terms for x 6= 0 (At x = 0, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(n+1)n+1xn+1

(n+1)!
nnxn

n!

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

∣
∣
∣
∣

(n+ 1)(n+ 1)n

nn
· n!

(n+ 1)!

∣
∣
∣
∣

= |x| lim
n→∞

∣
∣
∣
∣
(n+ 1) ·

(

1 +
1

n

)n

· n!

(n+ 1)n!

∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣

(

1 +
1

n

)n∣
∣
∣
∣

= |x|e < 1

for convergence of the series by the Ratio Test. So the series converges if |x| < 1
e , or

− 1
e < x < 1

e , and the radius of convergence is R =
1

e
. In what follows below, we shall use a

useful approximation called Stirling’s approximation to help us analyze the various limits, and
to put bounds on the nth terms. This sates that for large n, the value of n! is given by

n! ≈
√
2πn

(n

e

)n
(

1 +
1

12n

)

≈
√
2πn

(n

e

)n

.
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A proof of this approximation is found in most books on analysis, and shall not be given here,
as it is not within the scope of the textbook. Without this result, one cannot perform the
analyses to follow.
At x = − 1

e , the series reduces to

∞∑

k=1

ak =

∞∑

k=1

kk
(
− 1

e

)k

k!
=

∞∑

k=1

(−1)k
kk

k! ek
.

The nth term of this series satisfies

lim
n→∞

|an| = lim
n→∞

nn

n! en
= lim

n→∞

(
n
e

)n

n!
= lim

n→∞

(
n
e

)n

√
2πn

(
n
e

)n = lim
n→∞

1√
2πn

= 0

using Stirling’s approximation quoted above. By the Algebraic Ratio Test,

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

nn+1

(n+1)! en+1

nn

n!en

∣
∣
∣
∣
∣
∣

=
nn · n
nn

· n!

(n+ 1)!
· 1
e
=

n

n+ 1
· 1
e
< 1

if (n+ 1)e > n, which is satisfied for all n ≥ 1, since e > 1. This means the terms of the series
are nonincreasing. By the Alternating Series Test, the series converges. So the power series
converges for x = − 1

e .

At x = 1
e , the power series reduces to

∞∑

k=1

ak =

∞∑

k=1

kk
(
1
e

)k

k!
=

∞∑

k=1

kk

k! ek.

The nth term of this series satisfies

an =
nn

n! en
=

(
n
e

)n

n!
=

(
n
e

)n

√
2πn

(
n
e

)n =
1√
2πn

>
1√
3πn

= bn

for large n > N , where Stirling’s approximation was again used. Since the series
∞∑

k=1

bk =
∞∑

k=1

1√
3πk

= 1√
3π

∞∑

k=1

1
k1/2 is a constant multiple of a divergent p-series (divergent since

0 < p = 1
2 < 1), by the Comparison Test, the series

∞∑

k=1

ak also diverges. (Note that convergence

or divergence of a series is not governed by the first N terms which are finite in number, and
the sum of whose terms are finite in value.) So the power series diverges for x = 1

e .

Concluding, the interval of convergence of the power series is −1

e
≤ x <

1

e
.

44. The power series
∞∑

k=0

ak =
∞∑

k=0

3k(x−2)k

k! = 1 +
∞∑

k=1

3k(x−2)k

k! is a series of nonzero terms for

x 6= 2. (At x = 2, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

3n+1(x−2)n+1

(n+1)!

3n(x−2)n

n!

∣
∣
∣
∣
∣
∣

= 3|x− 2| lim
n→∞

∣
∣
∣
∣

n!

(n+ 1)!

∣
∣
∣
∣

= 3|x− 2| lim
n→∞

n!

(n+ 1)n!
= 3|x− 2| lim

n→∞
1

n+ 1

= 0
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for all values of x. Since the limit is less than 1, by the Ratio Test, the series converges for any

value of x. This means the radius of convergence R = ∞ and the interval of convergence of

the power series is −∞ < x < ∞ .

45. [In the problems 45-48, we shall extensively use the following result: If |r| < 1, then the

geometric series
∞∑

k′=0

ark
′
=

∞∑

k=1

ark−1 = a
1−r , where k′ = k − 1. This allows us to start a

geometric series at k′ = 0 and use the standard results of Section 8.2.]

(a) The domain of f(x) =
∞∑

k=0

xk

3k
=

∞∑

k=0

(
x
3

)k
is the interval of convergence of the power series

that defines f . The series is a geometric series of the form
∞∑

k=0

rk, so it converges if

|r| =
∣
∣x
3

∣
∣ < 1, or |x| < 3, or −3 < x < 3. So the domain of f is −3 < x < 3.

(b) x = 2 and x = −1 are in the domain −3 < x < 3 of f . So we evaluate:

f(2) =
∞∑

k=0

2k

3k
=

∞∑

k=0

(
2

3

)k

=
1

1− 2
3

=
1
1
3

= 3.

f(−1) =

∞∑

k=0

(−1)k

3k
=

∞∑

k=0

(

−1

3

)k

=
1

1−
(
− 1

3

) =
1

1 + 1
3

=
1
4
3

=
3

4
.

(c) Since f is defined by a geometric series, we can find its sum in its domain of convergence:

f(x) =

∞∑

k=0

xk

3k
=

∞∑

k=0

(x

3

)k

=
1

1− x
3

=
3

3− x
for − 3 < x < 3.

46. (a) The domain of f(x) =
∞∑

k=0

(−1)k
(
x
2

)k
=

∞∑

k=0

(
−x

2

)k
= 1 +

∞∑

k=1

(
−x

2

)k
is the interval of

convergence of the power series that defines f . The series is geometric of the form
∞∑

k=0

rk, so it

converges if |r| =
∣
∣−x

2

∣
∣ =

∣
∣x
2

∣
∣ < 1, or |x| < 2, or −2 < x < 2. So the domain of f is

−2 < x < 2.

(b) x = 0 and x = 1 are in the domain −2 < x < 2 of f . So we evaluate:

f(0) = 1 +

∞∑

k=1

(

−0

2

)k

= 1 + 0 = 1.

f(1) =

∞∑

k=0

(−1)k
1k

2k
=

∞∑

k=0

(

−1

2

)k

=
1

1 + 1
2

=
1
3
2

=
2

3
.

(c) Since f is defined by a geometric series, we can find its sum in the domain of convergence:

f(x) =

∞∑

k=0

(−1)k
xk

2k
=

∞∑

k=0

(

−x

2

)k

=
1

1−
(
−x

2

) =
1

1 + x
2

=
2

2 + x
for − 2 < x < 2.

47. (a) The domain of f(x) =
∞∑

k=0

(x−2)k

2k = 1 +
∞∑

k=1

(x−2)k

2k is the interval of convergence of the

power series that defines f . The series is geometric of the form
∞∑

k=0

rk, so it converges if
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|r| =
∣
∣x−2

2

∣
∣ < 1, or |x− 2| < 2, or −2 < x− 2 < 2, or 0 < x < 4. So the domain of f is

0 < x < 4.

(b) x = 1 and x = 2 are in the domain 0 < x < 4 of f . So we evaluate:

f(1) =

∞∑

k=0

(1 − 2)k

2k
=

∞∑

k=0

(

−1

2

)k

=
1

1−
(
− 1

2

) =
1

1 + 1
2

=
1
3
2

=
2

3
.

f(2) = 1 +

∞∑

k=1

(2 − 2)k

2k
= 1 + 0 = 1.

(c) Since f is defined by a geometric series, we can find its sum in the domain of convergence:

f(x) =

∞∑

k=0

(
x− 2

2

)k

=
1

1−
(
x−2
2

) =
2

2− x+ 2
=

2

4− x
for 0 < x < 4.

48. (a) The domain of f =
∞∑

k=0

(−1)k(x+ 3)k =
∞∑

k=0

[−(x+ 3)]k = 1 +
∞∑

k=1

[−(x+ 3)]k is the

interval of convergence of the power series that defines f . The series is geometric of the form
∞∑

k=0

rk, so it converges if |r| = | − (x+ 3)| < 1, or −1 < x+ 3 < 1, or −4 < x < −2. So the

domain of f is −4 < x < −2.

(b) x = −3 and x = −2.5 = − 5
2 are in the domain −4 < x < 2 of f . So we evaluate:

f(−3) = 1 +

∞∑

k=1

[−(−3 + 3)]k = 1.

f(−2.5) = f

(

−5

2

)

=
∞∑

k=0

[

−
(

−5

2
+ 3

)]k

=
∞∑

k=0

[

−
(
1

2

)]k

=
1

1−
(
− 1

2

) =
1
3
2

=
2

3
.

(c) Since f is defined by a geometric series, we can find its sum in the domain of convergence:

f(x) =

∞∑

k=0

[−(x+ 3)]k =
1

1− [−(x+ 3)]
=

1

1 + x+ 3
=

1

x+ 4
for − 4 < x < −2.

49. The series
∞∑

k=0

akx
k is a power series centered at x = 0. If the series is convergent for

x = 3, then by the theorem on the convergence and divergence of power series, it is convergent
for any x in a radius of convergence R = 3− 0 = 3 about the point x = 0, that is, in the
interval −3 < x < 3. Since convergence at x = 3 is given, we may extend the interval of

convergence to −3 < x ≤ 3. This means it is convergent at x=2 , since x = 2 is found in the

interval −3 < x ≤ 3. However, the series may or may not converge at x = 5. So no,

nothing can be said about the convergence at x=5.

50. The series
∞∑

k=0

ak(x− 2)k is a power series centered at x = 2. If the series converges for

x = 6, then it will necessarily converge for all other x in a radius of R = 6− 2 = 4 about the

point x = 2, that is, −4 < x− 2 < 4, or for all other x such that −2 < x < 6.
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51. The series
∞∑

k=0

akx
k is a power series centered at x = 0. If it converges for x = 6, then the

theorem on convergence and divergence of power series ensures that it will converge absolutely
for all x in a radius of R = 6− 0 = 6 about the point x = 0, that is, −6 < x < 6. Since
convergence at x = 6 is given, we can extend the range of convergence to at least −6 < x ≤ 6.
If the series diverges for x = −8, then it diverges for all x ≤ −8 and also for all x > 8. Based
on these observations:

(a) TRUE : The series will converge at x = 2 since −6 < 2 ≤ 6.

(b) FALSE : The series is only guaranteed to converge from (and not necessarily including)
x = −6, up to (and including) x = 6. It may or may not converge in the interval 6 < x ≤ 8, so
it may or may not converge for x = 7.

(c) FALSE : It follows from the statement of the theorem on convergence/divergence of a
power series, see p.602, that convergence of the series at x = 6 implies absolute convergence for
|x| < 6. Nothing is known about absoute convergence at x = 6.

(d) FALSE : The theorem only guarantees convergence on an open interval. So the series is
guaranteed to converge on −6 < x < 6. (Convergence at x = 6 is given to us, so this range may
be extended to −6 < x ≤ 6.) The series may or may not converge at x = −6.

(e) TRUE : The series diverges at x = 10 because it will diverge for all x > 8.

(f) TRUE : The theorem guarantees absolute convergence at x = 4 since it is in the interval
−6 < x ≤ 6.

52. If the radius of convergence of the power series
∞∑

k=0

ak(x− 3)k is 5, it means the series is

absolutely convergent for −5 < x− 3 < 5, or −2 < x < 8, and divergent for x < −2 and x > 8.
Based on this:

(a) TRUE : Since x = 2 falls in the interval of convergence −2 < x < 8.

(b) FALSE : Since x = 7 falls within the interval of convergence −2 < x < 8, the series will
not diverge at x = 7.

(c) NOT NECESSARILY TRUE : At x = 8, the series may converge or it may diverge.

(d) FALSE : x = −6 is in the range x < −2, so it will diverge.

(e) NOT NECESSARILY TRUE : At x = −2, the series may converge or it may diverge.

53. (a) Using a geometric series we can represent the function as a power series centered at
x = 0:

f(x) =
1

1 + x3
=

1

1− (−x3)
=

∞∑

k=0

(−x3)k.

(b) The geometric series converges if |r| = | − x3| < 1, or |x| < 1. So the radius of convergence

is R = 1 and the interval of convergence is −1 < x < 1.

54. (a) Using a geometric series we can represent the function as a power series centered at
x = 0:

f(x) =
1

1− x2
=

∞∑

k=0

(x2)k.

(b) The geometric series converges if |r| =
∣
∣x2
∣
∣ < 1, or |x| < 1. So the radius of convergence is

R = 1 and the interval of convergence is −1 < x < 1.
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55. (a) Using a geometric series we can represent the function as a power series centered at
x = 0:

f(x) =
1

6− 2x
=

(
1

6

)
1

1− 2x
6

=

(
1

6

)
1

1− x
3

=

∞∑

k=0

1

6

(x

3

)k

.

(b) The geometric series converges if |r| =
∣
∣x
3

∣
∣ < 1, or |x| < 3. So the radius of convergence is

R = 3 and the interval of convergence is −3 < x < 3.

56. (a) Using a geometric series we can represent the function as a power series centered at
x = 0:

f(x) =
4

x+ 2
=

4

2− (−x)
=

2

1−
(
−x

2

) =

∞∑

k=0

2
(

−x

2

)k

.

(b) The geometric series converges if |r| =
∣
∣−x

2

∣
∣ < 1, or |x| < 2. So the radius of convergence is

R = 2 and the interval of convergence is −2 < x < 2.

57. (a)Using a geometric series we can represent the function as a power series centered at
x = 0:

f(x) =
x

1 + x3
=

x

1− (−x3)
=

∞∑

k=0

x·(−x3)k =

∞∑

k=0

(−1)3kx3k+1 =

∞∑

k=0

[
(−1)3

]k
x3k+1 =

∞∑

k=0

(−1)kx3k+1.

(b) The geometric series converges if |r| = |(−x)3| < 1. So the radius of convergence is R = 1

and the interval of convergence is −1 < x < 1.

58. (a) Using a geometric series we can represent the function as a power series centered at
x = 0:

f(x) =
4x2

x+ 2
=

2x2

1−
(
−x

2

) =

∞∑

k=0

2x2
(

−x

2

)k

=

∞∑

k=0

8
(

−x

2

)2 (

−x

2

)k

=

∞∑

k=0

8
(

−x

2

)k+2

.

(b) The geometric series converges if |r| =
∣
∣−x

2

∣
∣ < 1, or |x| < 2. So the radius of convergence is

R = 2 and the interval of convergence is −2 < x < 2.

59. First, we check to see if the power series representing the function

f(x) =
∞∑

k=0

ak =
∞∑

k=0

(−1)kx2k+1

(2k+1)! has a nonzero radius of convergence:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(−1)n+1x2(n+1)+1

(2(n+1)+1)!

(−1)nx2n+1

(2n+1)!

∣
∣
∣
∣
∣
∣

= |x|2 lim
n→∞

(2n+ 1)!

(2n+ 3)!

= |x|2 lim
n→∞

(2n+ 1)!

(2n+ 3)(2n+ 2)(2n+ 1)!
= |x|2 lim

n→∞
1

(2n+ 3)(2n+ 2)

= 0 for any value of x.

So the radius of convergence is R = ∞, and the interval of convergence is −∞ < x < ∞.
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(a) Using the differentiation property of power series we have

f(x) = x− x3

3!
+

x5

5!
− · · ·+ (−1)kx2k+1

(2k + 1)!
+ · · ·

f ′(x) = 1− 3x2

3 · 2! +
5x4

5 · 4! − · · ·+ (−1)k(2k + 1)x2k+1−1

(2k + 1)(2k)!
+ · · ·

= 1− x2

2!
+

x4

4!
− · · ·+ (−1)kx2k

(2k)!
+ · · ·

=

∞∑

k=0

(−1)kx2k

(2k)!
.

(b) Using the integration property of power series we have

f(x) = x− x3

3!
+

x5

5!
− · · ·+ (−1)kx2k+1

(2k + 1)!
+ · · ·

∫ x

0

f(x) dx =
x2

2
− x4

4 · 3! +
x6

6 · 5! − · · ·+ (−1)kx2k+2

(2k + 2)(2k + 1)!
+ · · ·

=
∞∑

k=0

(−1)kx2k+2

(2k + 2)!
.

60. First, we check to see if the power series representing the function

f(x) =
∞∑

k=0

ak =
∞∑

k=0

(−1)kx2k

(2k)! has a nonzero radius of convergence:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(−1)n+1x2(n+1)

(2(n+1))!

(−1)nx2n

(2n)!

∣
∣
∣
∣
∣
∣

= |x|2 lim
n→∞

(2n)!

(2n+ 2)!

= |x|2 lim
n→∞

(2n)!

(2n+ 2)(2n+ 1)(2n)!
= |x|2 lim

n→∞
1

(2n+ 2)(2n+ 1)

= 0, for any value of x.

So the radius of convergence R = ∞, and the interval of convergence is −∞ < x < ∞.

(a) Using the differentiation property of power series we have

f(x) = 1− x2

2!
+

x4

4!
− · · ·+ (−1)kx2k

(2k)!
+ · · ·

f ′(x) = 0− 2x

2 · 1! +
4x3

4 · 3! − · · ·+ (−1)k(2k)x2k−1

(2k)(2k − 1)!
+ · · ·

= −x+
x3

3!
− · · ·+ (−1)kx2k−1

(2k − 1)!
+ · · ·

=

∞∑

k=1

(−1)kx2k−1

(2k − 1)!
.
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(b) Using the integration property of power series we have

f(x) = 1− x2

2!
+

x4

4!
− · · ·+ (−1)kx2k

(2k)!
+ · · ·

∫ x

0

f(x) dx = x− x3

3 · 2! +
x5

5 · 4! − · · ·+ (−1)kx2k+1

(2k + 1)(2k)!
+ · · ·

= x− x3

3!
+

x5

5!
− · · ·+ (−1)kx2k+1

(2k + 1)!
+ · · ·

=

∞∑

k=0

(−1)kx2k+1

(2k + 1)!
.

61. Let’s check to see if the power series representing the function f(x) =
∞∑

k=0

ak =
∞∑

k=0

xk

k! has

a nonzero radius of convergence:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xn+1

(n+1)!
xn

n!

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

n!

(n+ 1)!
= |x| lim

n→∞
n!

(n+ 1)n!
= |x| lim

n→∞
1

n+ 1
= 0

for all values of x. So the radius of convergence R = ∞, and the interval of convergence is
−∞ < x < ∞.
(a) Using the differentiation property of power series we have

f(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xk

k!
+ · · ·

f ′(x) = 0 + 1 +
2x

2 · 1! +
3x2

3 · 2! + · · ·+ kxk−1

k(k − 1)!
+ · · ·

= 1 + x+
x2

2!
+ · · ·+ xk−1

(k − 1)!
+ · · ·

=
∞∑

k=1

xk−1

(k − 1)!
=

∞∑

k=0

xk

k!
.

(b) Using the integration property of power series we have

f(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xk

k!
+ · · ·

∫ x

0

f(x) dx = x+
x2

2 · 1! +
x3

3 · 2! +
x4

4 · 3! + · · ·+ xk+1

(k + 1)k!
+ · · ·

= x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xk+1

(k + 1)!
+ · · ·

=

∞∑

k=0

xk+1

(k + 1)!
.

62. Let’s check to see if the power series representing the function f(x) =
∞∑

k=0

ak =
∞∑

k=0

(−1)kxk

k!

has a nonzero radius of convergence:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(−1)n+1xn+1

(n+1)!

(−1)nxn

n!

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

n!

(n+ 1)!
= |x| lim

n→∞
n!

(n+ 1)n!
= |x| lim

n→∞
1

n+ 1
= 0
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for all values of x. So the radius of convergence R = ∞, and the interval of convergence is
−∞ < x < ∞.

(a) Using the differentiation property of power series we have

f(x) = 1− x+
x2

2!
− x3

3!
+ · · ·+ (−1)kxk

k!
+ · · ·

f ′(x) = 0− 1 +
2x

2 · 1! −
3x2

3 · 2! + · · ·+ (−1)kkxk−1

k(k − 1)!
+ · · ·

= −1 + x− x2

2!
+ · · ·+ (−1)kxk−1

(k − 1)!
+ · · ·

=

∞∑

k=1

(−1)kxk−1

(k − 1)!
=

∞∑

k=0

(−1)k+1xk

k!
.

(b) Using the integration property of power series we have

f(x) = 1− x+
x2

2!
− x3

3!
+ · · ·+ (−1)kxk

k!
+ · · ·

∫ x

0

f(x) dx = x− x2

2 · 1! +
x3

3 · 2! −
x4

4 · 3! + · · ·+ (−1)kxk+1

(k + 1)k!
+ · · ·

= x− x2

2!
+

x3

3!
− x4

4!
+ · · ·+ (−1)kxk+1

(k + 1)!
+ · · ·

=

∞∑

k=0

(−1)kxk+1

(k + 1)!
.

63. We wish to find a power series representation of f(x) = 1
(1+x)2 . The function

g(x) = 1
1+x = 1

1−(−x) =
∞∑

k=0

(−x)k has a geometric power series representation which converges

for |r| = | − x| = |x| < 1. Using the differentiation property of power series, we get

f(x) = −dg

dx
=

1

(1 + x)2

= − d

dx

[ ∞∑

k=0

(−x)k

]

= − d

dx

[
(−x)0 + (−x)1 + (−x)2 + (−x)3 + · · ·+ (−x)k + · · ·

]

= − d

dx

[
1− x+ x2 − x3 + · · ·+ (−1)kxk + · · ·

]

= −
[
0− 1 + 2x− 3x2 + · · ·+ (−1)kkxk−1 + · · ·

]

= 1− 2x+ 3x2 − · · ·+ (−1)k+1kxk−1 + · · ·

=

∞∑

k=1

(−1)k+1kxk−1 =

∞∑

k=0

(−1)k(k + 1)xk.

The interval of convergence of the power series representation is at least |x| < 1 or −1 < x < 1.

Note that at the left endpoint x = −1 the series representation reduces to
∞∑

k=0

(−1)2k(k + 1),
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which is divergent by the Divergence Test. At the right endpoint x = 1, the series

representation reduces to
∞∑

k=0

(−1)k(k + 1), which again diverges by the Divergence Test.

So we conclude that the power series representation of the given function f(x) is
∞∑

k=0

(−1)k(k + 1)xk, − 1 < x < 1.

64. We wish to find a power series representation of f(x) = 1
(1−x)3 . The function

h(x) =
1

1− x
=

∞∑

k=0

xk = 1 + x+ x2 + x3 + · · ·+ xk + · · ·

has a geometric power series representation which converges for |r| = |x| < 1. Using the
differentiation property of power series, we have

h′(x) =
1

(1− x)2
= 0 + 1 + 2x+ 3x2 + · · ·+ kxk−1 + · · · =

∞∑

k=1

kxk−1.

To see that this power series has a nonzero radius of convergence, with
∞∑

k=1

ak =
∞∑

k=1

kxk−1

being a series of nonzero terms, we compute

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(n+ 1)xn

nxn−1

∣
∣
∣
∣
= |x| lim

n→∞
n+ 1

n
= |x| lim

n→∞

(

1 +
1

n

)

= |x| · 1 < 1

for convergence by the Ratio Test. Since the condition |x| < 1 was already satisfied for the
series representation of the function h(x) to be convergent, we see that the series representation
of h′(x) is convergent as well. So using the differentiation property of power series again, we
have

h′′(x) =
2

(1− x)3
= 2+6x+ · · ·+k(k−1)xk−2+ · · · =

∞∑

k=2

k(k−1)xk−2 =

∞∑

k′=0

(k′+2)(k′+1)xk′

,

where we set k′ = k − 2 or k = k′ + 2. So finally

f(x) =
1

(1− x)3
=

1

2
h′′(x) =

1

2

∞∑

k=2

k(k − 1)xk−2 =
1

2

∞∑

k=0

(k + 2)(k + 1)xk.

The interval of convergence is at least |x| < 1 or −1 < x < 1. At the left endpoint x = −1 the

series representation reduces to 1
2

∞∑

k=0

(−1)k(k + 2)(k + 1), which is divergent by the Divergence

Test. At the right endpoint x = 1, the series representation reduces to 1
2

∞∑

k=0

(k + 2)(k + 1),

which again diverges by the Divergence Test.
So we conclude that the power series representation of the given function f(x) is

1

2

∞∑

k=0

(k + 2)(k + 1)xk, − 1 < x < 1.

65. We wish to find a power series representation of f(x) = 2
3(1−x)2 . From the result of

Problem 64 above, we have

f(x) =
2

3(1− x)2
=

2

3
h′(x) =

2

3

∞∑

k=1

kxk−1.
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The interval of convergence of the power series representation is at least |x| < 1 or −1 < x < 1.

At the left endpoint x = −1 the series representation reduces to 2
3

∞∑

k=0

(−1)k−1k, which is

divergent by the Divergence Test. At the right endpoint x = 1, the series representation

reduces to 2
3

∞∑

k=0

k which again diverges by the Divergence Test.

So we conclude that the power series representation of the given function f(x) is

2

3

∞∑

k=1

kxk−1, − 1 < x < 1.

66. We wish to find a power series representation of f(x) = 1
(1−x)4 . From the result of Problem

64 above, we have that h′′(x) = 2
(1−x)3 =

∞∑

k=2

ak =
∞∑

k=2

k(k − 1)xk−2. Let us compute the radius

of convergence of this series:

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(n+ 1)nxn−1

n(n− 1)xn−2

∣
∣
∣
∣
= |x| lim

n→∞
n+ 1

n− 1
= |x|1 +

1
n

1− 1
n

= |x| · 1 < 1

for convergence by the Ratio Test. Since the radius of convergence is nonzero, we apply the
differentiation property of power series to this function to obtain

h′′′(x) =
2 · 3

(1− x)4
=

d

dx

[
2 + 6x+ 12x2 + · · ·+ k(k − 1)xk−2 + · · ·

]

= 0 + 6 + 24x+ · · ·+ k(k − 1)(k − 2)xk−3 + · · ·

=

∞∑

k=3

k(k − 1)(k − 2)xk−3 =

∞∑

k=0

(k + 3)(k + 2)(k + 1)xk.

Finally, we obtain

f(x) =
1

(1− x)4
=

1

6
h′′′(x) =

1

6

∞∑

k=3

k(k − 1)(k − 2)xk−3 =
1

6

∞∑

k=0

(k + 3)(k + 2)(k + 1)xk.

The interval of convergence of the power series representation is at least |x| < 1 or −1 < x < 1.
At the left endpoint x = −1 the series representation reduces to

1
6

∞∑

k=0

(−1)k(k + 3)(k + 2)(k + 1), which is divergent by the Divergence Test. At the right

endpoint x = 1, the series representation reduces to 1
6

∞∑

k=0

(k + 3)(k + 2)(k + 1), which again

diverges by the Divergence Test.
So we conclude that the power series representation of the given function f(x) is

1

6

∞∑

k=0

(k + 3)(k + 2)(k + 1)xk, − 1 < x < 1.

67. We wish to find a power series repesentation of f(x) = ln
(

1
1+x

)

. Since

g(x) =
1

1 + x
− 1

1− (−x)
=

∞∑

k=0

(−x)k = 1− x+ x2 − x3 + · · ·+ (−1)kxk + · · ·
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is a geometric series that converges if |r| = | − x| = |x| < 1, we can use the integration property
of power series and integrate term by term:

∫ x

0

g(x) dx =

∫ x

0

t
dx

1 + x
= ln(1 + x)

=

∫ x

0

[
1− x+ x2 − x3 + · · ·+ (−1)kxk + · · ·

]
dx

= x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)k

xk+1

k + 1
+ · · ·

or, ln(1 + x) =

∞∑

k=0

(−1)kxk+1

(k + 1)
.

The function f can be written:

f(x) = ln

(
1

1 + x

)

= ln 1− ln(1 + x) = 0− ln(1 + x).

So we have

f(x) = −
∞∑

k=0

(−1)kxk+1

k + 1
=

∞∑

k=0

(−1)k+1xk+1

k + 1

The interval of convergence is at least |x| < 1, or −1 < x < 1. At the left endpoint x = −1, the

series representation reduces to
∞∑

k=0

1
k+1 = 1 + 1

2 + 1
3 + · · · which is the divergent harmonic

series. At the right endpoint x = 1, the series representation reduces to
∞∑

k=0

(−1)k+1

k+1 = −1 + 1
2 − 1

3 + · · · which is a constant multiple of the convergent alternating

harmonic series.
So we conclude that the power series representation of the given function f(x) is
∞∑

k=0

(−1)k+1xk+1

k + 1
, − 1 < x ≤ 1.

68. We wish to find a power series representation of f(x) = ln(1− 2x). Consider the function

g(x) =
1

1− 2x
=

∞∑

k=0

(2x)k = 1 + 2x+ 4x2 + · · ·+ 2kxk + · · ·

which is a function with a geometric power series representation that converges if
|r| = |2x| < 1, or |x| < 1

2 . Since the interval of convergence is nonzero, we use the integration
property of power series to integrate term by term:

∫ x

0

g(x) dx =

∫ x

0

dx

1− 2x
=

ln |1− 2x|
−2

=

∫ x

0

[
1 + 2x+ 4x2 + · · ·+ 2kxk + · · ·

]
dx

= x+ x2 +
4

3
x3 + · · ·+ 2k

xk+1

k + 1
+ · · ·

or, ln |1− 2x| = −2

[

x+ x2 +
4

3
x3 + · · ·+ 2kxk+1

k + 1
+ · · ·

]

=
∞∑

k=0

(−1)
2k+1xk+1

k + 1

=

∞∑

k=0

(−1)
(2x)k+1

k + 1
.
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The interval of convergence is at least |x| < 1
2 . At the left endpoint x = − 1

2 , the series

representation reduces to
∞∑

k=0

ak =
∞∑

k=0

(−1)k 1
k+1 which is the convergent alternating harmonic

series. At the right endpoint, x = 1
2 , the series representation reduces to

∞∑

k=0

ak =
∞∑

k=0

(−1) 1
k+1

which is a constant multiple of the divergent harmonic series.
So we conclude that the power series representation of the given function f(x) is
∞∑

k=0

(−1)
(2x)k+1

k + 1
, − 1

2
≤ x <

1

2
.

69. We wish to find a power series representation of f(x) = ln(1− x2). Consider the function

g(x) =
−2x

1− x2
= (−2x)

∞∑

k=0

(x2)k = (−2x)

∞∑

k=0

x2k =

∞∑

k=0

(−2)x2k+1 = −2x−2x3−· · ·−2x2k+1−· · · .

This is a geometric series that converges if |r| = |x2| < 1, or |x| < 1, so the power series
representation of the function g has a nonzero radius of convergence. Using the integration
property of power series, we get

∫ x

0

g(x) dx =

∫ x

0

−2x dx

1− x2
= ln |1− x2|

=

∫ x

0

[
−2x− 2x3 − · · · − 2x2k+1 − · · ·

]
dx

= −x2 − 2

4
x4 − · · · − 2

2k + 2
x2k+2 − · · ·

= −x2 − x4

2
− · · · − x2k+2

k + 1
− · · ·

or, ln |1− x2| = −
∞∑

k=0

x2k+2

k + 1
.

The interval of convergence of the power series representation is at least |x| < 1 or −1 < x < 1.

At the left endpoint x = −1, the series representation reduces to −
∞∑

k=0

1
k+1 , which, being a

constant multiple of the harmonic series, diverges. At the right endpoint x = 1, the series
representation reduces to the same expression as it did at x = −1, so once again it diverges.
So we conclude that the power series representation of the given function f(x) is

−
∞∑

k=0

x2k+2

k + 1
, − 1 < x < 1.

70. We wish to find a power series representation of f(x) = ln(1 + x2). Consider the function

g(x) =
2x

1 + x2
=

2x

1− (−x2)
= 2x

∞∑

k=0

(−x2)k =
∞∑

k=0

2(−1)kx2k+1 = 2x−2x3+2x5−· · ·+2(−1)kx2k+1+· · · .
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This is a geometric series that converges if |r| = |x2| < 1, or |x| < 1, so the power series
representation of the function g has a nonzero radius of convergence. Using the integration
property of power series, we get

∫ x

0

g(x) dx = =

∫ x

0

2x dx

1 + x2
= ln |1 + x2|

=

∫ x

0

[
2x− 2x3 + 2x5 − · · ·+ 2(−1)kx2k+1 + · · ·

]
dx

= x2 − 2x4

4
+

2x6

6
− · · ·+ (−1)k

2x2k+2

2k + 2
+ · · ·

= x2 − x4

2
+

x6

3
− · · ·+ (−1)k

x2k+2

k + 1
+ · · ·

or, ln(1 + x2) =
∞∑

k=0

(−1)kx2k+2

k + 1
.

The interval of convergence of the power series representation is at least |x| < 1 or −1 < x < 1.

At the left endpoint x = −1, the power series representation reduces to
∞∑

k=0

(−1)k

k+1 which is the

convergent alternating harmonic series. At the right endpoint x = 1, we obtain the same series
as we had for x = −1, so once again the series converges.
So we conclude that the power series representation of the given function f(x) is
∞∑

k=0

(−1)kx2k+2

k + 1
, − 1 ≤ x ≤ 1.

Applications and Extensions

71. The power series
∞∑

k=1

ak =
∞∑

k=1

xk

k is a series of nonzero terms for x 6= 0. (At x = 0, the

series converges to zero.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

xn+1

n+1
xn

n

∣
∣
∣
∣
∣
= |x| lim

n→∞
n

n+ 1
= |x| lim

n→∞
1

1 + 1
n

= |x| · 1 < 1

for convergence of the series by the Ratio Test. So the power series converges for |x| < 1, or
−1 < x < 1.

At x = −1, the series becomes
∞∑

k=1

ak =
∞∑

k=1

(−1)k

k , which is the convergent alternating harmonic

series. So the power series converges for x = −1.

At x = 1, the series becomes
∞∑

k=1

ak =
∞∑

k=1

1
k which is the divergent harmonic series. So the

power series diverges for x = 1.

Concluding, the interval of convergence of the power series is −1 ≤ x < 1.

72. The power series
∞∑

k=1

ak =
∞∑

k=1

(x−4)k

k is a series of nonzero terms for x 6= 4. (At x = 4, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x−4)n+1

n+1

(x−4)n

n

∣
∣
∣
∣
∣
∣

= |x− 4| lim
n→∞

n

n+ 1
= |x− 4| lim

n→∞
1

1 + 1
n

= |x− 4| · 1 < 1
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for convergence of the series by the Ratio Test. So the series converges for −1 < x− 4 < 1, or
3 < x < 5.

At x = 3, the series becomes
∞∑

k=1

ak =
∞∑

k=1

(3−4)k

k =
∞∑

k=1

(−1)k

k , which is the convergent

alternating harmonic series. So the power series converges for x = 3.

At x = 5, the series becomes
∞∑

k=1

ak =
∞∑

k=1

(5−4)k

k =
∞∑

k=1

1
k which is the divergent harmonic

series. So the power series diverges for x = 5.

Concluding, the interval of convergence of the power series is 3 ≤ x < 5.

73. The power series
∞∑

k=1

ak =
∞∑

k=1

xk

2k+1 is a series of nonzero terms for x 6= 0. (At x = 0, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xk+1

2(n+1)+1

xn

2n+1

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

2n+ 1

2n+ 3
= |x| lim

n→∞

2 + 1
n

2 + 3
n

= |x| · 1 < 1

for convergence of the series by the Ratio Test. So the power series converges for |x| < 1, or
−1 < x < 1.

At x = −1, the series reduces to
∞∑

k=1

ak =
∞∑

k=1

(−1)k

2k+1 . The nth term of this series satisfies

lim
n→∞

an = lim
n→∞

1
2n+1 = 0. By the Algebraic Ratio Test, we see

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1
2(n+1)+1

1
2n+1

∣
∣
∣
∣
∣
=

2n+ 1

2n+ 3
< 1

for n ≥ 1. So the terms of the series are nonincreasing. By the Alternating Series Test, the
series converges. So the power series converges for x = −1.

At x = 1, the series reduces to
∞∑

k=1

ak =
∞∑

k=1

1
2k+1 . The nth term of this series satisfies

an =
1

2n+ 1
>

1

2n+ 2
= bn.

Since the series
∞∑

k=1

bk =
∞∑

k=1

1
2(k+1) is a constant multiple of the series

∞∑

k=1

1
k+1 = 1

2 +
1
3 +

1
4 + · · · , which is the divergent harmonic series from the second term forward,

by the Comparison Test, the series
∞∑

k=1

ak diverges. So the power series diverges for x = 1.

Concluding, the interval of convergence of the power series is −1 ≤ x < 1.

74. The power series
∞∑

k=1

ak =
∞∑

k=1

xk

k2 is a series of nonzero terms for x 6= 0. (At x = 0, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xn+1

(n+1)2

xn

n2

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

(
n

n+ 1

)2

= |x| lim
n→∞

(
1

1 + 1
n

)2

= |x| · 1 < 1

for convergence of the series by the Ratio Test. So the power series converges for |x| < 1 or
−1 < x < 1.
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At x = −1, the series reduces to
∞∑

k=1

ak =
∞∑

k=1

(−1)k

k2 . The series of absolute values is

∞∑

k=1

|ak| =
∞∑

k=1

1
k2 , which is a convergent p-series, since p = 2 > 1. Since the original series

converges absolutely, it converges. So the power series is convergent for x = −1.

At x = 1, the series becomes
∞∑

k=1

ak =
∞∑

k=1

1
k2 , which is again a convergent p-series for

p = 2 > 1. So the power series converges for x = 1.

Concluding, the interval of convergence of the power series is −1 ≤ x ≤ 1.

75. The power series
∞∑

k=0

ak =
∞∑

k=0

xk2

= 1 +
∞∑

k=1

xk2

is a series of nonzero terms for x 6= 0. (At

x = 0, the series converges to 1.) We have, applying the Root Test,

lim
n→∞

n
√

|an| = lim
n→∞

n

√

|xn2 | = lim
n→∞

|xn2/n| = lim
n→∞

|xn|.

Now, since lim
n→∞

rn = ∞ if |r| > 1 and lim
n→∞

rn = 0 if |r| < 1, we require for convergence by the

Root Test, |x| < 1, or −1 < x < 1.

At x = −1, the series becomes
∞∑

k=0

ak =
∞∑

k=0

(−1)k
2

= 1− 1 + 1− 1 + · · · . Since the sequence of

partial sums {Sn} = {1, 0, 1, 0, · · · } is not convergent, the power series diverges for x = −1.

At x = 1, the series becomes
∞∑

k=0

ak =
∞∑

k=0

1 = ∞, so the power series diverges for x = 1.

Concluding, the interval of convergence of the power series is −1 < x < 1.

76. The power series
∞∑

k=1

ak =
∞∑

k=1

ka

ak (x− a)k. This is a series of nonzero terms when x 6= a.

(At x = a, the series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(n+1)a(x−a)n+1

an+1

na(x−a)n

an

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

x− a

a

∣
∣
∣
∣
lim
n→∞

(

1 +
1

n

)a

=

∣
∣
∣
∣

x− a

a

∣
∣
∣
∣
· 1 < 1

for convergence of the series by the Ratio Test. So the power series converges for |x− a| < |a|,
or −|a| < x− a < |a|, or −|a|+ a < x < |a|+ a. If we assume a > 0, then |a| = a, and the
power series converges for 0 < x < 2a. Since a 6= 0 has been given, we have an interval of
convergence of nonzero length. If we assume a < 0, then |a| = −a, and the power series
converges for 2a < x < 0.
At x = 0, the series reduces to

∞∑

k=1

ak =

∞∑

k=1

ka

ak
(−a)k =

∞∑

k=1

(−1)kka.

If a = −1, the series becomes
∞∑

k=1

(−1)k

k , which, being an alternating harmonic series, converges.

For −1 < a < 0, the series becomes an alternating p-series with 0 < p < 1, which converges by
the alternating series test; with p = −a, we have : lim

n→∞
|an| = lim

n→∞
1
kp = 0; also the terms of

the series are nonincreasing, as can be seen by the Algebraic Ratio Test, since
∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

1
np+1

1
np

=
np

np+1
< 1

for n ≥ 1. So by the Alternating Series Test, the series converges for −1 ≤ a < 0 at x = 0. For

a > 0, the series becomes
∞∑

k=1

ak =
∞∑

k=1

(−1)kka. By the Divergence Test,
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lim
n→∞

|an| = lim
n→∞

na = ∞, so the series diverges. Finally, if a < −1, then p = −a > 1, so the

series becomes
∞∑

k=1

(−1)k 1
kp , which is a convergent p-series since p > 1. Summarizing, at x = 0,

the power series converges for a < −1, −1 ≤ a < 0, and diverges for a > 0.
At x = 2a, the series reduces to

∞∑

k=1

ak =
∞∑

k=1

ka

ak
(2a− a)k =

∞∑

k=1

ka.

If a < −1, then with p = −a > 1, the series becomes
∞∑

k=1

ak =
∞∑

k=1

1
kp , which is a convergent

p-series since p > 1. If −1 ≤ a < 0, then using p = −a, we have 0 < p ≤ 1, which makes the

series
∞∑

k=1

ak =
∞∑

k=1

1
kp a divergent p-series. For a > 0, we use the Divergence Test to see

lim
n→∞

an = lim
n→∞

na = ∞, so the series diverges. Summarizing, for x = 2a, the series converges

when a < −1, and diverges for −1 ≤ a < 0 and a > 0.
Concluding, we see the power series converges for the following ranges of the parameter a:

a < −1 : 2a ≤ x ≤ 0; − 1 ≤ a < 0 : 2a < x ≤ 0; a > 0 : 0 < x < 2a.

77. The power series
∞∑

k=0

ak =
∞∑

k=0

(k!)2

(2k)! (x − 1)k = 1 +
∞∑

k=1

(k!)2

(2k)! (x− 1)k is a series of nonzero

terms if x 6= 1. (At x = 1, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

((n+1)!)2(x−1)n+1

(2(n+1))!

(n!)2(x−1)n

(2n)!

∣
∣
∣
∣
∣
∣

= |x− 1| lim
n→∞

{[
(n+ 1)!

n!

]2

· (2n)!

(2n+ 2)!

}

= |x− 1| lim
n→∞

{[
(n+ 1)n!

n!

]2

· (2n)!

(2n+ 2)(2n+ 1)(2n)!

}

= |x− 1| lim
n→∞

(n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)
= |x− 1| lim

n→∞

(
1 + 1

n

) (
1 + 1

n

)

(
2 + 2

n

) (
2 + 1

n

)

= |x− 1| · 1
4
< 1

for convergence by the Ratio Test if |x− 1| < 4, or −4 < x− 1 < 4, or −3 < x < 5.
At x = −3, the series becomes

∞∑

k=0

ak =
∞∑

k=0

(k!)2

(2k)!
(−3− 1)k =

∞∑

k=0

(k!)2

(2k)!
(−4)k =

∞∑

k=0

(−1)k
(k!)2

(2k)!
22k.

As in Problem 43, we have to use Stirling’s Approximation,

n! ≈
(n

e

)n √
2πn.

We see the absolute value of the nth term of the series is

|an| =
n!n! 22n

(2n)!
≈
((

n
e

)n √
2πn

) ((
n
e

)n √
2πn

)
22n

(
2n
e

)2n √
2π · 2n

=
n2n · 22n(2πn)
22nn2n

√
4πn

=
√
n
√
π → ∞, as n → ∞

which means the series diverges by the Divergence Test at x = −3.



8.8 Power Series 8-201

At x = 5, the series becomes

∞∑

k=0

ak =
∞∑

k=0

(k!)2

(2k)!
(5 − 1)k =

∞∑

k=0

(k!)2

(2k)!
4k =

∞∑

k=0

(k!)2

(2k)!
22k

which is identical to the series of absolute values of the series at x = −3: as such, it too
diverges by the same calculation used to establish the divergence of the absolute value of the
nth term above. So the series diverges by the Divergence Test at x = 5.

Concluding, the interval of convergence of the power series is −3 < x < 5.

78. The power series
∞∑

k=0

ak =
∞∑

k=0

√
k!

(2k)!x
k = 1 +

∞∑

k=1

√
k!

(2k)!x
k is a series of nonzero terms for

x 6= 0. (At x = 0, the series converges to 1.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣
∣

√
(n+1)!xn+1

(2(n+1))!√
n!xn

(2n)!

∣
∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

{√

(n+ 1)!

n!
· (2n)!

(2n+ 2)!

}

= |x| lim
n→∞

{√

(n+ 1)n!

n!
· (2n)!

(2n+ 2)(2n+ 1)(2n)!

}

= |x| lim
n→∞

√
n+ 1

(2n+ 2)(2n+ 1)

= |x| lim
n→∞

√

1 + 1
n

(

2
√
n+ 2√

n

)(

2
√
n+ 1√

n

)

= 0

for any value of x. So the interval of convergence is −∞ < x < ∞.

79. (a) We are given

1

1− x
=

∞∑

k=0

xk, − 1 < x < 1.

Replacing x with x2, we have

1

1− x2
=

∞∑

k=0

(x2)k =

∞∑

k=0

x2k.

(b) The interval of convergence is |x2| < 1, as it is a geometric series, so it is −1 < x < 1.

80. (a) Using partial fractions, we can write

1

1− x2
=

1

2

[
1

1− x
+

1

1 + x

]

=
∞∑

k=0

x2k = 1+ x2 + x4 + · · ·+ x2k + · · ·
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Since the radius of convergence of the geometric series is |x| < 1, it is nonzero, so we may
integrate the series term by term to obtain:

∫ x

0

dx

1− x2
=

1

2

[∫ x

0

dx

1− x
+

∫ x

0

dx

1 + x

]

=

∫ x

0

[
1 + x2 + x4 + · · ·+ x2n + · · ·

]
dx

or,
1

2
[− ln |1− x|+ ln |1 + x|] = x+

x3

3
+

x5

5
+ · · ·+ x2k+1

2k + 1
+ · · ·

or,
1

2
ln

∣
∣
∣
∣

1 + x

1− x

∣
∣
∣
∣
=

∞∑

k=0

x2k+1

2k + 1
.

(b) Since the series summed is geometric, it converges at least for |x| < 1, or −1 < x < 1. At

x = −1, the series becomes
∞∑

k=0

an =
∞∑

k=0

(−1)2k+1

2k+1 = −
∞∑

k=0

1
2k+1 . The absolute value of the nth

term of the series satisfies

|an| =
1

2n+ 1
>

1

2n+ 2
=

1

2
· 1

n+ 1
= bn.

Since
∞∑

k=0

bk =
∞∑

k=0

1
2 · 1

k+1 is a constant multiple of the divergent harmonic series, by the

Comparison Test, the series
∞∑

k=0

an diverges as well. At x = 1, the series becomes

∞∑

k=0

an =
∞∑

k=0

1
2k+1 . We can use the same Comparison Test as above to conclude that the series

diverges.

So the interval of convergence of the power series is −1 < x < 1.

81. We require ln
∣
∣
∣
1+x
1−x

∣
∣
∣ = ln 2, which happens when 1+x

1−x = 2, or 1 + x = 2(1− x), or

1 + x = 2− 2x, or 3x = 1, or x = 1
3 . So using the results of Problem 80, we have

1

2
ln

∣
∣
∣
∣

1 + x

1− x

∣
∣
∣
∣
= x+

x3

3
+

x5

5
+ · · ·

1

2
ln

∣
∣
∣
∣

1 + 1
3

1− 1
3

∣
∣
∣
∣
=

1

2
ln

∣
∣
∣
∣

4
3
2
3

∣
∣
∣
∣
=

1

2
ln 2 =

1

3
+

1

3
· 1

33
+

1

5
· 1

35
+ · · ·

or, ln 2 =
2

3

[

1 +
1

33
+

1

5 · 34 + · · ·
]

=
2

3

[

1 +
1

27
+

1

405
+ · · ·

]

≈ 2

3
[1 + 0.037 + 0.002 + · · · ]

≈ 2

3
[1.039] ≈ 0.6927 ≈ 0.693.

82. Gregory’s series is (see p.708)

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ · · ·+ (−1)n

x2n+1

2n+ 1
+ · · ·

=
∞∑

k=0

(−1)kx2k+1

2k + 1
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So, tan−1 1 =
π

4
= 1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n

1

2n+ 1
+ · · ·

≈
1000∑

k=0

(−1)k

2k + 1

≈ 0.7856479

using a CAS. This means

π ≈ 4(0.7856479)≈ 3.142592.

83. If R is the radius of convergence of the power series
∞∑

k=1

akx
k, then the power sereis

converges for |x| < R. By the Ratio Test, which is applicable if the terms of the series are
nonzero (it suffices to assume an 6= 0 as n → ∞) for x 6= 0 (at x = 0, the series converges to 0),
we have

lim
n→∞

∣
∣
∣
∣

an+1x
n+1

anxn

∣
∣
∣
∣
= |x| · lim

n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
< R lim

n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= 1

for convergence by the Ratio Test. So we have lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1

R , which was to be shown.

84. If the power series
∞∑

k=1

akx
k has a radius of convergence R, then the power series

∞∑

k=1

axx
2k =

∞∑

k=1

ak(x
2)k =

∞∑

k=1

aky
k also has a radius of convergence R, where y = x2. That is,

the series converges for |y| < R, or |x2| = |x|2 < R, or for |x| <
√
R. This means the radius of

convergence of the power series
∞∑

k=1

akx
2k is

√
R.

85. Let
∞∑

k=0

akx
k be a power series centered at x = 0, with a radius if convergence R and an

interval of convergence −R < x < R. If the power series is absolutely convergent at x = R,

then the series of absolute values
∞∑

k=0

|ak||x|k is convergent for all 0 ≤ |x| ≤ R, by the theorem

on convergence and divergence of a power series. This means it is absolutely convergent for

−R ≤ x ≤ R, or, it is also absolutely convergent at x = −R, which is the other endpoint of the

interval of convergence. Similarly, consider a power series
∞∑

k=0

ak(x− c)k centered at x = c with

a radius of convergence R, and an interval of convergence −R+ c < x < R+ c. If this series is
absolutely convergent at, say, the right endpoint x = R+ c, then it is convergent for all x such

that 0 ≤ |x− c| ≤ R, or −R ≤ x− c ≤ R, or −R+ c ≤ x ≤ R+ c. That is, it is convergent at

x = −R+ c, which is the other endpoint of the interval of convergence. Conversely, suppose the

series is absolutely convergent at the left endpoint, x = −R+ c, then it is convergent for all x

such that 0 ≤ |x− c| ≤ R, or −R ≤ x− c ≤ R, or −R+ c ≤ x ≤ R+ c. In other words, it is
also convergent at x = R+ c. So we have shown that if a power series is absolutely convergent
at one of its endpoints, it is absolutely convergent at the other endpoint.

86. From the result of Problem 83, lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ = 1

R if lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣ exists for a convergent

power sereis
∞∑

k=0

akx
k, which converges for |x| < R. We will use this result in the calculations

to follow.
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Let series
∞∑

k=1

kakx
k−1 be a series of nonzero terms for x 6= 0 for at least large values of k. (That

is, we assume that an 6= 0 as n → ∞.) At x = 0, note that the series converges to 0. Taking the
limit of the absolute value of the ratio of the n+ 1st and the nth term of the series, we have

lim
n→∞

∣
∣
∣
∣

(n+ 1)an+1x
n

nanxn−1

∣
∣
∣
∣
= |x| · lim

n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
· lim
n→∞

(
n+ 1

n

)

= |x| · 1
R

· lim
n→∞

(

1 +
1

n

)

=
|x|
R

· 1 < 1

for convergence of the series by the Ratio Test. That is, the series converges for |x| < R, as was
to be proved.

The series
∞∑

k=0

ak

k+1x
k+1 = a0 +

∞∑

k=1

ak

k+1x
k+1 is a series of nonzero terms for x 6= 0. (At x = 0,

the series converges to a0.) Taking the limit of the absolute value of the ratio of the n+ 1st
and the nth term of the series, we have

lim
n→∞

∣
∣
∣
∣
∣
∣

an+1x
n+2

n+2

anxn+1

n+1

∣
∣
∣
∣
∣
∣

= |x| · lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
· lim
n→∞

(
n+ 1

n+ 2

)

= |x| · 1

R
· lim
n→∞

(
1 + 1

n

1 + 2
n

)

=
|x|
R

· 1 < 1

for convergence of the series by the Ratio Test. That is, the series converges for |x| < R, as was
to be proved.

Challenge Problems

87. The differential equation is (1 + x2)y′′ − 4xy′ + 6y = 0. Let the solution be represented by

a power series of the form y(x) =
∞∑

k=0

akx
k, with a0 6= 0 and a1 6= 0. We have then:

y(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n + · · ·

y′ = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + · · ·
y′′ = 2a2 + 6a3x+ · · ·+ n(n− 1)anx

n−2 + (n+ 1)nan+1x
n−1 + (n+ 2)(n+ 1)an+2x

n + · · ·
x2y′′ = 2a2x

2 + 6a3x
3 + · · ·+ n(n− 1)anx

n + · · ·
xy′ = a1x+ 2a2x

2 + 3a3x
3 + · · ·+ nanx

n + · · · .

The coefficient of the xn term of the series (1 + x2)y′′ − 4xy′ + 6y = y′′ + x2y′′ − 4xy′ + 6y is
given by

[(n+ 2)(n+ 1)an+2 + n(n− 1)an]− 4nan + 6an = 0

in order that the differential equation (1 + x2)y′′ − 4xy′ + 6y = 0 be satisfied. That is,

(n+ 2)(n+ 1)an+2 + n(n− 1)an − 4nan + 6an = 0

(n+ 2)(n+ 1)an+2 + (n2 − n− 4n+ 6)an = 0

(n+ 2)(n+ 1)an+2 + (n2 − 5n+ 6)an = 0

(n+ 2)(n+ 1)an+2 + (n− 2)(n− 3)an = 0.

Solving for an+2, we get

an+2 = − (n− 2)(n− 3)

(n+ 2)(n+ 1)
an.

We have assumed a0 6= 0 and a1 6= 0. Substituting values for n in the recursion relation above,
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we can determine the coefficients an in terms of a0 and a1. So, setting n = 0, 1, 2, · · · , we have

a2 = a0+2 = − (0− 2)(0− 3)

(0 + 2)(0 + 1)
a0 = − (−2)(−3)

2 · 1 a0 = −6

2
a0 = −3a0

a3 = a1+2 = − (1− 2)(1− 3)

(1 + 2)(1 + 1)
a1 = − (−1)(−2)

3 · 2 a1 = −2

6
a1 = −1

3
a1

a4 = a2+2 = − (2− 2)(2− 3)

(2 + 2)(2 + 1)
a2 = 0

a5 = a3+2 = − (3− 2)(3− 3)

(3 + 2)(3 + 1)
a2 = 0.

All the higher even coefficients are 0 because a2n for n ≥ 2 will be related via the recursion
relation to a2n−2, and this to a2n−4, and so forth until a4 = 0 is reached. Similarly, all the
higher odd coefficients will be 0 because a2n+1 for n ≥ 2 will be related via the recursion
relation to a2n−1 and this to a2n−3, and so forth until a5 = 0 is reached.

So the only nonzero coefficients of the series y(x) =
∞∑

k=0

akx
k are a0 6= 0, a1 6= 0 (by

assumption) and a2 = −3a0 and a3 = − 1
3a1.

So finally the solution to the differential equation is

y(x) =
∞∑

k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3

= a0 + a1x− 3a0x
2 − 1

3
a1x

3

or, y(x) = a0(1 − 3x2) + a1

(

x− 1

3
x3

)

.

88. If the power series
∞∑

k=0

ak3
k converges, we have (if the terms of the series an 6= 0 as

n → ∞) applying the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+13
n+1

an3n

∣
∣
∣
∣
= 3 lim

n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
< 1

for convergence of the series. This means

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
<

1

3
.

To check the convergence of
∞∑

k=1

kak2
k (which is also a series of nonzero terms), use the Ratio

Test again:

lim
n→∞

∣
∣
∣
∣

(n+ 1)an+12
n+1

n an 2n

∣
∣
∣
∣
= 2 lim

n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
· lim
n→∞

(
n+ 1

n

)

= 1 lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
· lim
n→∞

(

1 +
1

n

)

= 2 lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
· 1 < 2 · 1

3
=

2

3
< 1

so this series will be convergent.
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89. The power series
∞∑

k=1

ak =
∞∑

k=1

(x−2)k

k 3k
is a series of nonzero terms at x 6= 2. (At x = 2, the

series converges to 0.) We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x−2)n+1

(n+1) 3n+1

(x−2)n

n 3n

∣
∣
∣
∣
∣
∣

=
1

3
|x−2| lim

n→∞

(
n

n+ 1

)

=
|x− 2|

3
lim
n→∞

1

1 + 1
n

=
|x− 2|

3
·1 < 1

for convergence of the series by the Ratio Test. So the series converges if |x− 2| < 3, or
−3 < x− 2 < 3, or −1 < x < 5.
At x = −1, the series becomes

∞∑

k=1

ak =
∞∑

k=1

(−1− 2)k

k 3k
=

∞∑

k=1

(−3)k

k 3k
=

∞∑

k=1

(−1)k

k

which, being the alternating harmonic series, is convergent. So the power series converges for
x = −1.
At x = 5, the series becomes

∞∑

k=1

ak =

∞∑

k=1

(5− 2)k

k 3k
=

∞∑

k=1

3k

k 3k
=

∞∑

k=1

1

k

which, being the harmonic series, is divergent. So the power series diverges for x = 5.

Concluding, the interval of convergence of the power series is −1 ≤ x < 5.

90. Let −R < x0 < R. To prove continuity of S(x) at x = x0, we have to show that for any
ε > 0, there exists a δ > 0 such that for all |x− x0| < δ, |S(x)− S(x0)| < ε. From the
inequality given to us, we know there is a number N > 0 such that for n > N ,
|S(x)− Sn(x)| < ε

3 for |x| < R. We also have that for n > N , |S(x0)− Sn(x0)| < ε
3 , since

−R < x0 < R. Then, for n = N + 1, there exists a δ > 0 such that for all |x− x0| < δ,
|SN+1(x)− SN+1(x0)| < ε

3 due to the continuity of Sn(x) at x0, since the Sn(x) being
polynomials in x are continuous in the stated interval, |x| < R . We have, for n = N + 1,

|S(x)− S(x0)| = |S(x)− SN+1(x) + SN+1(x)− SN+1(x0) + SN+1(x0)− S(x0)|
≤ |S(x)− SN+1(x)| + |SN+1(x)− SN+1(x0)|+ |SN+1(x0)− S(x0)|
<

ε

3
+

ε

3
+

ε

3
= ε,

where we have used the triangle inequality. So we have shown that lim
x→x0

S(x) = S(x0), which

means S(x) is continuous at x = x0. Since x = x0 was a general point in |x| < R, we have
proved that S(x) is continuous on (−R,R).

91. Let the power series solution to the differential equation f ′′(x) + f(x) = 0 with the
boundary conditions f(0) = 0 and f ′(0) = 1 be given by the power series

f(x) =
∞∑

k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3 + · · ·+ anx

n + · · · .

Since f(0) = a0 = 0, we have that a0 = 0.

Differentiating the series twice, assuming nonzero radius of convergence each time, we obtain

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + · · ·
f ′′(x) = 2a2 + 6a3x+ · · ·+ n(n− 1)xn−2 + (n+ 1)nxn−1 + (n+ 2)(n+ 1)xn + · · · .
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Since f ′(0) = a1 = 1, we have a1 = 1.

The coefficient of the xn term of the series f ′′(x) + f(x) must satisfy

(n+ 2)(n+ 1)an+2 + an = 0

for the differential equation f ′′(x) + f(x) = 0 to be satisfied. Solving, and substituting various
values of n, we have

an+2 = − an
(n+ 2)(n+ 1)

a2 = a0+2 = − a0
(0 + 2)(0 + 1)

= 0, since a0 = 0;

a3 = a1+2 = − a1
(1 + 2)(1 + 1)

= − a1
3 · 2 = −a1

3!
= − 1

3!
, since a1 = 1;

a4 = a2+2 = − a2
(2 + 2)(2 + 1)

= 0, since a2 = 0;

a5 = a3+2 = − a3
(3 + 2)(3 + 1)

= − a3
5 · 4 = (−1)(−1)

a1
5 · 4 · 3 · 2 · 1 =

a1
5!

=
1

5!
since a1 = 1,

and so on. Only the odd coefficients are nonzero, with the most general term being of the form

a2k+1 = (−1)k
a1

(2k + 1)!
=

(−1)k

(2k + 1)!
.

So, the solution of the differential equation is

f(x) =

∞∑

k=0

(−1)k

(2k + 1)!
x2k+1.

To find the radius of convergence of f(x), we use the Ratio Test (noting that the terms of the
series are nonzero if x 6= 0, and the series converges to 0 if x = 0):

lim
n→∞

∣
∣
∣
∣
∣
∣

(−1)n+1x2(n+1)+1

(2(n+1)+1)!

(−1)nx2n+1

(2n+1)!

∣
∣
∣
∣
∣
∣

= |x|2 lim
n→∞

(2n+ 1)!

(2n+ 3)!
= |x|2 lim

n→∞
(2n+ 1)!

(2n+ 3)(2n+ 2)(2n+ 1)!

= |x|2 lim
n→∞

1

(2n+ 3)(2n+ 2)
= 0 < 1

for all values of x. So the radius of convergence of the series R = ∞.

92. The Bessel function of the first kind of order m ≥ 0 is

Jm(x) =

∞∑

k=0

(−1)k
1

(k +m)! k!

(x

2

)2k+m

.

(a) We have, for m = 0 and m = 1,

J0(x) =
∞∑

k=0

(−1)k
1

k! k!

(x

2

)2k

J1(x) =

∞∑

k=0

(−1)k
1

(k + 1)! k!

(x

2

)2k+1

.
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Using the product rule of differentiation, and noting that the series has a nonzero radius of
convergence (seen using the Ratio Test) we get

d

dx
(xJ1(x)) = J1(x) + xJ ′

1(x)

=

∞∑

k=0

(−1)k
1

(k + 1)! k!

(x

2

)2k+1

+ x ·
∞∑

k=0

(−1)k
1

(k + 1)! k!
(2k + 1) ·

(x

2

)2k

· 1
2

=

∞∑

k=0

(−1)k
1

(k + 1)! k!
[1 + (2k + 1)]

(x

2

)2k+1

;

x−1 d

dx
(xJ1(x)) =

∞∑

k=0

(−1)k
1

(k + 1)! k!

(
2k + 2

2

)(x

2

)2k

=

∞∑

k=0

(−1)k
1

(k + 1)k! k!
(k + 1)

(x

2

)2k

=

∞∑

k=0

(−1)k
1

k! k!

(x

2

)2k

= J0(x),

that is, J0(x) = x−1 d
dx(xJ1(x)), as was to be shown.

(b) Note that for m = 2,

J2(x) =

∞∑

k=0

(−1)k
1

(k + 2)! k!

(x

2

)2k+2

.

Using the product rule of differentiation, and noting the series has a nonzero radius of
convergence (seen using the Ratio Test) we get

d

dx
(x2J2(x)) = 2xJ2(x) + x2J ′

2(x)

= 2x

∞∑

k=0

(−1)k
1

(k + 2)! k!

(x

2

)2k+2

+ x2 ·
∞∑

k=0

(−1)k
1

(k + 2)! k!
(2k + 2)

(x

2

)2k+1

· 1
2

=

∞∑

k=0

(−1)k
1

(k + 2)! k!

[
x2k+3

22k+1

]

+

∞∑

k=0

(−1)k
1

(k + 2)! k!
(k + 1)

[
x2k+3

22k+1

]

;

x−2 d

dx
(x2J2(x)) =

∞∑

k=0

(−1)k
1

(k + 2)! k!

(x

2

)2k+1

+

∞∑

k=0

(−1)k
1

(k + 2)! k!
(k + 1)

(x

2

)2k+1

=

∞∑

k=0

(−1)k
1

(k + 2)! k!
[1 + (k + 1)]

(x

2

)2k+1

=
∞∑

k=0

(−1)k
1

(k + 2)(k + 1)! k!
(k + 2)

(x

2

)2k+1

=

∞∑

k=0

(−1)k
1

(k + 1)! k!

(x

2

)2k+1

= J1(x),

that is, J1(x) = x−2 d
dx(x

2J2(x)), as was to be shown.
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AP
R©

Practice Problems

1. If the power series
∞∑

k=0

akx
k converges for a number x0 6= 0, then it converges absolutely

for all numbers x for which |x| < |x0|.
Here, II and III satisfy that requirement.

CHOICE C

2. For f =
∞∑

k=0

ak(x− 3)k the domain equals the interval of convergence of the power series.

The radius of convergence = 2 means

|x− 3| < 2

−2 < x− 3 < 2

1 < x < 5.

x = 2 (Choice B) falls in this domain.

Whether the series converges at the endpoints, x = 1 and x = 5, depends on what ak is,
as a function of k.

The series might or might not converge at either one of the endpoints.

Convergence is not guaranteed there.

CHOICE B

3.
∞∑

k=1

(x+3)k

k is a power series centered at −3.

We use the Ratio Test with an = (x+3)n

n and an+1 = (x+3)n+1

n+1 .

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x+3)n+1

n+1

(x+3)n

n

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
∣

(x+ 3)
n+1

n

(x+ 3)
n
(n+ 1)

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(x+ 3)
n
(x+ 3)n

(x+ 3)
n
(n+ 1)

∣
∣
∣
∣

= |x+ 3| lim
n→∞

∣
∣
∣
∣

n

n+ 1

∣
∣
∣
∣
= |x+ 3| lim

n→∞

∣
∣
∣
∣

1

1 + 1
n

∣
∣
∣
∣
= |x+ 3|.

The series converges absolutely if |x+ 3| < 1, or equivalently if −4 < x < −2.

The radius of convergence is R = 1.

To find the interval of convergence, test the endpoints:

For x = −4:

∞∑

k=1

(x+ 3)
k

k
=

∞∑

k=1

(−1)
k

k
=

−1

1
+

1

2
+

−1

3
+

1

4
+ . . .+

(−1)
n

n
+ . . . ,

which is a convergent alternating series.

The endpoint x = −4 is included in the interval of convergence.

For x = −2:

∞∑

k=1

(x+ 3)k

k
=

∞∑

k=1

(1)k

k
=

∞∑

k=1

1

k
,
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which is the divergent harmonic series.

The endpoint x = −2 is not included in the interval of convergence.

The interval of convergence is [−4,−2) .

CHOICE B

4. I.
∞∑

k=1

xk

k! is a power series centered at 0.

We use the Ratio Test with an = xn

n! and an+1 = (x)n+1

(n+1)! .

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x)n+1

(n+1)!

xn

n!

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
∣

(x)
n+1

n!

(n+ 1)!xn

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

xn · x · n!
(n+ 1)n!xn

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

x

n+ 1

∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣

1

n+ 1

∣
∣
∣
∣
= 0 for any value x.

Since the limit is 0, by the Ratio Test, the series converges for any value of x. The
radius of convergence is R = ∞ and the interval of convergence of the power series is
−∞ < x < ∞ .

II.
∞∑

k=1

xk

k is a power series centered at 0. We use the Ratio Test with an = xn

n and

an+1 = (x)n+1

(n+1) .

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x)n+1

(n+1)
xn

n

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
∣

(x)n+1n

(n+ 1)xn

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

xn · x · n
(n+ 1)xn

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

x · n
n+ 1

∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣

n

n+ 1

∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣

1

1 + 1
n

∣
∣
∣
∣
= |x|

The series converges absolutely if |x| < 1, or equivalently if −1 < x < 1.

The radius of convergence is R = 1. To find the interval of convergence, test the
endpoints:

For x = −1:

∞∑

k=1

xk

k
=

∞∑

k=1

(−1)k

k
=

−1

1
+

1

2
+

−1

3
+

1

4
+ . . .+

(−1)n

n
+ . . .

which is a convergent alternating series. So x = −1 is included in the interval of
convergence.

For x = 1:

∞∑

k=1

xk

k
=

∞∑

k=1

(1)k

k
=

1

1
+

1

2
+

1

3
+

1

4
+ . . .+

1

n
+ . . . ,

which is the divergent harmonic series. So x = 1 is not included in the interval of
convergence.

The interval of convergence is −1 ≤ x < 1 .
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III.
∞∑

k=1

xk

k3 is a power series centered at 0. We use the Ratio Test with an = xn

n3 and

an+1 = xn+1

(n+1)3
.

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xn+1

(n+1)3

xn

n3

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
∣

xn+1n3

(n+ 1)
3
xn

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

xn · x · n3

(n+ 1)
3
xn

∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
∣

x · n3

(n+ 1)
3

∣
∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣
∣

n3

(n+ 1)
3

∣
∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣
∣

(
1

1 + 1
n

)3
∣
∣
∣
∣
∣
= |x|

The series converges absolutely if |x| < 1, or equivalently if −1 < x < 1.

The radius of convergence is R = 1. To find the interval of convergence, test the
endpoints:

For x = −1:

∞∑

k=1

xk

k3
=

∞∑

k=1

(−1)
k

k3
=

−1

1
+

1

23
+

−1

33
+

1

43
+ . . .+

(−1)
n

n3
+ . . .

which is a convergent alternating series. So x = −1 is included in the interval of
convergence.

For x = 1:

∞∑

k=1

xk

k3
=

∞∑

k=1

(1)k

k3
=

1

1
+

1

23
+

1

33
+

1

43
+ . . .+

1

n3
+ . . .

which is a convergent p-series. So x = 1 is included in the interval of convergence.

The interval of convergence is −1 ≤ x ≤ 1 .

CHOICE B

5.
∞∑

k=1

xk

3k
is a power series centered at 0. We use the Ratio Test with an = xn

3n and

an+1 = xn+1

3n+1 .

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

xn+1

3n+1

xn

3n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

xn+1 · 3n
3n+1xn

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

3n · xn · x
3n · 3 · xn

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
x

3

∣
∣
∣ =

∣
∣
∣
x

3

∣
∣
∣

The series converges absolutely if
∣
∣x
3

∣
∣ < 1, or equivalently if −3 < x < 3.

The radius of convergence is R = 3. To find the interval of convergence, test the
endpoints:

For x = −3:

∞∑

k=1

xk

3k
=

∞∑

k=1

(−3)k

3k
=

∞∑

k=1

(−1)k3k

3k
=

∞∑

k=1

(−1)k = −1 + 1− 1 + 1− 1 + . . .+ (−1)n + . . .

which is a divergent alternating series. So x = −3 is not included in the interval of
convergence.
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For x = 3:
∞∑

k=1

xk

3k
=

∞∑

k=1

(3)k

3k
=

∞∑

k=1

1 = 1 + 1 + 1 + 1 + . . . which diverges.

So x = 1 is not included in the interval of convergence.

The interval of convergence is (−3, 3) .

CHOICE C

6. f(x) =

∞∑

k=0

xk

k!
=

x0

0!
+

x1

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ . . .+

xk

k!
+ . . . = 1 +

∞∑

k=1

xk

k!

f ′(x) = 0 +

∞∑

k=1

kxk−1

k!
=

∞∑

k=1

kxk−1

k(k − 1)!
=

∞∑

k=1

xk−1

(k − 1)!

CHOICE A

7. (a)
∞∑

k=1

(x−2)k

3k is a power series centered at 0.

We use the Ratio Test with an = (x−2)n

3n and an+1 = (x−2)n+1

3n+1 .

Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x)n+1

(n+1)
xn

n

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
∣

(x−2)n+1

3n+1

(x−2)n

3n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(x− 2)
n+1

3n

3n+1(x− 2)
n

∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

(x− 2)
n
(x− 2)3n

3n(3)(x− 2)
n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

x− 2

3

∣
∣
∣
∣
=

∣
∣
∣
∣

x− 2

3

∣
∣
∣
∣

The series converges absolutely if
∣
∣
∣
∣

x− 2

3

∣
∣
∣
∣
< 1

−3 < x− 2 < 3,

−1 < x < 5.

The radius of convergence is R = 3 .

(b) To find the interval of convergence, test the endpoints:

For x = −1:

∞∑

k=1

(x− 2)
k

3k
=

∞∑

k=1

(−3)
k

3k
=

∞∑

k=1

(−1)
k · 3k
3k

=

∞∑

k=1

(−1)k

= −1 + 1− 1 + 1 + . . .+ (−1)n + . . . ,

which is a divergent alternating series.

So x = −1 is not included in the interval of convergence.

For x = 5:

∞∑

k=1

(x− 2)k

3k
=

∞∑

k=1

3k

3k
=

∞∑

k=1

1 = 1 + 1 + 1 + . . .+ 1 + . . . ,

which is a divergent series.
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So x = 5 is not included in the interval of convergence.

The interval of convergence is −1 < x < 5 .

8. (a) Utilizing the power series ln (1 + x) =
∞∑

k=0

(−1)
k xk+1

k+1 ,

f(x) = ln
(
1 + x2

)
=

∞∑

k=0

(−1)
k

(
x2
)k+1

k + 1

=

∞∑

k=0

(−1)
k x

2k+2

k + 1
= x2 − x4

2
+

x6

3
− x8

4
+ · · ·

(b) f(x) = ln
(
1 + x2

)
= (−1)

k
∞∑

k=0

(
x2k+2

)

k + 1

= x2 − x4

2
+

x6

3
− x8

4
+ · · ·+ (−1)

k
(
x2k+2

)

k + 1
+ · · ·

f ′(x) =
∞∑

k=0

(−1)
k (2k + 2) · x2k+1

k + 1
=

∞∑

k=0

(−1)k · 2(k + 1) · x2k+1

k + 1

= 2
∞∑

k=0

(−1)kx2k+1 = 2x− 2x3 + 2x5 − 2x7 + · · ·+ (−1)k
(
2x2k+1

)
+ · · ·

(c) f ′(x) = 2
∞∑

k=0

(−1)
k
x2k+1 is a power series centered at 0.

We use the Ratio Test with an = (−1)
k
x2k+1 and an+1 = (−1)

k
x2k+3.

The constant multiplier 2 does not affect the radius of convergence.

Then lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(−1)k+1x2k+3

(−1)
k
x2k+1

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣x2
∣
∣.

The series converges absolutely if
∣
∣x2
∣
∣ < 1

−1 < x < 1.

The radius of convergence is R = 1.
To find the interval of convergence, test the endpoints:
If x = −1,

∞∑

k=0

(−1)
k
x2k+1 =

∞∑

k=0

(−1)
k · (−1)

2k+1
=

∞∑

k=0

(−1)
3k+1

= −1 + 1− 1 + 1− 1 + . . . ,

which is a divergent alternating series.
The endpoint x = −1 is not included in the interval of convergence.
If x = 1,

∞∑

k=0

(−1)kx2k+1 =
∞∑

k=0

(−1)k · (1)2k+1 =
∞∑

k=0

(−1)k = 1− 1 + 1− 1 + · · · ,

which is a divergent alternating series.
So x = 1 is not included in the interval of convergence.

The interval of convergence is (−1, 1) .
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8.9 Taylor Series; Maclaurin Series

Concepts and Vocabulary

1. Taylor Series : See p.613 for the full definition.

2. Maclaurin : See p.613 for the full definition.

3. f(x) =
2x0

0!
+

−4x1

1
+

3x2

2!
+

−2x3

3!
= 2− 4x+

3

2
x2 − 2

3
x3

4. f(x) =
3(x− 5)0

0!
+

2(x− 5)1

1!
+

−1(x− 5)2

2!
+

−4(x− 5)3

3!

= 3 + 2(x− 5)− 1

2
(x− 5)2 − 2

3
(x− 5)3

Skill Building

5. We use the Maclaurin expansion for ex =
∞∑

k=0

xk

k! = 1+ x+ x2

2! +
x3

3! +
x4

4! + . . .+ xn

n! + . . . and

substitute −x2 for x:

f(x) = e−x2

= 1 +
(
−x2

)
+

(
−x2

)2

2!
+

(
−x2

)3

3!
+

(
−x2

)4

4!
+ . . .+

(
−x2

)n

n!
+ . . .

= 1− x2 +
1

2
x4 − 1

6
x6 +

1

24
x8 − . . .+ (−1)n

x2n

n!
+ . . .

=

∞∑

k=0

(−1)
k x

2k

k!

6. We use the Maclaurin expansion for ex =
∞∑

k=0

xk

k! = 1+ x+ x2

2! +
x3

3! +
x4

4! + . . .+ xn

n! + . . . and

substitute 2x for x:

f(x) = e2x = 1 + (2x) +
(2x)

2

2!
+

(2x)
3

3!
+

(2x)
4

4!
+ . . .

= 1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 + · · · (2x)

n

n!
+ . . .

=

∞∑

k=0

(2x)
k

k!
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7. To express f(x) = 1
(1+x)2 as a Maclaurin series, we begin by evaluating f(x) and its

derivatives at x = 0.

f(x) =
1

(1 + x)2
f(0) =

1

(1 + 0)2
= 1

f ′(x) = − 2

(1 + x)3
f ′′(0) = − 2

(1 + 0)3
= −2 = −2!

f ′′(x) =
3 · 2

(1 + x)4
f ′′(0) =

3 · 2
(1 + 0)4

= 3!

f ′′′(x) = − 4 · 3 · 2
(1 + x)5

f ′′′(0) = − 4 · 3 · 2
(1 + 0)5

= −4!

...
...

The Maclaurin series is

f(x) =

∞∑

k=0

f (k)(0)

k!
xk

= 1− 2!

1!
x+

3!

2!
x2 − 4!

3!
x3 + ·+ (−1)n

(n+ 1)!

n!
xn + · · ·

= 1− 2x+ 3x2 − 4x3 + · · ·+ (−1)n(n+ 1)xn + · · ·

=

∞∑

k=0

(−1)k(k + 1)xk.

8. To express f(x) = (1 + x)−3 as a Maclaurin series, we begin by evaluating f(x) and its
derivatives at x = 0.

f(x) = (1 + x)−3 f(0) = (1 + 0)−3 = 1

f ′(x) = (−3)(1 + x)−4 f ′(0) = (−3)(1 + 0)−4 = −3

f ′′(x) = (−3)(−4)(1 + x)−5 f ′′(0) = (−3)(−4)(1 + 0)−5 = 3 · 4
f ′′′(x) = (−3)(−4)(−5)(1 + x)−6 f ′′′(0) = (−3)(−4)(−5)(1 + 0)−6 = −3 · 4 · 5

...
...

The Maclaurin series is

f(x) =
∞∑

k=0

f (k)(0)

k!
xk

= 1− 3x+
3 · 4
2!

x2 − 3 · 4 · 5
3!

x3 + · · ·+ (−1)n
3 · 4 · 5 · · · (n+ 1)(n+ 2)

n!
xn + · · ·

= 1− 3x+
3 · 4
2

x2 − 4 · 5
2

x3 + · · ·+ (−1)n
(n+ 1)(n+ 2)

2
xn + · · ·

=
∞∑

k=0

(−1)k
(k + 1)(k + 2)

2
xk.
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9. To express f(x) = 1
1+x2 as a Maclaurin series, first we find the Maclaurin series for the

simpler function g(x) = 1
1+x by evaluating it and its derivatives at x = 0.

g(x) =
1

1 + x
g(0) =

1

1 + 0
= 1

g′(x) = − 1

(1 + x)2
g′(0) = − 1

(1 + 0)2
= −1

g′′(x) =
2

(1 + x)3
g′′(0) =

2

(1 + 0)3
= 2 = 2!

g′′′(x) = − 3 · 2
(1 + x)4

g′′′(0) = − 3 · 2
(1 + 0)4

= −3 · 2 = −3!

...
...

The Maclaurin series of g(x) is

g(x) =

∞∑

k=0

g(k)(0)

k!
xk

= 1− 1

1!
x+

2!

2!
x2 − 3!

3!
x3 + · · ·+ (−1)n

n!

n!
xn + · · ·

= 1− x+ x2 − x3 + · · ·+ (−1)nxn + · · ·

Then the Maclaurin explansion of f(x) = 1
1+x2 = g(x2) is

f(x) =
∞∑

k=0

g(k)(0)

k!
(x2)k

= 1− x2 + (x2)2 − (x2)3 + · · ·+ (−1)(x2)n + · · ·
= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + · · ·

=

∞∑

k=0

(−1)kx2k.

10. To express f(x) = 1
1+2x3 as a Maclaurin series, first we find the Maclaurin series for the

simpler function g(x) = 1
1+x by evaluating it and its derivatives at x = 0.

g(x) =
1

1 + x
g(0) =

1

1 + 0
= 1

g′(x) = − 1

(1 + x)2
g′(0) = − 1

(1 + 0)2
= −1

g′′(x) =
2

(1 + x)3
g′′(0) =

2

(1 + 0)3
= 2 = 2!

g′′′(x) = − 3 · 2
(1 + x)4

g′′′(0) = − 3 · 2
(1 + 0)4

= −3 · 2 = −3!

...
...
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The Maclaurin series of g(x) is

g(x) =

∞∑

k=0

g(k)(0)

k!
xk

= 1− 1

1!
x+

2!

2!
x2 − 3!

3!
x3 + · · ·+ (−1)n

n!

n!
xn + · · ·

= 1− x+ x2 − x3 + · · ·+ (−1)nxn + · · ·

Then the Maclaurin expansion of f(x) = 1
1+2x3 = g(2x3) is

f(x) =

∞∑

k=0

g(k)(0)

k!
(2x3)k

= 1− 2x3 + (2x3)2 − (2x3)3 + · · ·+ (−1)n(2x3)n + · · ·
= 1− 2x3 + 4x6 − 8x9 + · · ·+ (−1)n2nx3n + · · ·

=

∞∑

k=0

(−1)k2kx3k.

11. To express f(x) = sin(πx) as a Maclaurin series, we begin by evaluating f(x) and its
derivatives at x = 0.

f(x) = sin(πx) f(0) = 0

f ′(x) = π cos(πx) f ′(0) = π cos(0) = π

f ′′(x) = −π2 sin(πx) f ′′(0) = 0

f ′′′(x) = −π3 cos(πx) f ′′′(0) = −π3 cos(0) = −π3

f (4)(x) = π4 sin(πx) f (4)(0) = 0

...
...

For derivatives of odd order, f (2n+1)(0) = (−1)nπ2n+1. For derivatives of even order,
f (2n)(0) = 0. So the Maclaurin series is

f(x) =

∞∑

k=0

f (k)(0)

k!
xk

= πx− (πx)3

3!
+

(πx)5

5!
− · · ·+ (−1)n(πx)2n+1

(2n+ 1)!
+ · · ·

=

∞∑

k=0

(−1)kπ2k+1x2k+1

(2k + 1)!
.

12. To express f(x) = cos(πx) as a Maclaurin series, we begin by evaluating f(x) and its
derivatives at x = 0:

f(x) = cos(πx) f(0) = 1

f ′(x) = −π sin(πx) f ′(0) = 0

f ′′(x) = −π2 cos(πx) f ′(0) = −π2

f ′′′(x) = π3 sin(πx) f ′′′(0) = 0

f (4)(x) = π4 cos(πx) f (4)(0) = π4

...
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For derivatives of even order, f (2n)(0) = (−1)nπ2n.

For derivatives of odd order, f (2n+1)(0) = 0.

So the Maclaurin series is

f(x) =

∞∑

k=0

f (k)(x)

k!
xk = 1− π2x2

2!
+

π4x4

4!
− . . .+

(−1)nπ2nx2n

(2n)!
+ . . .

= 1− π2

2
x2 +

π4

24
x4 − . . .+

(−1)nπ2nx2n

(2n)!
+ . . .

=

∞∑

k=0

(−1)kπ2kx2k

(2k)!

13. Since sinhx = d
dx coshx and coshx =

∞∑

k=0

x2k

(2k)! = 1 + x2

2! +
x4

4! + . . .+ x2n

(2n)! + . . . , then

sinhx =
d

dx

[

1 +
x2

2!
+

x4

4!
+

x6

6!
+ . . .+

x2n

(2n)!
+

x2n+2

(2n+ 2)!
+ . . .

]

= 0 +
2x

2!
+

4x3

4!
+

6x5

6!
+ . . .+

2nx2n−1

(2n)!
+

(2n+ 2)x2n+1

(2n+ 2)!
+ . . .

= x+
x3

3!
+

x5

5!
+ . . .+

x2n+1

(2n+ 1)!
+ . . .

and substitute x2 for x:

f(x) = sinhx2 =
(
x2
)
+

(
x2
)3

3!
+

(
x2
)5

5!
+

(
x2
)7

7!
+ . . .+

(
x2
)2n+1

(2n+ 1)!
+ . . .

= x2 +
x6

3!
+

x10

5!
+

x14

7!
+ . . .+

x2(2n+1)

(2n+ 1)!
+ . . .

=

∞∑

k=0

x2(2k+1)

(2k + 1)!

14. We use the Maclaurin expansion for

coshx =

∞∑

k=0

x2k

(2k)!
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ . . .+

x2n

(2n)!
+ . . .

and substitute 4x for x:

f(x) = cosh 4x = 1 +
(4x)2

2!
+

(4x)4

4!
+

(4x)6

6!
+ . . .+

(4x)2n

(2n)!
+ . . .

=
∞∑

k=0

(4x)2k

(2k)!
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15. To find the Taylor expansion of f(x) =
√
x = x1/2 about c = 1, we begin by evaluating

f(x) and its derivatives at x = 1.

f(x) = x1/2 f(1) = 1

f ′(x) =
1

2
x−1/2 f ′(1) =

1

2

f ′′(x) =

(
1

2

)(

−1

2

)

x−3/2 f ′′(1) = − 1

22

f ′′′(x) =

(
1

2

)2 (
3

2

)

x−5/2 f ′′′(1) =
1 · 3
23

f (4)(x) =

(
1

2

)2 (
3

2

)(

−5

2

)

x−5/2 f (4)(1) = −1 · 3 · 5
24

...
...

The Taylor expansion about c = 1 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= 1 +
1
2

1!
(x− 1) +

− 1
22

2!
(x − 1)2 +

1·3
23

3!
(x− 1)3 +

− 1·3·5
24

4!
(x− 1)4 + · · ·

+
(−1)n+1 1·3·5···(2n−3)

2n

n!
(x− 1)n + · · ·

= 1 +
1

2
(x− 1)− 1

8
(x− 1)2 +

1

16
(x− 1)3 − 5

128
(x− 1)4 + · · · .

16. To express f(x) = 3
√
x = x

1
3 as a Taylor expansion about c = 1, we evaluate f and its

derivatives at c = 1.

f(x) = x1/3 f(1) = 1

f ′(x) =
1

3
x−2/3 f ′(1) =

1

3

f ′′(x) =
−2

9
x−5/3 f ′′(1) =

−2

9

f ′′′(x) =
10

27
x−8/3 f ′′′(1) =

10

27

f (4)(x) =
−80

81
x−11/3 f (4)(1) =

−80

81

The Taylor Expansion of f centered at c is

f(x) =

∞∑

k=0

fk(c)

k!
(x− c)k

= 1 +
x− 1

3
− 2

9
· (x− 1)2

2!
+

10

27
· 5(x− 1)3

3!
− 80

81
· (x− 1)4

4!
+ . . .

= 1 +
x− 1

3
− (x− 1)

2

9
+

5(x− 1)
3

81
− 10(x− 1)

4

243
+ . . .
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17. To find the Taylor expansion of f(x) = lnx about c = 1, we begin by evaluating f(x) and
its derivatives at x = 1.

f(x) = lnx f(1) = ln 1 = 0

f ′(x) =
1

x
f ′(1) =

1

1
= 1

f ′′(x) = − 1

x2
f ′′(1) = − 1

12
= −1

f ′′′(x) =
2

x3
f ′′′(1) =

2

13
= 2 = 2!

f (4)(x) = −3 · 2
x4

f (4)(1) = −3 · 2
14

= −3 · 2 = −3!

...
...

The Taylor expansion about c = 1 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

=
0

0!
(x− 1)0 +

1

1!
(x− 1)1 − 1

2!
(x − 1)2 +

2!

3!
(x− 1)3

− 3!

4!
(x− 1)4 + · · ·+ (−1)n+1 (n− 1)!

n!
(x− 1)n + · · ·

= x− 1− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · ·+ (−1)n+1 (x − 1)n

n
+ · · ·

=

∞∑

k=1

(−1)k+1 (x− 1)k

k
.

18. To express f(x) = ln(x− 1) as a Taylor expansion about c = 2, we evaluate f and its
derivatives at c = 2.

f(x) = ln(x− 1) f(2) = 0

f ′(x) =
1

x− 1
f ′(2) = 1

f ′′(x) =
−1

(x− 1)2
f ′′(2) = −1

f ′′′(x) =
2

(x− 1)3
f ′′′(2) = 2

f iv(x) =
−6

(x− 1)3
f iv(2) = −6

The Taylor Expansion of f centered at c is

f(x) =

∞∑

k=0

fk(c)

k!
(x− c)k = 0+

1 · (x− 2)

1!
+

−1 · (x− 2)
2

2!
+

2(x− 2)
3

3!
− 6(x− 2)

4

4!
+ . . .

= (x− 2)− (x− 2)
2

2
+

(x− 2)
3

3
− (x− 2)

4

4
+ . . .+ (−1)

n−1 (x− 2)n

n
+ . . .

=

∞∑

k=1

(−1)
k−1 (x − 2)k

k
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19. To find the Taylor expansion of f(x) = 1
x about c = 1, we begin by evaluating f(x) and its

derivatives at x = 1.

f(x) =
1

x
f(1) =

1

1
= 1

f ′(x) = − 1

x2
f ′(1) = − 1

12
= −1

f ′′(x) =
2

x3
f ′′(1) =

2

13
= 2 = 2!

f ′′′(x) = −3 · 2
x4

f ′′′(1) = −3 · 2
14

= −3!

...
...

The Taylor expansion about c = 1 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= 1− 1

1!
(x− 1)1 +

2!

2!
(x− 1)2 − 3!

3!
(x− 1)3 + · · ·+ (−1)n

n!

n!
(x− 1)n + · · ·

= 1− (x− 1) + (x− 1)2 − (x − 1)3 + · · ·+ (−1)n(x − 1)n + · · ·

=

∞∑

k=0

(−1)k(x− 1)k.

20. To find the Taylor expansion of f(x) = 1√
x
= x−1/2 about c = 4, we begin by evaluating

f(x) and its derivatives at x = 4.

f(x) = x−1/2 f(4) = 4−1/2 =
(
22
)−1/2

= 2−1

f ′(x) = −1

2
x−3/2 f ′(4) = −1

2

(
22
)−3/2

= −1

2
· 2−3

f ′′(x) =

(

−1

2

)(

−3

2

)

x−5/2 f ′′(4) =

(

−1

2

)(

−3

2

)
(
22
)−5/2

=

(

−1

2

)(

−3

2

)

2−5

f ′′′(x) =

(

−1

2

)(

−3

2

)(

−5

2

)

x−7/2 f ′′′(4) =

(

−1

2

)(

−3

2

)(

−5

2

)
(
22
)−7/2

=

(

−1

2

)(

−3

2

)(

−5

2

)

2−7

...
...

The Taylor expansion about c = 4 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= 2−1 − 1
(1)
(
2−3
)

2

(x− 4)

1!
+

(1 · 3)
(
2−5
)

22
(x − 4)2

2!
− (1 · 3 · 5)

(
2−7
)

23
(x− 4)3

3!
+ · · ·

+ (−1)n
(1 · 3 · 5 · · · (2n− 1))

(
2−(2n+1)

)

2n
(x − 4)n

n!
+ · · ·

=
1

2
− x− 4

16
+

3(x− 4)2

256
− 5(x− 4)3

2048
+ · · · .
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21. To find the Taylor expansion of f(x) = sinx at c = π
6 , we begin by evaluating f(x) and its

derivatives at x = π
6 .

f(x) = sinx f
(π

6

)

= sin
(π

6

)

=
1

2

f ′(x) = cosx f ′
(π

6

)

= cos
(π

6

)

=

√
3

2

f ′′(x) = −sinx f ′′
(π

6

)

= −sin
(π

6

)

= −1

2

f ′′′(x) = −cosx f ′′′
(π

6

)

= −cos
(π

6

)

= −
√
3

2

f (4)(x) = sinx f (4)
(π

6

)

= sin
(π

6

)

=
1

2
...

...

For the even derivatives f (2k)
(
π
6

)
= (−1)k 1

2 . For the odd derivatives, f (2k+1)
(
π
6

)
= (−1)k

√
3
2 .

The Taylor expansion about c = π
6 is

f(x) =
∞∑

k=0

f (k)(c)

k!
(x− c)k

=
1

2
+

√
3
2

1!

(

x− π

6

)

+
− 1

2

2!

(

x− π

6

)2

+
−

√
3
2

3!

(

x− π

6

)3

+
1
2

4!

(

x− π

6

)4

+ · · ·

+
(−1)n 1

2

(2n)!

(

x− π

6

)2n

+
(−1)n

√
3
2

(2n+ 1)!

(

x− π

6

)2n+1

+ · · ·

=
1

2
+

√
3

2

(

x− π

6

)

− 1

4

(

x− π

6

)2

−
√
3

12

(

x− π

6

)3

+
1

48

(

x− π

6

)4

+ · · ·

=

∞∑

k=0

sin
(
1
6 (π + 3kπ)

) (
x− π

6

)k

k!
.

22. To find the Taylor expansion of f(x) = cosx about c = −π
2 , we begin by evaluating f(x)

and its derivatives at x = −π
2 .

f(x) = cosx f
(

−π

2

)

= cos
(

−π

2

)

= 0

f ′(x) = −sinx f ′
(

−π

2

)

= −sin
(

−π

2

)

= sin
(π

2

)

= 1

f ′′(x) = −cosx f ′′
(

−π

2

)

= −cos
(

−π

2

)

= 0

f ′′′(x) = sinx f ′′′
(

−π

2

)

= sin
(

−π

2

)

= −1

f (4)(x) = cosx f (4)
(

−π

2

)

= cos
(

−π

2

)

= 0

...
...
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For the even derivatives f (2n)
(
−π

2

)
= 0. For the odd derivatives f (2n+1)

(
−π

2

)
= (−1)n. The

Taylor expansion about c = −π
2 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= 0 +
1

1!

(

x+
π

2

)

+
0

2!

(

x+
π

2

)2

+
(−1)

3!

(

x+
π

2

)3

+
0

4!

(

x+
π

2

)4

+ · · ·

+
(−1)n

(2n+ 1)!

(

x+
π

2

)2n+1

+ · · ·

=
∞∑

k=0

(−1)k
(
x+ π

2

)2k+1

(2k + 1)!
.

23. To find the Taylor expansion of f(x) = 3x2 + 2x2 + 5x− 6 about c = 0, we begin by
evaluating f(x) and its derivatives at x = 0.

f(x) = 3x2 + 2x2 + 5x− 6 f(0) = 3(0)2 + 2(0)2 + 5(0)− 6 = −6

f ′(x) = 9x2 + 4x+ 5 f ′(0) = 9(0)2 + 4(0) + 5 = 5

f ′′(x) = 18x+ 4 f ′′(0) = 18(0) + 4 = 4

f ′′′(x) = 18 f ′′′(0) = 18

f (4)(x) = 0 f (4)(0) = 0.

All the higher order derivatives will be zero, so their evaluation at x = 0 will also be zero. The
Taylor expansion about c = 0 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= −6 +
5

1!
x+

4

2!
x2 +

18

3!
x3

= −6 + 5x+ 2x2 + 3x3

= 3x3 + 2x2 + 5x− 6.

We see that the Taylor expansion of the function about c = 0 is identical to the function itself.

24. To find the Taylor expansion of f(x) = 4x4 − 2x3 − x about c = 0, we begin by evaluating
f(x) and its derivatives at x = 0.

f(x) = 4x4 − 2x3 − x f(0) = 4(0)4 − 2(0)3 − 0 = 0

f ′(x) = 16x3 − 6x2 − 1 f ′(0) = 16(0)3 − 6(0)2 − 1 = −1

f ′′(x) = 48x2 − 12x f ′′(0) = 48(0)2 − 12(0) = 0

f ′′′(x) = 96x− 12 f ′′′(0) = 96(0)− 12 = −12

f (4)(x) = 96 f (4)(0) = 96

f (5)(x) = 0 f (5)(0) = 0.
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All the higher order derivatives will be zero, so their evaluation at x = 0 will also be zero. The
Taylor expansion about c = 0 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= 0 +
−1

1!
x+

0

2!
x2 +

−12

3!
x3 +

96

4!
x4

= −x− 2x3 + 4x4

= 4x4 − 2x3 − x.

We see that the Taylor expansion of the function about c = 0 is identical to the function itself.

25. To find the Taylor expansion of f(x) = 3x3 + 2x2 + 5x− 6 about c = 1, we begin by
evaluating f(x) and its derivatives at x = 1.

f(x) = 3x3 + 2x2 + 5x− 6 f(1) = 3(1)3 + 2(1)2 + 5(1)− 6 = 3 + 2 + 5− 6 = 4

f ′(x) = 9x2 + 4x+ 5 f ′(1) = 9(1)2 + 4(1) + 5 = 9 + 4 + 5 = 18

f ′′(x) = 18x+ 4 f ′′(1) = 18(1) + 4 = 22

f ′′′(x) = 18 f ′′′(1) = 18

f (4)(x) = 0 f (4)(1) = 0.

All the higher order derivatives will be zero, so their evaluation at x = 1 will also be zero. The
Taylor expansion about c = 1 is

f(x) =
∞∑

k=0

f (k)(c)

k!
(x − c)k

= 4 +
18

1!
(x− 1) +

22

2!
(x− 1)2 +

18

3!
(x− 1)3

= 4 + 18(x− 1) + 11(x− 1)2 + 3(x− 1)3

= 4 + 18x− 18 + 11(x2 − 2x+ 1) + 3(x3 − 3x2 + 3x− 1)

= 4 + 18x− 18 + 11x2 − 22x+ 11 + 3x3 − 9x2 + 9x− 3

= (4− 18 + 11− 3) + (18x− 22x+ 9x) + (11x2 − 9x2) + 3x3

= −6 + 5x+ 2x2 + 3x3

= 3x3 + 2x2 + 5x− 6.

We see that the Taylor expansion of the function about c = 1 is identical to the function itself.

26. To find the Taylor expansion of f(x) = 4x4 − 2x3 + x about c = 1, we begin by evaluating
f(x) and its derivatives at x = 1.

f(x) = 4x4 − 2x3 + x f(1) = 4(1)4 − 2(1)3 + 1 = 4− 2 + 1 = 3

f ′(x) = 16x3 − 6x2 + 1 f ′(1) = 16(1)3 − 6(1)2 + 1 = 16− 6 + 1 = 11

f ′′(x) = 48x2 − 12x f ′′(1) = 48(1)2 − 12(1) = 48− 12 = 36

f ′′′(x) = 96x− 12 f ′′′(1) = 96(1)− 12 = 96− 12 = 84

f (4)(x) = 96 f (4)(1) = 96

f (5)(x) = 0 f (5)(1) = 0.
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All the higher order derivatives will be zero, so their evaluation at x = 1 will also be zero. The
Taylor expansion about c = 1 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= 3 +
11

1!
(x− 1) +

36

2!
(x− 1)2 +

84

3!
(x− 1)3 +

96

4!
(x− 1)4

= 3 + 11(x− 1) + 18(x− 1)2 + 14(x− 1)3 + 4(x− 1)4

= 3 + 11x− 11 + 18(x2 − 2x+ 1) + 14(x3 − 3x2 + 3x− 1) + 4(x4 − 4x3 + 6x2 − 4x+ 1)

= (3− 11 + 18− 14 + 4) + (11x− 36x+ 42x− 16x) + (18x2 − 42x2 + 24x2) + (14x3 − 16x3) + 4x4

= 0 + x+ 0− 2x3 + 4x4

= 4x4 − 2x3 + x.

We see that the Taylor expansion of the function about c = 1 is identical to the function itself.

27. The Maclaurin expansion for ex is

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ . . . =

∞∑

k=0

xk

k!

and the Maclaurin expansion for sinx is

sinx = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− . . .+

(−1)
n
x2n+1

(2n+ 1)!
+ . . . =

∞∑

k=0

(−1)
k x2k+1

(2k + 1)!

The the first five terms of the Maclaurin expansion for ex + sinx are

ex + sinx = (1 + x) +

(

x− x3

3!

)

+

(
x2

2!
+

x5

5!

)

+

(
x3

3!
− x7

7!

)

+

(
x4

4!
+

x9

9!

)

+

(
x5

5!
+ . . .

)

+ . . .

= 1 + (x + x) +
x2

2!
+

(

−x3

3!
+

x3

3!

)

+
x4

4!
+

(
x5

5!
+

x5

5!

)

+ . . .

= 1 + 2x+
x2

2
+

x4

24
+

x5

60
+ . . .

28. In Example 8 of Section 8.8 we found that the Maclaurin expansion for ln 1
1−x is

ln
1

1− x
= x+

x2

2
+

x3

3
+

x4

4
+

x5

5
+ . . .+

xn+1

n+ 1
+ . . . =

∞∑

k=0

xk+1

k + 1

and the Maclaurin expansion for cosx is

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
+ . . .+

(−1)
n
x2n

(2n)!
+ . . . =

∞∑

k=0

(−1)
k x2k

(2k)!

Therefore the first five terms of the Maclaurin expansion for ln 1
1−x + cosx are

ln
1

1− x
+ cosx = (x+ 1) +

(
x2

2
− x2

2!

)

+

(
x3

3
+

x4

4!

)

+

(
x4

4
− x6

6!

)

+

(
x5

5
+

x8

8!

)

+ . . .

= 1 + x+

(
x2

2
− x2

2!

)

+
x3

3
+

(
x4

4!
+

x4

4

)

+
x5

5
+ . . .

= 1 + x+
x3

3
+

7x4

24
+

x5

5
+ . . .
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29. The Maclaurin expansion of f(x) = xex is obtained by multiplying the Maclaurin
expansion of x, which is x, and that of g(x) = ex where (see Problem 27),

g(x) = ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
· · ·+ xn

n!
+ · · · .

So the first five terms of the Maclaurin series of f(x) are

f(x) = xg(x)

= x

(

1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!
+ · · ·

)

= x+ x2 +
x3

2!
+

x4

3!
+

x5

4!
+ · · · .

30. The Maclaurin expansion of f(x) = xe−x is obtained by multiplying the Maclaurin
expansion of x, which is x, and that of g(−x) = e−x where (see Problem 27),

g(−x) = e−x = 1− x+
x2

2!
− x3

3!
+

x4

4!
− · · ·+ (−1)n

xn

n!
+ · · · .

So the first five terms of the Maclaurin series of f(x) are

f(x) = xg(−x)

= x

(

1− x+
x2

2!
− x3

3!
+

x4

4!
− · · ·+ (−1)n

xn

n!
+ · · ·

)

= x− x2 +
x3

2!
− x4

3!
+

x5

4!
− · · · .

31. The Maclaurin expansion of f(x) = e−x sinx is obtained by multiplying the Maclaurin
expansions of e−x and sinx together. From Problem 27, we have

g(−x) = e−x = 1− x+
x2

2!
− x3

3!
+

x4

4!
− · · ·+ (−1)n

xn

n!
+ · · · .

From p.717 of the book, we have

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · · .

So the first five terms of the Maclaurin series of f(x) are

f(x) = e−x sinx

=

(

1− x+
x2

2!
− x3

3!
+

x4

4!
− x5

5!
+ · · ·+ (−1)n

xn

n!
+ · · ·

)

·
(

x− x3

3!
+

x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · ·

)

=

(

1− x+
x2

2
− x3

6
+

x4

24
− x5

120
+ · · ·

)

·
(

x− x3

6
+

x5

120
− · · ·

)

= 1 ·
(

x− x3

6
+

x5

120
− · · ·

)

− x ·
(

x− x3

6
+

x5

120
− · · ·

)

+
x2

2
·
(

x− x3

6
+

x5

120
− · · ·

)

− x3

6
·
(

x− x3

6
+

x5

120
− · · ·

)

+
x4

24
·
(

x− x3

6
+

x5

120
− · · ·

)

− x5

120

(

x− x3

6
+

x5

120
− · · ·

)

+ · · ·



8.9 Taylor Series; Maclaurin Series 8-227

=

(

x− x3

6
+

x5

120
− · · ·

)

+

(

−x2 +
x4

6
− x6

120
+ · · ·

)

+

(
x3

2
− x5

12
+

x7

240
− · · ·

)

+

(

−x4

6
+

x6

36
− x8

720
+ · · ·

)

+

(
x5

24
− x7

144
+

x9

2880
− · · ·

)

+

(

− x6

120
− · · ·

)

+ · · ·

= x− x2 + x3

(
1

2
− 1

6

)

+ x4

(
1

6
− 1

6

)

+ x5

(
1

120
+

1

24
− 1

12

)

+ x6

(

− 1

120
+

1

36
− 1

120

)

− · · ·

= x− x2 +
1

3
x3 − 1

30
x5 +

1

90
x6 − · · · .

32. The Maclaurin expansion of f(x) = e−x cosx is obtained by multiplying the Maclaurin
expansions of e−x and cosx together. From Problem 27, we have

g(−x) = e−x = 1− x+
x2

2!
− x3

3!
+

x4

4!
− · · ·+ (−1)n

xn

n!
+ · · · .

From p.718 of the book, we have

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · · .

So the first five terms of the Maclaurin series of f(x) are

f(x) = e−x cosx

=

(

1− x+
x2

2!
− x3

3!
+

x4

4!
− x5

5!
+ · · ·+ (−1)n

xn

n!
+ · · ·

)(

1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · ·

)

=

(

1− x+
x2

2
− x3

6
+

x4

24
− x5

120
+ · · ·

)(

1− x2

2
+

x4

24
− · · ·

)

= 1 ·
(

1− x2

2
+

x4

24
− · · ·

)

− x ·
(

1− x2

2
+

x4

24
− · · ·

)

+
x2

2
·
(

1− x2

2
+

x4

24
− · · ·

)

− x3

6
·
(

1− x2

2
+

x4

24
− · · ·

)

+
x4

24
·
(

1− x2

2
+

x4

24
− · · ·

)

− x5

120
·
(

1− x2

2
+

x4

24
− · · ·

)

+ · · ·

=

(

1− x2

2
+

x4

24

)

+

(

−x+
x3

2
− x5

24

)

+

(
x2

2
− x4

4
+

x6

48

)

+

(

−x3

6
+

x5

12

)

+

(
x4

24
− x6

48

)

+

(

− x5

120

)

+ · · ·

= 1− x+ x2

(
1

2
− 1

2

)

+ x3

(
1

2
− 1

6

)

+ x4

(
1

24
− 1

4
+

1

24

)

+ x5

(

− 1

24
+

1

12
− 1

120

)

+ · · ·

= 1− x+
x3

3
− x4

6
+

x5

30
+ · · · .
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33. To find a Maclaurin expansion for f(x) = 1√
1−x2

, we first find the Maclaurin expansion for

the function h(x) = 1√
1−x

= (1−x)−1/2, by evaluating the function and its derivatives at x = 0.

h(x) = (1− x)−1/2 h(0) = 1

h′(x) = −1

2
(1− x)−3/2 · (−1) =

1

2
(1− x)−3/2 h′(0) =

1

2

h′′(x) =

(
1

2

)(

−3

2

)

(1− x)−5/2 · (−1) =

(
1 · 3
22

)

(1− x)−5/2 h′′(0) =
3

4

h′′′(x) =

(
1 · 3 · 5
23

)

(1− x)−7/2 h′′′(0) =
15

8

h(4)(x) =

(
1 · 3 · 5 · 7

24

)

(1 − x)−9/2 h(4)(0) =
105

16

...
...

So the Maclaurin expansion of h(x) = 1√
1−x

is

h(x) =

∞∑

k=0

h(k)(0)

k!
xk

= 1 +
1
2

1!
x+

3
4

2!
x2 +

15
8

3!
x3 +

105
16

4!
x4 + · · ·

= 1 +
1

2
x+

3

8
x2 +

5

16
x3 +

35

128
x4 + · · · .

The Maclaurin expansion of f(x) can now be found:

f(x) =
1√

1− x2
= h(x2) = 1 +

1

2
x2 +

3

8
x4 +

5

16
x6 +

35

128
x8 + · · · .

Integrating this series term by term gives us the required first four terms of the Maclaurin
expansion for g(x) = sin−1 x:

g(x) = sin−1 x =

∫ x

0

dx√
1− x2

=

∫ x

0

f(x) dx

=

∫ x

0

(

1 +
1

2
x2 +

3

8
x4 +

5

16
x6 + · · ·

)

dx

= x+
x3

6
+

3

40
x5 +

5

112
x7 + · · · .

34. To find the Maclaurin series for f(x) = tanx, we begin by evaluating the function and its
derivatives at x = 0. Let y = f(x), y0 = f(0), y′ = f ′(x), y′0 = f ′(0), etc.

y = tan x y0 = 0

y
′
= sec

2
x = 1 + tan

2
x = 1 + y

2
y
′
0 = 1 + y

2
0 = 1 + 0 = 1

y
′′

= 2yy
′

y
′′
0 = 2y0y

′
0 = 2(0)(1) = 0

y′′′ = 2y′2 + 2yy′′ y′′′
0 = 2y′2

0 + 2y0y
′′
0

= 2(1)2 + 2(0)(0) = 2

y
(4)

= 4y
′
y
′′
+ 2y

′
y
′′
+ 2y

′
y
′′′

= 6y′y′′ + 2yy′′′ y
(4)
0 = 6y′

0y
′′
0 + 2y0y

′′′
0

= 6(1)(0) + 2(0)(2) = 0
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y(5) = 6y′′2 + 6y′y′′′ + 2y′y′′′ + 2yy(4)

= 6y
′′2

+ 8y
′
y
′′′

+ 2yy
(4)

y
(5)
0 = 6y

′′2
0 + 8y

′
0y

′′′
0 + 2y0y

(4)
0

= 6(0) + 8(1)(2) + 2(0)(0) = 16

y(6) = 12y′′y′′′ + 8y′′y′′′ + 8y′y(4) + 2y′y(4) + 2yy(5)

= 20y
′′
y
′′′

+ 10y
′
y
(4)

+ 2yy
(5)

y
(6)
0 = 20y

′′
0 y

′′′
0 + 10y

′
0y

(4)
0 + 2y0y

(5)
0

= 20(0)(2) + 10(1)(0) + 2(0)(16)

= 0

y(7) = 20y′′′2 + 20y′′y(4) + 10y′′y(4) + 10y′y(5) + 2y′y(5) + 2yy(6)

= 20y′′′2 + 30y′′y(4) + 12y′y(5) + 2yy(6) y
(7)
0 = 20y′′′2

0 + 30y′′
0 y

(4)
0 + 12y′

0y
(5)
0 + 2y0y

(6)
0

= 20(22) + 30(0)(0) + 12(1)(16) + 2(0)(0)

= 80 + 192 = 272

.

.

.
.
.
.

The Maclaurin series for f(x) = tanx to four nonzero terms is

f(x) =

∞∑

k=0

f (k)(0)

k!
xk

= 0 +
1

1!
x+ 0 +

2

3!
x3 + 0 +

16

5!
x5 + 0 +

272

7!
x7 + · · ·

= x+
1

3
x3 +

2

15
x5 +

17

315
x7 + · · · .

By integrating this term by term, one obtains the first four nonzero terms of the Maclaurin
series for g(x) because

g(x) = ln(cos x) = − ln

(
1

cosx

)

= − ln(secx)

= −
∫ x

0

tanx dx

= −
∫ x

0

(

x+
1

3
x3 +

2

15
x5 +

17

315
x7 + · · ·

)

dx

= −
(
x2

2
+

x4

3 · 4 +
2x6

15 · 6 +
17x8

315 · 8 + · · ·
)

= −x2

2
− x4

12
− x6

45
− 17x8

2520
− · · · .

35. g′(x) = d
dx

(
tan−1 x

)
= 1

x2+1 = f(x).

Therefore

g(x) =

∫ x

0

f(t) dt =

∫ x

0

(
1

t2 + 1

)

dt.

First, find the Maclaurin series for 1
t2+1 =

(
t2 + 1

)−1
:

Start with (1 + x)m = 1 +mx+ m(m−1)
2! x2 + m(m−1)(m−2)

3! x3 + . . . with m = −1:

(1 + x)−1 = 1 + (−1)x+
(−1)(−1− 1)

2!
x2 +

(−1)(−1− 1)(−1− 2)

3!
x3 + . . .

= 1− x+ x2 − x3.
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Then, substituting t2 for x,

1

t2 + 1
=
(
1 + t2

)−1
= 1− t2 +

(
t2
)2 −

(
t2
)3

+ . . . = 1− t2 + t4 − t6 + . . .

So

g(x) =

∫ x

0

(
1

t2 + 1

)

dt =

∫ x

0

(
1− t2 + t4 − t6 + . . .

)
dt

=

[

t− t3

3
+

t5

5
− x7

7
+ . . .

]x

0

= x− x3

3
+

x5

5
− x7

7
+ . . .

36. g′(x) = d
dx (tanx) = sec2 x = f(x)

Therefore

g(x) =

∫ x

0

f(t) dt =

∫ x

0

sec2 t dt

First, find the Maclaurin series for sec2 t:

Using cos t =
∞∑

k=0

(−1)kt2k

(2k)! = 1− t2

2! +
t4

4! − t6

6! + . . . = 1− t2

2 + t4

24 − t6

720 + . . . , we have

sec t = 1
cos t =

1

1− t2

2 + t4

24− t6

720+...

1 + t2

2 + 5t4

24 + 61t6

720 + . . .

1 + t2

2 + t4

24 + t6

720 + . . .
)

1

1− t2

2 + t4

24 − t6

720
+ . . .

t2

2 − t4

24 + t6

720 − . . .

t2

2 − t4

4 + t6

48
− . . .

5t4

24 − 7t6

360 + . . .

5t4

24 − 5t6

48
+ . . .

61t6

720 − . . .

61t6

720
− . . .

+ . . .

Then

sec2 t =

(

1 +
t2

2
+

5t4

24
+

61t6

720
+ . . .

)2

= 12 + 2 ·
(

1 · t
2

2

)

+

[(
t2

2

)

+ 2 ·
(

1 · 5t
4

24

)]

+

[

2 ·
(

1 · 61t
6

720

)

+ 2 ·
(
t2

2
· 5t

4

24

)]

+ terms in t8, t10, and t12, plus more terms . . .

= 1 +
t2

2
+

(
t4

4
+

5t4

12

)

+

(
61t6

360
+

5t6

24

)

+ . . . = 1 +
1

2
t2 +

2

3
t4 +

17

45
t6 + . . .
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Then

tanx =

∫ x

0

sec2 t dt =

∫ x

0

(

1 +
t2

2
+

2t4

3
+

17t6

45
+ . . .

)

=

[

t+
t3

6
+

2t5

15
+

17t7

315
+ . . .

]x

0

= x+
x3

6
+

2x5

15
+

17x7

315
+ . . .

Notice that the Maclaurin series for tanx could have been found more quickly by simply
dividing the series for sinx by the series for cosx:

tanx =
sinx

cosx
=

∞∑

k=0

(−1)kx2k+1

(2k+1)!

∞∑

k=0

(−1)kx2k

(2k)!

=
x− x3

3! +
x5

5! − x7

7! + . . .

1− x2

2! +
x4

4! − x6

6! + . . .

=
x− x3

6 + x5

120 − x7

5040 + . . .

1− x2

2 + x4

24 − x6

720 + · · ·

x+
x3

6
+

2x5

15
+

17x7

315
+ . . .

1− x2

2 + x4

24 − x6

720 + . . .
)

x− x3

6 + x5

120 − x7

5040 + . . .

x− x3

2 + x5

24 − x7

720
+ . . .

x3

3 − x5

30 + x7

840 − . . .

x3

3 − x5

6 + x7

72
− . . .

2x5

15 − 4x7

315 + . . .

2x5

15 − x7

15
+ . . .

17x7

315 − . . .

17x7

315
− . . .

+ . . .

37. Since (1 + x)m =
∞∑

k=0

(
m
k

)
xk, the binomial expansion of f(x) =

√
1 + x2 = (1 + x2)1/2 is

given by

f(x) =

∞∑

k=0

(1
2

k

)

x2k

=

(1
2

0

)

x0 +

(1
2

1

)

x2 +

( 1
2

2

)

x4 +

(1
2

3

)

x6 + · · ·

= 1 +
1

2
x+

(
1
2

) (
1
2 − 1

)

2!
x4 +

(
1
2

) (
1
2 − 1

) (
1
2 − 2

)

3!
x6 + · · ·

= 1 +
1

2
x2 − 1

8
x4 +

1

16
x6 − · · · .
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Since m = 1
2 satisfies m > 0 but m is not an integer, by the conditions of the theorem on p.721,

the series converges on the closed interval [−1, 1].

38. Since (1 + x)m =
∞∑

k=0

(
m
k

)
xk, the binomial expansion of f(x) = 1√

1−x
= (1− x)−1/2 is given

by

f(x) =

∞∑

k=0

(− 1
2

k

)

(−1)kxk

=

(− 1
2

0

)

(−1)0x0 +

(− 1
2

1

)

(−1)1x1 +

(− 1
2

2

)

(−1)2x2 +

(− 1
2

3

)

(−1)3x3 + · · ·

= 1−
(

−1

2

)

x+

(
− 1

2

) (
− 3

2

)

2!
x2 −

(
− 1

2

) (
− 3

2

) (
− 5

2

)

3!
x3 + · · ·

= 1 +
1

2
x+

3

8
x2 +

5

16
x3 + · · · .

Since m = − 1
2 satisfies −1 < m < 0, by the conditions of the theorem on p.721, the series

converges on the half open interval (−1, 1].

39. Since (1 + x)m =
∞∑

k=0

(
m
k

)
xk, the binomial expansion of f(x) = (1 + x)1/5 is given by

f(x) =

∞∑

k=0

(1
5

k

)

xk

=

(1
5

0

)

x0 +

(1
5

1

)

x1 +

(1
5

2

)

x2 +

(1
5

3

)

x3 + · · ·

= 1 +
1

5
x+

(
1
5

) (
1
5 − 1

)

2!
x2 +

(
1
5

) (
1
5 − 1

) (
1
5 − 2

)

3!
x3 + · · ·

= 1 +
1

5
x− 2

25
x2 +

6

125
x3 − · · · .

Since m > 0 but is not an integer, by the conditions of the theorem on p.721, the sereis

converges on the closed interval [−1, 1].

40. Since (1 + x)m =
∞∑

k=0

(
m
k

)
xk, the binomial expansion of f(x) = (1− x)5/3 is given by

f(x) =

∞∑

k=0

(5
3

k

)

(−1)kxk

=

(5
3

0

)

(−1)0x0 +

( 5
3

1

)

(−1)1x1 +

(5
3

2

)

(−1)2x2 +

(5
3

3

)

(−1)3x3 + · · ·

= 1− 5

3
x+

(
5
3

) (
5
3 − 1

)

2!
x2 −

(
5
3

) (
5
3 − 1

) (
5
3 − 2

)

3!
x3 + · · ·

= 1− 5

3
x+

5

9
x2 +

5

81
x3 + · · · .
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Since m > 0 but is not an integer, by the conditions of the theorem on p.721, the sereis

converges on the closed interval [−1, 1].

41. Since (1 + x)m =
∞∑

k=0

(
m
k

)
xk, the binomial expansion of f(x) = 1

(1+x2)1/2
= (1 + x2)−1/2 is

given by

f(x) =

∞∑

k=0

(− 1
2

k

)

x2k

=

(− 1
2

0

)

x0 +

(− 1
2

1

)

x2 +

(− 1
2

2

)

x4 +

(− 1
2

3

)

x6 + · · ·

= 1 +

(

−1

2

)

x2 +

(
− 1

2

) (
− 3

2

)

2!
x4 +

(
− 1

2

) (
− 3

2

) (
− 5

2

)

3!
x6 + · · ·

= 1− 1

2
x2 +

3

8
x4 − 5

16
x6 + · · · .

Since m = − 1
2 satisfies −1 < m < 0, by the conditions of the theorem on p.721, the series

converges on the half open interval (−1, 1].

42. Since (1 + x)m =
∞∑

k=0

(
m
k

)
xk, the binomial expansion of f(x) = 1

(1+x)3/4
= (1 + x)−3/4 is

given by

f(x) =

∞∑

k=0

(− 3
4

k

)

xk

=

(− 3
4

0

)

x0 +

(− 3
4

1

)

x1 +

(− 3
4

2

)

x2 +

(− 3
4

3

)

x3 + · · ·

= 1− 3

4
x+

(
− 3

4

) (
− 3

4 − 1
)

2!
x2 +

(
− 3

4

) (
− 3

4 − 1
) (

− 3
4 − 2

)

3!
x3 + · · ·

= 1− 3

4
x+

21

32
x2 − 77

128
x3 + · · · .

Since m = − 3
4 satisfies −1 < m < 0, by the conditions of the theorem on p.721, the series

converges on the half open interval (−1, 1].

43. f(x) = 2x√
1−x

. From Problem 38, use the binomial series for

1√
1− x

= 1 +
1

2
x+

3

8
x2 +

5

16
x3 + · · · .

So the expansion for f(x) is

f(x) =
2x√
1− x

= 2x

(

1 +
1

2
x+

3

8
x2 +

5

16
x3 + · · ·

)

= 2x+ x2 +
3

4
x3 +

5

8
x4 + · · · .
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Since m = − 1
2 satisfies −1 < m < 0, by the conditions of the theorem on p.721, the binomial

series 1√
x−1

converges on the half open interval (−1, 1]. Since multiplying the binomial series
1√
x−1

by 2x to obtain f(x) will not change the interval of convergence, we conclude that the

series for f(x) converges in the interval (−1, 1].

44. Write f(x) = x
1+x3 = x(1 + x3)−1. Since (1 + x)m =

∞∑

k=0

(
m
k

)
xk, the binomial expansion of

(1 + x3)−1 is given by

(1 + x3)−1 =

∞∑

k=0

(−1

k

)

x3k

=

(−1

0

)

x0 +

(−1

1

)

x3 +

(−1

2

)

x6 +

(−1

3

)

x9 + · · ·

= 1− x3 +
(−1)(−1− 1)

2!
x6 +

(−1)(−1− 1)(−1− 2)

3!
x9 + · · ·

= 1− x3 +
2

2!
x6 − 2 · 3

3!
x9 + · · ·

= 1− x3 + x6 − x9 + · · · .

So the expansion of f(x) is

f(x) =
x

1 + x3

= x(1 − x3 + x6 − x9 + · · · )

= x− x4 + x7 − x10 + · · · .

Since m = −1 satisfies m ≤ −1, by the conditions of the theorem on p.620, the binomial series
1

(1+x3) converges on the open interval (−1, 1). Since multiplying the binomial series 1
(1+x3)by x

to obtain f(x) will not change the interval of convergence, we conclude that the series for f(x)

converges in the interval (−1, 1).

Applications and Extensions

45. The expansion for ex = 1 + x+ x2

2! +
x3

3! +
x4

4! + . . .+ xn

n! + . . . =
∞∑

k=0

xk

k! .

Substitute x2 for x to determine the Maclaurin expansion for ex
2

:

ex
2

= 1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ . . .

Then
∫

ex
2

dx =

∫ (

1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ . . .

)

dx

= x+
x3

3
+

x5

10
+

x7

42
+

x9

216
+ . . .
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46. The expansion for ex = 1 + x+ x2

2! +
x3

3! +
x4

4! + . . .+ xn

n! + . . . =
∞∑

k=0

xk

k! .

Substitute
√
x = x1/2 for x to determine the Maclaurin expansion for e

√
x:

e
√
x = 1 + x1/2 +

x

2!
+

x3/2

3!
+

x2

4!
+

x5/2

5!
+ . . .

Then

∫

e
√
x dx =

∫ (

1 + x1/2 +
x

2!
+

x3/2

3!
+

x2

4!
+

x5/2

5!
+ . . .

)

dx

= x+
2x3/2

3
+

x2

4
+

x5/2

15
+

x3

72
+ . . .

Notice that the result is not actually a Maclaurin series, because it involves fractional powers
of x.

47. The Maclaurin expansion for sinx is

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . .+

(−1)
n
x2n+1

(2n+ 1)!
+ . . . =

∞∑

k=0

(−1)k
x2k+1

(2k + 1)!

To determine the expansion for sinx2, substitute x2 for x:

sinx2 = x2 − x6

3!
+

x10

5!
− x14

7!
+ . . .

∫

sinx2dx =

∫ (

x2 − x6

3!
+

x10

5!
− x14

7!
+ . . .

)

dx

=
x3

3
− x7

42
+

x11

1320
− x15

75, 600
+ . . .

48. The Maclaurin expansion for

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
+ . . .+

(−1)
n
x2n

(2n)!
+ . . . =

∞∑

k=0

(−1)
k x2k

(2k)!

To determine cosx2, substitute x2 for x:

cosx2 = 1− x4

2!
+

x8

4!
− x12

6!
+

x16

8!
+ . . .

Then
∫

cosx2 dx =

∫ (

1− x4

2!
+

x8

4!
− x12

6!
+

x16

8!
+ . . .

)

dx

=
x2

2
− x5

10
+

x9

216
− x13

9360
+

x17

685, 440
+ . . .
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49. We write f(x) = sin2 x = 1−cos(2x)
2 = 1

2 − 1
2 cos(2x). From p.718 of the book, we see that

the Maclaurin series for cosx is given by cosx =
∞∑

k=0

(−1)kx2k

(2k)! . So The Maclaurin series for f(x)

is given by

f(x) = sin2 x =
1

2
− 1

2

∞∑

k=0

(−1)k(2x)2k

(2k)!

=
1

2
− 1

2

[

1− (2x)2

2!
+

(2x)4

4!
− (2x)6

6!
+

(2x)8

8!
− · · ·+ (−1)n

(2x)2n

(2n)!
+ · · ·

]

=
1

2
− 1

2
+

2x2

2
− 23x4

24
+

25x6

720
− 27x8

40320
+ · · ·+ (−1)n+1 2

2n−1x2n

(2n)!
+ · · ·

= x2 − x4

3
+

2

45
x6 − 1

315
x8 + · · · .

50. We write f(x) = cos2 x = 1+cos(2x)
2 = 1

2 + 1
2 cos(2x). From p.718 of the book, we see that

the Maclaurin series for cosx is given by cosx =
∞∑

k=0

(−1)kx2k

(2k)! . So The Maclaurin series for f(x)

is given by

f(x) = cos2 x =
1

2
+

1

2

∞∑

k=0

(−1)k(2x)2k

(2k)!

=
1

2
+

1

2

[

1− (2x)2

2!
+

(2x)4

4!
− (2x)6

6!
+

(2x)8

8!
− · · ·+ (−1)n

(2x)2n

(2n)!
+ · · ·

]

=
1

2
+

1

2
− 2x2

2
+

23x4

24
− 25x6

720
+

27x8

40320
− · · ·+ (−1)n

22n−1x2n

(2n)!
+ · · ·

= 1− x2 +
x4

3
− 2

45
x6 +

1

315
x8 − · · · .

Check: Since cos2 x = 1− sin2 x, we could also get this series directly from Problem 49:

cos2 x = 1− sin2 x

= 1−
(

x2 − x4

3
+

2

45
x6 − 1

315
x8 + · · ·

)

= 1− x2 +
x4

3
− 2

45
x6 +

1

315
x8 − · · · .
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51. The Maclaurin expansion for sinx, from p.717 of the book, is sinx =
∞∑

k=0

(−1)kx2k+1

(2k+1)! .

Integrating both sides of this, we have:

∫ x

0

sin t dt =

∫ x

0

[

t− t3

3!
+

t5

5!
− t7

7!
+ · · ·+ (−1)n

t2n+1

(2n+ 1)!
+ · · ·

]

dt

[cos t]
∣
∣
∣

x

0
=

[
t2

2
− t4

4 · 3! +
t6

6 · 5! −
t8

8 · 7! + · · ·+ (−1)n
t2n+2

(2n+ 2) · (2n+ 1)!
+ · · ·

]x

0

(cosx− 1) =
x2

2!
− x4

4!
+

x6

6!
− x8

8!
+ · · ·+ (−1)n

x2n+2

(2n+ 2)!
+ · · ·

cosx = 1 +
x2

2!
− x4

4!
+

x6

6!
− x8

8!
+ · · ·+ (−1)n

x2n+2

(2n+ 2)!
+ · · · =

∞∑

k=0

(−1)k
x2k

(2k)!
.

52. We write f(x) = ln 1
1−x = − ln(1− x). To find the Maclaurin series, we begin by

evaluating f(x) and its derivatives at x = 0.

f(x) = − ln(1− x) f(0) = − ln(1− 0) = − ln 1 = 0

f ′(x) = − 1

1− x
· (−1) = (1− x)−1 =

1

1− x
f ′(0) =

1

1− 0
= 1

f ′′(x) = (−1)(1− x)−2 · (−1) = (1− x)−2 f ′′(0) = (1− 0)−2 = 1!

f ′′′(x) = (−2)(1− x)−3 · (−1) = (2)(1− x)−3 f ′′′(0) = 2(1− 0)−3 = 2!

f (4)(x) = (−3)(2)(1− x)−4 · (−1) = (3)(2)(1 − x)−4 f (4)(0) = 3 · 2(1− 0)−4 = 3!

...
...

f (n)(x) = (2)(3) · · · (−(n− 1))(1− x)−n · (−1) = (n− 1)!(1− x)−n f (n)(0) = (n− 1)!(1− 0)−n = (n− 1)!

...
...

So the Maclaurin series of f(x) is

f(x) = ln
1

1− x

=

∞∑

k=0

f (k)(0)

k!
xk

= 0 +
1

1!
x1 +

1!

2!
x2 +

2!

3!
x3 +

3!

4!
x4 + · · ·+ (n− 1)!

n!
xn + · · ·

= x+
x2

2
+

x3

3
+

x4

4
+ · · ·+ xn

n
+ · · · .

Comparing the Maclaurin series with the power series found in Section 8.8, Example 8, p.707,
we see they are identical.

53. To find the Maclaurin series for f(x) = secx, we begin by evluating f(x) and its
derivatives at x = 0. To simplify notation, let y = f(x) = secx. Let y0 = f(0), y′ = f ′(x),
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y′0 = f ′(0), etc. Also note that d
dx tanx = sec2 x = y2. (We’ll use this directly for the seventh

and eighth derivatives to save writing.) We compute until we get five nonzero derivatives:

y = secx y0 = sec 0 = 1.

y′ = secx tanx

= y tanx

y′0 = y0 tan 0

= (1)(0)

= 0.

y′′ = y′ tanx+ y sec2 x

= y′ tanx+ yy2

= y′ tanx+ y3 y′′0 = y′0 tan 0 + y30

= (0)(0) + (1)3

= 1.

y′′′ = y′′ tanx+ y′ sec2 x+ 3y2y′

= y′′ tanx+ y′y2 + 3y2y′

= y′′ tanx+ 4y2y′ y′′′0 = y′′0 tan 0 + 4y20y
′
0

= (1)(0) + 4(1)2(0)

= 0.

y(4) = y′′′ tanx+ y′′ sec2 x+ 8yy′2 + 4y2y′′

= y′′′ tanx+ y′′y2 + 8yy′2 + 4y2y′′

= y′′′ tanx+ 5y2y′′ + 8yy′2 y
(4)
0 = y′′′0 tan 0 + 5y20y

′′
0 + 8y0y

′2
0

= (0)(0) + 5(1)2(1) + 8(1)(0)

= 5.

y(5) = y(4) tanx+ y′′′ sec2 x+ 10yy′y′′ + 5y2y′′′ + 8y′3 + 16yy′y′′

= y(4) tanx+ y′′′y2 + 10yy′y′′ + 5y2y′′′ + 8y′3 + 16yy′y′′

= y(4) tanx+ 6y2y′′′ + 26yy′y′′ + 8y′3

y
(5)
0 = y

(4)
0 tan 0 + 6y20y

′′′
0 + 26y0y

′
0y

′′
0 + 8y′30

= (5)(0) + 6(1)2(0) + 26(1)(0)(1) + 8(0)3

= 0.

y(6) = y(5) tanx+ y(4) sec2 x+ 12yy′y′′′ + 6y2y(4)

+ 26y′2y′′ + 26yy′′2 + 26yy′y′′′ + 24y′2y′′

= y(5) tanx+ y(4)y2 + 12yy′y′′′ + 6y2y(4)

+ 26y′2y′′ + 26yy′′2 + 26yy′y′′′ + 24y′2y′′

= y(5) tanx+ 7y(4)y2 + 38yy′y′′′+

+ 50y′2y′′ + 26yy′′2

y
(6)
0 = y

(5)
0 tan 0 + 7y

(4)
0 y20 + 38y0y

′
0y

′′′
0 +

+ 50y′20 y
′′
0 + 26y0y

′′2
0

= (0)(0) + 7(5)(1)2 + 38(1)(0)(0)+

+ 50(0)2(1) + 26(1)(1)2

= 35 + 26

= 61.



8.9 Taylor Series; Maclaurin Series 8-239

y(7) = y(6) tanx+ y(5)y2 + 7y(5)y2 + 14y(4)yy′+

+ 38y′2y′′′ + 38yy′′y′′′ + 38yy′y(4)+

+ 100y′y′′2 + 50y′2y′′′ + 26y′y′′2 + 52yy′′y′′′

= y(6) tanx+ 8y(5)y2 + 52y(4)yy′+

+ 88y′′′y′2 + 90yy′′y′′′ + 126y′y′′2 y
(7)
0 = y

(6)
0 tan 0 + 8y

(5)
0 y20 + 52y

(4)
0 y0y

′
0+

+ 88y′′′0 y′20 + 90y0y
′′
0y

′′′
0 + 126y′0y

′′2
0

= (61)(0) + 8(0)(1)2 + 52(5)(1)(0)+

+ 88(0)(0)2 + 90(1)(1)(0) + 126(0)(1)2

= 0.

y(8) = y(7) tanx+ y(6)y2 + 8y(6)y2 + 16y(5)yy′+

+ 52y(5)yy′ + 52y(4)y′2 + 52y(4)yy′′+

+ 88y(4)y′2 + 176y′′′y′y′′ + 90y′y′′y′′′+

+ 90yy′′′2 + 90yy′′y(4) + 126y′′3 + 252y′y′′y′′′

= y(7) tanx+ 9y(6)y2 + 68y(5)yy′+

+ 140y(4)y′2 + 142y(4)yy′′ + 518y′′′y′′y′+

+ 90yy′′′2 + 126y′′3

y
(8)
0 = y

(7)
0 tan 0 + 9y

(6)
0 y20 + 68y

(5)
0 y0y

′
0+

+ 140y
(4)
0 y′20 + 142y

(4)
0 y0y

′′
0 + 518y′′′0 y′′0y

′
0+

+ 90y0y
′′′2
0 + 126y′′30

= (0)(0) + 9(61)(1) + 68(0)(1)(0)+

+ 140(5)(0)2 + 142(5)(1)(1) + 518(0)(1)(0)+

+ 90(1)(0)2 + 126(1)3

= 9 · 61 + 142 · 5 + 126 · 1
= 549 + 710 + 126

= 1385.

So the first five nonzero terms of the Maclaurin series are

f(x) = secx

=

∞∑

k=0

f (k)(0)

k!
xk

= 1 +
0

1!
x+

1

2!
x2 +

0

3!
x3 +

5

4!
x4 +

0

5!
x5 +

61

6!
x6 +

0

7!
x7 +

1385

8!
x8 + · · ·

= 1 +
1

2
x2 +

5

24
x4 +

61

720
x6 +

277

8064
x8 + · · · .

54. (a) The Maclaurin series for g(x) = ex (see Problem 27) is

g(x) = ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · .
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So the Maclaurin expansion of p(x) = 1√
2π

e−x2/2 is given by

1√
2π

e−x2/2 =
1√
2π

g

(

−x2

2

)

=
1√
2π

[

1 +

(

−x2

2

)

+
1

2!

(

−x2

2

)2

+
1

3!

(

−x2

2

)3

+ · · ·+ 1

n!

(

−x2

2

)n

+ · · ·
]

=
1√
2π

[

1− x2

2
+

x4

22 · 2! −
x6

23 · 3! + · · ·+ (−1)n
x2n

2n · n! + · · ·
]

=
1√
2π

∞∑

k=0

(−1)k
x2k

2k · k! .

(b) Integrating the series found in part (a) term by term, we obtain

P (a ≤ z ≤ b) =
1√
2π

∫ b

a

e−x2/2 dx

=
1√
2π

∫ b

a

[

1− x2

2
+

x4

22 · 2! −
x6

23 · 3! + · · ·+ (−1)n
x2n

2n · n! + · · ·
]

dx

=
1√
2π

[

x− x3

3 · 2 +
x5

5 · 22 · 2! −
x7

7 · 23 · 3! + · · ·+ (−1)n
x2n+1

(2n+ 1) · 2n · n! + · · ·
]b

a

=
1√
2π

∞∑

k=0

(−1)k
[b2k+1 − a2k+1]

(2k + 1)2k k!
.

(c) Using the first four terms of the series found in part (b), we get the desired approximation

P (−0.5 ≤ z ≤ 0.3) ≈ 1√
2π

[

x− x3

6
+

x5

40
− x7

336

]0.3

−0.5

=
1√
2π

[{

(0.3) − (0.3)3

6
+

(0.3)5

40
− (0.3)7

336

}

−
{

(−0.5) − (−0.5)3

6
+

(−0.5)5

40
− (−0.5)7

336

}]

≈ 1

2.507
[{0.3 − 0.0045 + 0.000061 − 0.0000006} − {−0.5 + 0.02083 − 0.00078 + 0.0000233}]

≈ 1

2.507
[0.7755]

≈ 0.309.

(d) Using a CAS we find the exact value to be approximately P (−0.5 ≤ z ≤ 0.3) ≈ 0.309.

55. If f is an even function, then f(x) = f(−x). Taking derivatives of both sides with respect
to x, f ′(x) = f ′(−x) · (−1) = −f(−x), using the Chain Rule. So the first derivative is an odd
function of x. At x = 0, f ′(0) = −f ′(0), which means f ′(0) = 0.
If g(x) is an odd function of x, then g(x) = −g(−x). Taking the derivatives of both sides with
respect to x, g′(x) = −g′(−x) · (−1) = g(−x), using the Chain Rule. So the derivative of an
odd function is an even function. This means the second derivative of f(x) will be an even
function, and possibly evaluate to a nonzero value at x = 0. The third derivative will now be
odd, and so forth, leading to f (k)(0) = 0 for all odd k. This means the Maclaurin series

f(x) =
∞∑

k=0

f(k)(0)
k! xk will only have even powers of x, because they are multiplied by (possibly

nonzero) even order derivatives evaluated at x = 0.
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56. If f is an odd function, then f(x) = −f(−x). (Note that this rules out the x0 term of the
Maclaurin series for f(x).) Taking derivatives of both sides with respect to x,
f ′(x) = −f ′(−x) · (−1) = f(−x), using the Chain Rule. So the first derivative is an even
function of x. At x = 0, the derivative possibly evaluates to a nonzero value.
If g(x) is an even function of x, then g(x) = g(−x). Taking the derivatives of both sides with
respect to x, g′(x) = g′(−x) · (−1) = −g(−x), using the Chain Rule. Since g(0) = −g(0), we
have that g(0) = 0. So the derivative of an even function is an odd function. This means the
second derivative of f(x) will be an odd function, and it evaluates to zero at x = 0. The third
derivative will now be even, possibly evaluating to a nonzero value, and so forth, leading to

f (k)(0) = 0 for all even k. This means the Maclaurin series f(x) =
∞∑

k=0

f(k)(0)
k! xk will only have

odd powers of x, because they are multiplied by (possibly nonzero) odd order derivatives
evaluated at x = 0.

57. The remainder term is given by

Rn(x) =
fn+1(u)

(n+ 1)!
(x− c)n+1,

where u belongs to the interval (x, c). Since the function f(x) = (1 + x)m, we have

f ′(x) = m(1 + x)m−1 = 1! ·
(
m

1

)

(1 + x)m−1

f ′′(x) = m(m− 1)(1 + x)m−2 = 2! ·
(
m

2

)

(1 + x)m−2

...

f (n+1)(x) = m(m− 1) · · · (m− n)(1 + x)m−(n+1) = (n+ 1)! ·
(

m

n+ 1

)

(1 + x)m−(n+1)

The remainder term becomes

Rn(x) =
fn+1(u)

(n+ 1)!
(x− c)n+1

=

(
m

n+ 1

)

(1 + u)m−(n+1)(x− c)n+1

=

(
m

n+ 1

)

(1 + u)m
(
x− c

1 + u

)n+1

.

Now, if m is a nonnegative integer,

(
m

n+ 1

)

= 0 for n+ 1 > m.

So we have Rn(x) = 0 if n > m− 1. So, as n → ∞, Rn(x) → 0, as required. So we have shown

that (1 + x)m =
∞∑

k=0

(
m
k

)
xk when m is a nonnegative integer.
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58. For m < 0 the series
∞∑

k=0

ak =
∞∑

k=0

(
m
k

)
xk is a series of nonzero terms if x 6= 0. (If x = 0, the

series converges to 1.) Applying the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(
m

n+1

)
xn+1

(
m
n

)
xn

∣
∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣
∣
∣

m(m−1)(m−2)···(m−n−1+1)
(n+1)!

m(m−1)(m−2)···(m−n+1)
n!

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

[
n!

(n+ 1)!
·
∣
∣
∣
∣

m(m− 1)(m− 2) · · · (m− n)

m(m− 1)(m− 2) · · · (m− n+ 1)

∣
∣
∣
∣

]

= |x| lim
n→∞

[
n!

(n+ 1)n!
· |m− n|

]

= |x| lim
n→∞

∣
∣
∣
∣

m− n

n+ 1

∣
∣
∣
∣
= |x| lim

n→∞

∣
∣
∣
∣

m
n − 1

1 + 1
n

∣
∣
∣
∣

= |x| < 1

for absolute convergence of the series, and |x| > 1 for absolute divergence of the series.

59. From p.721, Example 11 of the textbook, the Maclaurin series for f(x) = sin−1 x can be
written as

f(x) = sin−1 x = x+
1

2
· x

3

3
+

1 · 3
2 · 4 · x

5

5
+

1 · 3 · 5
2 · 4 · 6 · x

7

7
+ · · ·+ 1 · 3 · 5 · · · · (2n− 1)

2 · 4 · 6 · · · · (2n) · x
2n+1

2n+ 1
+ · · · .

The fractional factor multiplying the nth term can be expressed as follows:

1 · 3 · 5 · · · · · (2n− 1)

2 · 4 · 6 · · · · (2n) =
1 · 2 · 3 · · · · (2n− 1) · (2n)

(2 · 4 · 6 · · · · (2n))2 =
(2n)!

(2nn!)2
=

(2n)!

4n(n!)2
.

So the series can be written as

sin−1 x =

∞∑

k=0

ak =

∞∑

k=0

(2k)!

4k(k!)2
x2k+1

(2k + 1)
.

Since the terms of the series are nonzero for x 6= 0, by the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(2(n+1))!x2(n+1)+1

4n+1((n+1)!)2(2(n+1)+1)

(2n)!x2n+1

4n(n!)2(2n+1)

∣
∣
∣
∣
∣
∣

= |x2| lim
n→∞

[
(2n+ 2)!

(2n)!
· 4n

4n+1
· 2n+ 1

2n+ 3
· (n!)2

((n+ 1)!)2

]

=
|x|2
4

lim
n→∞

[
(2n+ 2)(2n+ 1)(2n)!

(2n)!
· 2 +

1
n

2 + 3
n

· (n!)2

(n+ 1)2(n!)2

]

=
|x|2
4

lim
n→∞

(2n+ 2)(2n+ 1)

(n+ 1)2
· lim
n→∞

2 + 1
n

2 + 3
n

=
|x|2
4

· lim
n→∞

(
2 + 2

n

) (
2 + 1

n

)

(
1 + 1

n

)2 ·
(
2 + 0

2 + 0

)

=
|x|2
4

· (2 + 0)(2 + 0)

(1 + 0)2
· 1

=
|x|2
4

· 4 = |x|2 < 1
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for convergence of the series. So the series for sin−1 x converges for −1 < x < 1. For x = 1, the
series becomes

lim
x→1

sin−1 x = 1 +
1

2
· 1
3
+

1

2
· 3
4
· 1
5
+

1

2
· 3
4
· 5
6
· 1
7
+ · · ·

< 1 +
1

2
+

1

2
· 1
2
+

1

2
· 1
2
· 1
2
+ · · ·

=

∞∑

k=0

(
1

2

)k

=
1

1− 1
2

= 2,

using the formula for the sum of a geometric series. That is to say, the sum of the series for
sin−1 1 is bounded from above by 2; also, since the terms of the series are all positive, the
sequence of partial sums is increasing. Since the sequence of partial sums is increasing and
bounded from above, it converges, so the series converges as well. (The actual sum is
sin−1 1 = π

2 < 2.)
At x = −1, the series becomes an alternating version of the series at x = 1, namely

sin−1(−1) = 1− 1

2
· 1
3
+

1

2
· 3
4
· 1
5
− 1

2
· 3
4
· 5
6
· 1
7
+ · · · .

The series of absolute values of this alternating series is precisely the series at x = 1, which we
have shown converges. Since the alternating series converges absolutely, it converges.
So we have shown that the interval of convergence for the Maclaurin expansion of
f(x) = sin−1 x is [−1, 1].

60. (a)

1

1 + x
=

1

1− (−x)
=

∞∑

k=0

(−x)k =

∞∑

k=0

(−1)kxk,

using the sum of a geometric series of the form
∞∑

k=0

rk, with convergent sum 1
1−r whenever

|r| = | − x| = |x| < 1.

(b) Setting x = 1 in the above formula, we obtain

1

1 + 1
=

1

2
=

∞∑

k=0

(−1)k = 1− 1 + 1− 1 + 1− 1 + · · · ,

which is the erroneous formula arrived at by Euler.

(c) One of the conditions in writing the series representation of 1
1+x was that |x| < 1. So we

cannot put x = 1 in the series representation, as it is divergent there.

Challenge Problems

61. The series given to us can be written as

x3

1(3)
− x5

3(5)
+

x7

5(7)
− x9

7(9)
−· · · =

∞∑

k=1

(−1)k+1 x2k+1

(2k − 1)(2k + 1)
=

1

2

∞∑

k=1

(−1)k+1x2k+1

(
1

2k − 1
− 1

2k + 1

)

,

using partial fractions. At x = 1, the series becomes

1

1(3)
− 1

3(5)
+

1

5(7)
− 1

7(9)
+· · · = 1

2

∞∑

k=1

(−1)k+1

(
1

2k − 1
− 1

2k + 1

)

=
1

2

∞∑

k=1

(−1)k
(

1

2k + 1
− 1

2k − 1

)

.
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Before proceeding further, let us prove that the series at x = 1 converges absolutely, which
would allow us to rearrange the terms at will. Since the series of absolute values of the series at
x = 1 satisfies

1

1(3)
+

1

3(5)
+

1

5(7)
+

1

7(9)
+ · · · < 1

12
+

1

32
+

1

52
+

1

72
+ · · ·

<
1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+

1

72
+ · · ·

=

∞∑

k=1

1

k2
,

and the series
∞∑

k=1

1
k2 is a convergent p-series (since p = 2 > 1), by the Comparison Test for

convergence, the series of absolute values at x = 1 converges, establishing absolute convergence
for the original series at x = 1.
Now, Gregory’s series for tan−1 x (see p.708, Section 8.8) is given by

tan−1 x =
∞∑

k=0

(−1)kx2k+1

2k + 1
.

At x = 1, we have

tan−1 1 =
π

4
=

∞∑

k=0

(−1)k

2k + 1
= 1 +

∞∑

k=1

(−1)k

2k + 1
.

So,
∞∑

k=1

(−1)k

2k + 1
=

π

4
− 1.

Consider now the sum

−
∞∑

k=1

(−1)k
1

2k − 1
= −

∞∑

k′=0

(−1)k
′+1 1

2k′ + 1
=

∞∑

k′=0

(−1)k
′ 1

2k′ + 1
=

∞∑

k=0

(−1)k
1

2k + 1
=

π

4
.

(Here, the index change k = k′ + 1 was made, and then the index was changed back to k in the
final step as it is a dummy summation index.) So, the sum of the original series is

1

2

[ ∞∑

k=1

(−1)k
1

2k + 1
−

∞∑

k=1

(−1)k
1

2k − 1

]

=
1

2

[π

4
− 1 +

π

4

]

=
π

4
− 1

2
.

62. The Maclaurin expansion for ln(1− x) is

ln(1 − x) = −
∞∑

k=0

xk+1

k + 1
= −

∞∑

k=1

xk

k
.

So ln 1
1−x = − ln(1− x) has a Maclaurin expansion

ln
1

1− x
=

∞∑

k=1

xk

k
= x+

x2

2
+

x3

3
+ · · ·+ xn

n
+ · · · .
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Integrating term by term gives us
∫ x

0

ln
1

1− t
dt =

∫ x

0

(

t+
t2

2
+

t3

3
+ · · ·+ tn

n
+ · · ·

)

dt

−
∫ x

0

ln(1− t) dt =

[
t2

1 · 2 +
t3

2 · 3 +
t4

3 · 4 + · · ·+ tn

n(n+ 1)
+ · · ·

]x

0
∫ 1−x

1

ln y dy =
x2

1 · 2 +
x3

2 · 3 +
x4

3 · 4 + · · ·+ xn

n(n+ 1)
+ · · ·

[y ln y − y]
∣
∣
∣

1−x

1
=

∞∑

k=1

xk+1

k(k + 1)

{(1− x) ln(1− x)− (1 − x)} − {1 ln 1− 1} =

∞∑

k=1

xk+1

k(k + 1)

or,

∞∑

k=1

xk+1

k(k + 1)
= (1− x) ln(1− x) + x

where the substitution y = 1− x was made, and the result
∫
ln y dy = x ln y − y + C used.

(This can be verified by differentiating the result or directly checked using integration by parts.
(Use u = lnx and dv = dx.) )

63. The partial sums of the series
∞∑

k=1

k
(k+1)! are

S1 =
1

2!
=

1

2
=

2− 1

2
=

2!− 1

2!

S2 =
1

2
+

2

3!
=

1

2
+

2

6
=

3

6
+

2

6
=

5

6
=

6− 1

6
=

3!− 1

3!

S3 =
5

6
+

3

4!
=

5

6
+

3

24
=

20

24
+

3

24
=

23

24
=

24− 1

24
=

4!− 1

4!

S4 =
23

24
+

4

5!
=

23

24
+

4

120
=

115

120
+

4

120
=

119

120
=

120− 1

120
=

5!− 1

5!
, · · · .

In general, the nth partial sum is

Sn =
(n+ 1)!− 1

(n+ 1)!
.

The sum of the series is the limit of the nth partial sum:

lim
n→∞

Sn = lim
n→∞

(n+ 1)!− 1

(n+ 1)!
= lim

n→∞

(

1− 1

(n+ 1)!

)

= 1.

64. (a) To show n! ≥ 2n−1, we write

n! = n(n− 1)(n− 2) · · · 4 · 3 · 2 · 1 = n(n− 1)(n− 2) · · · 4 · 3 · 2 ≥ 2 · 2 · 2 · · · 2 · 2 · 2 = 2n−1.

(b) From (a), we have
1

n!
≤ 1

2n−1
.

So

0 < sn =
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
≤ 1

21−1
+

1

22−1
+

1

23−1
+ · · ·+ 1

2n−1

= 1 +
1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · ·+
(
1

2

)n−1

.
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(c) Since from the definition of sn we have

sn+1 = sn +
1

(n+ 1)!
,

we can write 0 < sn < sn+1. Now, following the inequality used in part (b), we have

sn+1 =
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

(n+ 1)!

≤ 1 +
1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · ·+
(
1

2

)n

so that
1

2
sn+1 ≤ 1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · ·+
(
1

2

)n+1

.

Now, sn+1 −
1

2
sn+1 =

1

2
sn+1 ≤ 1−

(
1

2

)n+1

or, sn+1 ≤ 2

(

1−
(
1

2

)n+1
)

.

Since

lim
n→∞

sn+1 ≤ lim
n→∞

2

(

1−
(
1

2

)n+1
)

= 2,

we have sn+1 < 2 for any n, since sn is an increasing function of n (due to the fact that
sn < sn+1). So finally, we have

0 < sn < sn+1 < 2.

(d) tn =
[
1 + 1

n

]n
. Applying the binomial expansion to the function tn we get

[

1 +
1

n

]n

=

(
n

0

)(
1

n

)0

+

(
n

1

)(
1

n

)1

+

(
n

2

)(
1

n

)2

+

(
n

3

)(
1

n

)3

+ · · ·+
(
n

n

)(
1

n

)n

= 1 +
n

n
+

n(n− 1)

2!
· 1

n2
+

n(n− 1)(n− 2)

3!
· 1

n3
+ · · ·+ n(n− 1)(n− 2) · · · (n− (n− 1))

n!
· 1

nn

= 1 + 1 +
1

2!

[

1− 1

n

]

+
1

3!

[

1− 1

n

] [

1− 2

n

]

+ · · ·+ 1

n!

[

1− 1

n

] [

1− 2

n

]

· · ·
[

1− n− 1

n

]

.

We have for large n,

tn < 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
= sn + 1.

So tn < sn + 1 for finite n.

(e) Let t(x) =
(
1 + 1

x

)x
. Then ln t = x ln

(
1 + 1

x

)
. Differentiating, we get

1

t
t′ = ln

(

1 +
1

x

)

+ x · 1

1 + 1
x

·
(

− 1

x2

)

= ln

(

1 +
1

x

)

− 1

1 + x
> 0

for x ≥ 1. To see this is the case, proceed as follows. We require
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ln

(

1 +
1

x

)

>
1

1 + x

1 +
1

x
> e

1
1+x

or, e
1

1+x < 1 +
1

x
.

The following computation proves this last inequality:

e
1

1+x = 1 +
1

1 + x
+

1

2!

1

(1 + x)2
+

1

3!

1

(1 + x)3
+ · · ·+ 1

n!

1

(1 + x)n
+ · · ·

< 1 +
1

1 + x
+

1

(1 + x)2
+

1

(1 + x)3
+ · · ·+ 1

(1 + x)n
+ · · ·

=

∞∑

k=0

(
1

1 + x

)n

.

Now, the series
∞∑

k=0

rn =
∞∑

k=0

(
1

1+x

)n

is a geometric series which converges to the sum of 1
1−r

since |r| =
∣
∣
∣

1
1+x

∣
∣
∣ < 1 for x ≥ 1. So we have

e
1

1+x <

∞∑

k=0

(
1

1 + x

)n

=
1

1− 1
1+x

=
x+ 1

1 + x− 1

=
x+ 1

x

= 1 +
1

x

that is,

e
1

1+x < 1 +
1

x

for x ≥ 1 as was to be shown. So we have shown that the function t(x) is an increasing function
for x ≥ 1, which means the function tn = t(n) is increasing for integers n ≥ 1. This means

0 < tn < tn+1 < sn+1 + 1 < 2 + 1 = 3.

Since e = lim
n→∞

[
1 + 1

n

]n
= lim

n→∞
tn, we see that by the Squeeze theorem,

0 ≤ lim
n→∞

tn = lim
n→∞

tn+1 ≤ 3

or e = lim
n→∞

tn ≤ 3.

65. From the results of Problem 64, since tn is an increasing function of n and lim
n→∞

tn = e, for

any finite value of n, we must have tn < e for n > 0.
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66. Let x ≥ 0. We are given that sin t ≤ t. By integrating both sides repeatedly we have:
∫ x

0

sin t dt ≤
∫ x

0

t dt

[− cos t]
∣
∣
∣

x

0
≤ x2

2

− cosx+ 1 ≤ x2

2

or, 1− x2

2
≤ cosx.

∫ x

0

(

1− t2

2

)

dt ≤
∫ x

0

cos t dt

[

t− t3

6

]x

0

≤ [sin t]
∣
∣
∣

x

0

x− x3

6
≤ sinx.

∫ x

0

(

t− t3

6

)

dt ≤
∫ x

0

sin t dt

[
t2

2
− t4

24

]x

0

≤ [− cos t]
∣
∣
∣

x

0
= − cosx+ 1

or, cosx ≤ 1− x2

2
+

x4

24
= 1− x2

2!
+

x4

4!
.

So we conclude that

1− x2

2!
≤ cosx ≤ 1− x2

2!
+

x4

4!
for all x ≥ 0.

67. f(x) = (1 + x)x. Let y = f(x), y′ = f ′(x), etc, and let y0 = f(0), y′0 = f ′(0), etc. Also,

since ln y = x ln(1 + x), we can differentiate both sides to get y′

y = ln(1 + x) + x
1+x , or

y′ = y
[

ln(1 + x) + x
1+x

]

. To find the Maclaurin expansion of f(x) to four terms we begin by

evaluating the function and its derivatives until the third nonzero derivative is reached.

y = (1 + x)x y0 = (1)0 = 1.

y′ = y

[

ln(1 + x) +
x

1 + x

]

y′0 = y0

[

ln 1 +
0

1 + 0

]

= (1)[0 + 0] = 0.

y′′ = y′
[

ln(1 + x) +
x

1 + x

]

+ y

[
1

1 + x
+

(1 + x) · 1− x

(1 + x)2

]

= y′
[

ln(1 + x) +
x

1 + x

]

+ y

[
1

1 + x
+

1

(1 + x)2

]

y′′0 = y′0

[

ln 1 +
0

1 + 0

]

+ y0

[
1

1 + 0
+

1

(1 + 0)2

]

= (0)[0 + 0] + (1)[1 + 1] = 2.

y′′′ = y′′
[

ln(1 + x) +
x

1 + x

]

+ y′
[

1

1 + x
+

1

(1 + x)2

]

+ y′
[

1

1 + x
+

1

(1 + x)2

]

+ y

[

− 1

(1 + x)2
− 2

(1 + x)3

]

= y′′
[

ln(1 + x) +
x

1 + x

]

+ 2y′
[

1

1 + x
+

1

(1 + x)2

]

+ y

[

− 1

(1 + x)2
− 2

(1 + x)3

]

y′′′0 = y′′0

[

ln 1 +
0

1 + 0

]

+ 2y′0

[
1

1 + 0
+

1

(1 + 0)2

]

+ y0

[

− 1

(1 + 0)2
− 2

(1 + 0)3

]

= (2)[0 + 0] + 2(0)[1 + 1] + (1)[−1− 2] = −3.
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y(4) = y′′′
[

ln(1 + x) +
x

1 + x

]

+ y′′
[

1

1 + x
+

1

(1 + x)2

]

+ 2y′′
[

1

1 + x
+

1

(1 + x)2

]

+ 2y′
[

− 1

(1 + x)2
− 2

(1 + x)3

]

+ y′
[

− 1

(1 + x)2
− 2

(1 + x)3

]

+ y

[
2

(1 + x)3
+

6

(1 + x)4

]

= y′′′
[

ln(1 + x) +
x

1 + x

]

+ 3y′′
[

1

1 + x
+

1

(1 + x)2

]

+ 3y′
[

− 1

(1 + x)2
− 2

(1 + x)3

]

+ y

[
2

(1 + x)3
+

6

(1 + x)4

]

y
(4)
0 = y′′′0

[

ln 1 +
0

1 + 0

]

+ 3y′′0

[
1

1 + 0
+

1

(1 + 0)2

]

+ 3y′0

[

− 1

(1 + 0)2
− 2

(1 + 0)3

]

+ y0

[
2

(1 + 0)3
+

6

(1 + 0)4

]

= (−3)[0 + 0] + 3(2)[1 + 1]

+ 3(0)[−1 − 2] + (1)[2 + 6] = 20.

The first four nonzero terms of the Maclaurin series are

f(x) = (1 + x)x

=

∞∑

k=0

f (k)(0)

k!
xk

= 1 +
0

1!
x1 +

2

2!
x2 +

−3

3!
x3 +

20

4!
x4 + · · ·

= 1 + 0 +
2

2
x2 +

−3

6
x3 +

20

24
x4 + · · ·

= 1 + x2 − x3

2
+

5x4

6
+ · · · .

68. Let us prove first the following result: For any positive integer n,

lim
x→0

1

xn
e−1/x2

= 0.

Using y = 1
x and applying L’Hôpital’s rule repeatedly, we have

lim
x→0+

1

xn
e−1/x2

= lim
y→∞

yne−y2

= lim
y→∞

yn

ey2

= lim
y→∞

nyn−1

2y ey2 = lim
y→∞

nyn−2

2 ey2

= lim
y→∞

n(n− 2)yn−3

2 · 2y ey2 = lim
y→∞

n(n− 2)yn−4

2 · 2 ey2

= · · · = lim
y→∞

n(n− 2)(n− 4) · · · 4 · 2
2 · 2 · · · 2 ey2

= 0.

We also have

lim
x→0−

1

xn
e−1/x2

= lim
y→−∞

yne−y2

= lim
y′→∞

(−y′)ne−y′2

= (−1)n lim
y′→∞

y′ne−y′2

= 0,

where y′ = −y, using the result just proved above. Since we have shown the two sided limit is

zero, we have shown that the limit is zero. The function f(x) = e−1/x2

is continuous at x = 0,
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infinitely differentiable at x = 0, and all its derivatives at x = 0 are equal to zero, due to the
result proved above. For example, the first derivative evaluation at x = 0 is:

f ′(x) =
d

dx

(

− 1

x2

)

e−1/x2

=
2

x3
e−1/x2

f ′(0) = 2 · lim
x→0

1

x3
e−1/x2

= 2(0) = 0,

because it is an instance of the limit result for n = 3. The second derivative evaluated at x = 0
is:

f ′′(x) = −2 · 3
x4

e−1/x2

+
2 · 2
x6

e−1/x2

f ′′(0) = −6 · lim
x→0

1

x4
e−1/x2

+ 4 · lim
x→0

1

x6
e−1/x2

= −6(0) + 4(0) = 0,

because we have instances of the limit result for n = 4 and n = 6. Since all the derivatives

f (n)(0) = 0, the Maclaurin series of the function, is
∞∑

k=0

f(k)(0)
k! xk = 0. However, the function

itself is not the zero function. So we have shown that the Maclaurin series of f(x) does not
converge to the function f(x).

AP
R©

Practice Problems

1. cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .+

(−1)
n
x2n

(2n)!
+ . . .

(3x)2 cosx = (3x)2
[

1− x2

2!
+

x4

4!
− x6

6!
+ . . .+

(−1)nx2n

(2n)!
+ . . .

]

= 9x2 − 9x4

2!
+

9x6

4!
− 9x8

6!
+ . . .

(−1)
n
9x2n+2

(2n)!
+ . . .

The coefficient of x8 is − 9
6! = − 1

80

CHOICE B

2. Utilize the Maclaurin expansion for

ex =

∞∑

k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .+

xn

n!
+ . . .

f(x) = ex/3 =

∞∑

k=0

(
x
3

)k

k!
= 1 +

x

3
+

(
x
3

)2

2!
+

(
x
3

)3

3!
+

(
x
3

)4

4!
+ . . .+

(
x
3

)n

n!
+ . . .

=

∞∑

k=0

xk

3kk!

CHOICE C
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3. ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ . . .+

xn

n!
+ . . .

e2x = 1 + 2x+
(2x)2

2!
+

(2x)3

3!
+

(2x)4

4!
+ . . .+

(2x)n

n!
+ . . .

e2x − 1 = 2x+
(2x)2

2!
+

(2x)3

3!
+

(2x)4

4!
+ . . .+

(2x)n+1

(n+ 1)!
+ . . .

e2x − 1

x
=

1

x

[

2x+
(2x)2

2!
+

(2x)3

3!
+

(2x)4

4!
+ . . .+

(2x)n+1

(n+ 1)!
+ . . .

]

=
1

x

[

2x+
(2x)2

2!
+

(2x)3

3!
+

(2x)4

4!
+ . . .+

2n+1xn+1

(n+ 1)!
+ . . .

]

= 2 +
4x

2!
+

8x2

3!
+

16x3

4!
+ . . .+

2n+1xn

(n+ 1)!
+ . . .

=

∞∑

k=0

2k+1xk

(k + 1)!

CHOICE B

4.

∫ x

0

cos t dt =

∫ x

0

(

1− t2

2!
+

t4

4!
− t6

6!
+ . . .+

(−1)
n
t2n

(2n)!
+ . . .

)

dt

=

[

t− t3

3!
+

t5

5!
− t7

7!
+ . . .+

(−1)nt2n+1

(2n+ 1)!
+ . . .

]x

0

= x− x3

3!
+

x5

5!
− x7

7!
+ . . .+

(−1)nx2n+1

(2n+ 1)!
+ . . .− 0

The Taylor expansion for
∫ x

0
cos t dt centered at π

2 is

(

x− π

2

)

−
(
x− π

2

)3

3!
+

(
x− π

2

)5

5!
−
(
x− π

2

)7

7!
+ . . .+

(−1)
n(

x− π
2

)2n+1

(2n+ 1)!
+ . . .

=

∞∑

k=0

(−1)
k(
x− π

2

)2k+1

(2k + 1)!

CHOICE D

5. f(x) = ln(2x3 + 1)

The Maclaurin Expansion for ln(x+ 1) is

ln (x+ 1) =

∞∑

k=0

(−1)kxk+1

k + 1
= x− x2

2
+

x3

3
+ . . .

Substituting 2x3 for x,

ln(2x3 + 1) = 2x3 − (2x3)2

2
+

(2x3)3

3
+ . . .

= 2x3 − 2x6 +
8x9

3
− . . .

The first non-zero term is 2x3

CHOICE C
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8.10 Approximations Using Taylor/Maclaurin Expansions

Skill Building

1. To express f(x) = lnx2 as a Taylor expansion about c = 1, we evaluate f and its derivatives
at c = 1:

f(x) = lnx2 = 2 lnx f(1) = 0

f ′(x) =
2

x
f ′(1) = 2

f ′′(x) = − 2

x2
f ′′(1) = −2

f ′′′(x) =
4

x3
f ′′′(1) = 4

f (4)(x) = −12

x4
f (4)(2) = −12

f (5)(x) =
48

x5
f (5)(1) = 48

The Taylor expansion of f centered at c is

f(x) =
∞∑

k=0

f (k)(c)

k!
(x− c)k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)

2
+

f ′′′(c)

3!
(x− c)

3
+ . . .+

f (n)(c)

n!
(c− x)

n
+ . . .

Here,

f(x) = 0 + 2(x− 1)− 2

2!
(x− 1)

2
+

4

3!
(x− 1)

3 − 12

4!
(x− 1)

4
+

48

5!
(x− 5)

5
+ . . .

P5(x) = 2(x− 1)− (x− 1)
2
+

2

3
(x− 1)

3 − 1

2
(x− 1)

4
+

2

5
(x− 1)

5

2. The Taylor Polynomial for f(x) = ln(1 + x) =
∞∑

k=0

(−1)kxk+1

k+1

P5(x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
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3. To express f(x) = 1
x as a Taylor expansion about c = 1, we evaluate f and its derivatives at

c = 1:

f(x) =
1

x
f(1) = 1

f ′(x) = − 1

x2
f ′(1) = −1

f ′′(x) =
2

x3
f ′′(1) = 2

f ′′′(x) = − 6

x4
f ′′′(1) = −6

f (4)(x) =
24

x5
f (4)(1) = 24

f (5)(x) = −120

x6
f (5)(1) = −120

The Taylor expansion of f centered at c is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)

k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)

2
+

f ′′′(c)

3!
(x− c)

3
+ . . .+

f (n)(c)

n!
(c− x)

n
+ . . .

Here,

f(x) = 1− 1 · (x− 1)1 +
2

2!
(x− 1)2 − 6

3!
(x− 1)3 +

24

4!
(x− 1)4 − 120

5!
(x− 1)5 − . . .

P5(x) = 1− (x− 1) + (x− 1)
2 − (x− 1)

3
+ (x− 1)

4 − (x− 1)
5

4. To express f(x) = 1
x2 as a Taylor expansion about c = 1, we evaluate f and its derivatives

at c = 1:

f(x) =
1

x2
f(1) = 1

f ′(x) =
−2

x3
f ′(1) = −2

f ′′(x) =
6

x4
f ′′(1) = 6

f ′′′(x) =
−24

x5
f ′′′(1) = −24

f (4)(x) =
120

x6
f (4)(1) = 120

f (5)(x) =
−720

x7
f (5)(1) = −720

The Taylor Expansion of f centered at c is

f(x) =

∞∑

k=0

fk(c)

k!
(x− c)k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x − c)2 +

f ′′′(c)

3!
(x− c)3 + . . .+

fn(c)

n!
(x− c)n + . . . .
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Here,

f(x) = 1− 2(x− 1) +
6

2!
(x− 1)2 − 24

3!
(x− 1)3 +

120

4!
(x − 1)4 − 720

5!
(x− 1)5 + . . .

P5(x) = 1− 2(x− 1) + 3(x− 1)
2 − 4(x− 1)

3
+ 5(x− 1)

4 − 6(x− 1)
5

5. To express f(x) = cosx as a Taylor expansion about c = π
2 , we evaluate f and its

derivatives at c = π
2 :

f(x) = cosx f
(π

2

)

= cos
π

2
= 0

f ′(x) = −sinx f ′
(π

2

)

= −sin
π

2
= −1

f ′′(x) = −cosx f ′′
(π

3

)

= −cos
π

2
= 0

f ′′′(x) = sinx f ′′′
(π

2

)

= sin
π

2
= 1

f (4)(x) = cosx f (4)
(π

2

)

= cos
π

2
= 0

f (5)(x) = −sinx f (5)
(π

2

)

= −sin
π

2
= −1

The Taylor expansion of f centered at c is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)

k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)

2
+

f ′′′(c)

3!
(x− c)

3
+ . . .+

f (n)(c)

n!
(c− x)

n
+ . . .

Here,

f(x) = 0− 1 ·
(

x− π

2

)

+
0

2!

(

x− π

2

)2

+
1

3!

(

x− π

2

)3

+
0

4!

(

x− π

2

)4

− 1

5!

(

x− π

2

)5

+ . . .

P5(x) = −
(

x− π

2

)

+
1

6

(

x− π

2

)3

− 1

120

(

x− π

2

)5
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6. To express f(x) = sinx as a Taylor expansion about c = π
4 , we evaluate f and its

derivatives at c = π
4 :

f(x) = sinx f
(π

4

)

= sin
π

4
=

√
2

2

f ′(x) = cosx f ′
(π

4

)

= cos
π

4
=

√
2

2

f ′′(x) = −sinx f ′′
(π

4

)

= −sin
π

4
= −

√
2

2

f ′′′(x) = −cosx f ′′′
(π

4

)

= −cosx = −
√
2

2

f (4)(x) = sinx f (4)
(π

4

)

= sin
π

4
=

√
2

2

f (5)(x) = cosx f (5)
(π

4

)

= cos
π

4
=

√
2

2

The Taylor Expansion of f centered at c is

f(x) =

∞∑

k=0

fk(c)

k!
(x− c)k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + . . .+

fn(c)

n!
(x− c)n + . . .

Here,

f(x) =

√
2

2
+

√
2

2

(

x− π

4

)

−
√
2
2

2!

(

x− π

4

)2

−
√
2
2

3!

(

x− π

4

)3

+

√
2
2

4!

(

x− π

4

)4

+

√
2
2

5!

(

x− π

4

)5

+ . . .

P5(x) =

√
2

2
+

√
2

2

(

x− π

4

)

−
√
2

4

(

x− π

4

)2

−
√
2

12

(

x− π

4

)3

+

√
2

48

(

x− π

4

)4

+

√
2

240

(

x− π

4

)5

7. The Taylor expansion at c = 0 is the Maclaurin expansion.

The Maclaurin expansion for ex = 1 + x+ x2

2! +
x3

3! +
x4

4! +
x5

5! + . . .+ xn

n! + . . .

To determine the Maclaurin expansion for e2x, substitute 2x for x.

P5(x) = 1 + (2x) +
(2x)

2

2!
+

(2x)
3

3!
+

(2x)
4

4!
+

(2x)
5

5!

= 1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 +

4

15
x5

8. The Taylor Expansion at c = 0 is the Maclaurin expansion.

The Maclaurin expansion for ex = 1 + x+ x2

2! +
x3

3! +
x4

4! +
x5

5! . . .+
xn

n! + . . .

To determine the Maclaurin expansion for e−x, substitute −x for x.

P5(x) = 1− x+
(−x)2

2!
+

(−x)3

3!
+

(−x)4

4!
+

(−x)5

5!

= 1− x+
x2

2
− x3

6
+

x4

24
− x5

120
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9. To express f(x) = 1
1−2x as a Taylor expansion about c = 0 is to determine the Maclaurin

expansion for f(x) = 1
1−2x .

We evaluate f and its derivatives at c = 0:

f(x) =
1

1− 2x
f(0) = 1

f ′(x) =
2

(1− 2x)
2 f ′(0) = 2

f ′′(x) =
8

(1− 2x)
3 f ′′(0) = 8

f ′′′(x) =
48

(1− 2x)4
f ′′′(0) = 48

f (4)(x) =
384

(1− 2x)
4 f (4)

(π

2

)

= 384

f (5)(x) =
3840

(1− 2x)
5 f (5)(0) = 3840

The Taylor expansion of f centered at c is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)

k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)

2
+

f ′′′(c)

3!
(x− c)

3
+ . . .+

f (n)(c)

n!
(c− x)

n
+ . . .

Here,

P5(x) = 1 + 2x+
8

2!
x2 +

48

3!
x3 +

384

4!
x4 − 3840

5!
x5

= 1 + 2x+ 4x2 + 8x3 + 16x4 + 32x5

10. To express f(x) = 1
1+x as a Taylor expansion about c = 0 is to determine the Maclaurin

expansion for f(x) = 1
1+x .

We evaluate f and its derivatives at c = 0:

f(x) =
1

1 + x
f(0) = 1

f ′(x) =
−1

(1 + x)2
f ′(0) = −1

f ′′(x) =
2

(1 + x)3
f ′′(0) = 2

f ′′′(x) =
−6

(1 + x)4
f ′′′(0) = −6

f (4)(x) =
24

(1 + x)5
f (4)(0) = 24

f (5)(x) =
−120

(1 + x)6
f (5)(0) = −120

The Taylor Expansion of f centered at c is

f(x) =

∞∑

k=0

fk(c)

k!
(x − c)k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + . . .+

fn(c)

n!
(x− c)n + . . .
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Here,

P5(x) = 1− x+
2x2

2!
− 6x3

3!
+

24x4

4!
− 120x5

5!

= 1− x+ x2 − x3 + x4 − x5

11. To express f(x) = x ln x as a Taylor expansion about c = 1, we evaluate f and its
derivatives at c = 1:

f(x) = x ln x f(1) = 0

f ′(x) = lnx+ 1 f ′(1) = 1

f ′′(x) =
1

x
f ′′(1) = 1

f ′′′(x) = − 1

x2
f ′′′(1) = −1

f (4)(x) =
2

x3
f (4)(1) = 2

f (5)(x) = − 6

x4
f (5)(1) = −6

The Taylor expansion of f centered at c is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= f(c) + f ′(c)(x− c) +
f ′′(c)(x − c)2

2!
+

f ′′′(c)(x − c)3

3!
+ . . .+

f (n)(c)

n!
(x− c)n + . . .

Here,

f(x) = 0 + 1 · (x− 1) +
1

2!
(x− 1)

2 − 1

3!
(x− 1)

3
+

2

4!
(x− 1)

4 − 6

5!
(x− 1)

5
+ . . .

P5(x) = (x− 1) +
1

2
(x− 1)2 − 1

6
(x− 1)3 +

1

12
(x− 1)4 − 1

20
(x− 1)5

12. To express f(x) = xex as a Taylor expansion about c = 1, we first consider f(x) = xex and
its derivatives at c = 1:

f(x) = xex f(1) = e

f ′(x) = (x+ 1)ex f ′(1) = 2e

f ′′(x) = (x+ 2)ex f ′′(1) = 3e

f ′′′(x) = (x+ 3)ex f ′′′(1) = 4e

f (4)(x) = (x+ 4)ex f (4)(1) = 5e

f (5)(x) = (x+ 5)ex f (5)(1) = 6e

The Taylor Expansion of ex centered at c is

f(x) =

∞∑

k=0

fk(c)

k!
(x− c)k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + . . .+

fn(c)

n!
(x− c)n + . . .
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Here,

P5(x) = e+ 2e(x− 1) +
3e

2!
(x− 1)2 +

4e

3!
(x− 1)3 +

5e

4!
(x− 1)4 +

6e

5!
(x− 1)5

= e+ 2e(x− 1) +
3e

2
(x − 1)

2
+

2e

3
(x− 1)

3
+

5e

24
(x− 1)

4
+

e

20
(x− 1)

5

13. (a) The Maclaurin series approximation to four nonzero terms of y = cosx is

cosx =

∞∑

k=0

f (k)(0)

k!
xk

= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · ·

≈ 1− x2

2!
+

x4

4!
− x6

6!

= 1− x2

2
+

x4

24
− x6

720
.

(b) The figure below shows the graph of both the function and its Maclaurin approximation
found in part (a).

cos(x)

1 –
x2

2
+
x4

24
–
x6

720

–4 –2 2 4
x

–2.0

– 1.5

– 1.0

– 0.5

0.5

1.0

y

(c) Evaluating the approximation at x = π
90 , we get

cos
( π

90

)

≈ 1− 1

2!

( π

90

)2

+
1

4!

( π

90

)4

− 1

6!

( π

90

)6

≈ 0.9994.

(d) Since the series is alternating, the error in the approximation is given by the next term’s
absolute value in the computation of part (c), which is

1

8!

( π

90

)8

≈ 5.47× 10−17.

(e) Since the error is given by 1
8!x

8, and we need this to be less than 0.0001 or 10−4, we solve:

1

8!
x8 < 10−4

x8 < 8! 10−4
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Taking the eighth root of both sides of this last inequality, we obtain the approximate interval

for x to be −1.1904 < x < 1.1904.

14. (a) The Maclaurin series approximation to four terms of y = ex is

ex =

∞∑

k=0

f (k)(0)

k!
xk

= 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

≈ 1 + x+
x2

2!
+

x3

3!

= 1 + x+
x2

2
+

x3

6
.

(b) The figure below shows the graph of both the function and its Maclaurin approximation
found in part (a).

exp(x)

1 + x+
x2

2
+
x3

6

–4 –2 2 4
x

–5

5

10

15

20

25

y

(c) Evaluating the approximation at x = 1
2 , we get

e1/2 ≈ 1 +
1

2
+

1

2!

(
1

2

)2

+
1

3!

(
1

2

)3

≈ 1.6458.

(d) The actual value of e1/2 ≈ 1.6487, so the error is 0.0029.

(e) For the error to be less than 0.0001, we require

ex −
[

1 + x+
x2

2
+

x3

6

]

< 0.0001.

Since the series is not alternating, we don’t have an estimate for the error term. We proceed by

trial and error to find |x| < 0.0838.
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15. (a) The Maclaurin series of f(x) = 3
√
1 + x is given by the Binomial Series:

f(x) = 3
√
1 + x = (1 + x)1/3 =

∞∑

k=0

(1
3

k

)

xk

= 1 +
1

3
x+

1
3

(
− 2

3

)

2!
x2 +

1
3

(
− 2

3

) (
− 5

3

)

3!
+

1
3

(
− 2

3

) (
− 5

3

) (
− 8

3

)

4!
x4 + · · ·+

(1
2

n

)

xn + · · · .

(b) By the theorem on p.721, since m = 1
3 > 0, but not an integer, the binomial series

converges for [−1, 1].

(c) Using the first five terms of the Maclaurin series found in part (a), we get

f(x) ≈ 1 +
1

3
x+

1
3

(
− 2

3

)

2!
x2 +

1
3

(
− 2

3

) (
− 5

3

)

3!
+

1
3

(
− 2

3

) (
− 5

3

) (
− 8

3

)

4!
x4

= 1 +
1

3
x− 1

9
x2 +

5

81
x3 − 10

243
x4.

(d) The figure below shows the graph of both the function and its Maclaurin approximation
found in part (c).

(1 + x)
{
1

3
}

1+
x

3
–
x2

9
+
5 x3

81
–
10 x4

243

–4 –2 2 4
x

–8

–6

–4

–2

y

(e) From the graphs we see that the approximation is good for values of x in the range of
convergence [−1, 1], and not so good outside that range.

(f) To approximate 3
√
0.9, we substitute x = −0.1 into the approximation found in part (c):

3
√
0.9 = 3

√
1− 0.1 ≈ 1 +

1

3
(−0.1)− 1

9
(−0.1)2 +

5

81
(−0.1)3 − 10

243
(−0.1)4 ≈ 0.9655.

Since the series is a convergent alternating series, the error in the approximation is bounded
from above by the absolute value of the next term of the approximation, which is

E(x) ≤
∣
∣
∣
∣
∣

(
1
3

) (
− 2

3

) (
− 5

3

) (
− 8

3

) (
− 11

3

)

5!
x5

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

22

729
x5

∣
∣
∣
∣
.
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So the error is less than or equal to

E(−0.1) =

∣
∣
∣
∣

22

729
(−0.1)5

∣
∣
∣
∣
= 3.018× 10−7.

16. (a) The Maclaurin series of y = 1√
4+x

is given by the Binomial Series:

1√
4 + x

= (4 + x)
−1/2

= 4−1/2 ·
(

1 +
x

4

)−1/2

=
1

2
·
(

1 +
x

4

)−1/2

=
1

2

∞∑

k=0

(

− 1
2
k

)(x

4

)k

. More fully:

=
1

2








1 +

(

−1

2

)
x

4
+

(
− 1

2

)(
− 3

2

)

2!

(x

4

)2

+

(
− 1

2

)(
− 3

2

)(
− 5

2

)

3!

(x

4

)3

+

(
− 1

2

)(
− 3

2

)(
− 5

2

)(
− 7

2

)

4!

(x

4

)4

+ · · ·+
(

− 1
2
n

)(x

4

)n

+ · · ·








=
1

2

[

1− 1

8
x+

3

128
x2 − 5

1024
x3 +

35

32, 768
x4 + · · ·+

(

− 1
2
n

)(x

4

)n

+ · · ·
]

=
1

2
− 1

16
x+

3

256
x2 − 5

2048
x3 +

35

65, 536
x4 + · · ·+ 1

2

(

− 1
2
n

)(x

4

)n

+ · · ·

(b) By the Theorem on p. 721, since m satisfies −1 < m < 0, x
4 must be in (−1, 1], that is,

−1 < x
4 ≤ 1, that is, −4 < x ≤ 4. So the interval of convergence is (−4, 4] .

(c) Keeping the first five terms of the Maclaurin expansion found in (a), we have the desired
approximation P4(x):

y =
1√
4 + x

≈ P4(x) =
1

2
− x

16
+

3

256
x2 − 5

2048
x3 +

35

65, 536
x4

(d) The figure below shows the graph of both y = 1√
4+x

(blue) and y = P4(x) (red).

(e) From the graphs we see that the approximation is reasonable for values of x in the range of
convergence (−4, 4] of the series (and excellent from about x = −2 to x = 2), and not good
outside that range.
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(f) To approximate 1√
4.2

we substitute x = 0.2 into the approximation found in part (c):

1√
4.2

≈ P4(0.2) =
1

2
− 0.2

16
+

3

256
0.22 − 5

2048
0.23 +

35

65, 536
0.24 ≈ 0.4879501

Since the series is a converging, alternating series, the absolute value of the error in the
approximation is bounded from above by the absolute value of the next term in the
approximation. Here, this is

|E4(x)| ≤
1

2

∣
∣
∣
∣
∣

(
− 1

2

)(
− 3

2

)(
− 5

2

)(
− 7

2

)(
− 9

2

)

5!

(x

4

)5
∣
∣
∣
∣
∣

=
1

2

∣
∣
∣
∣
− 63

262, 144
x5

∣
∣
∣
∣

=
63

524, 288

∣
∣x5
∣
∣

So the error is less than or equal to

63

524, 288

∣
∣0.25

∣
∣ ≈ 3.845× 10−8

17. (a) From p.708, Example 9, the Maclaurin series of y = tan−1 x is given by Gregory’s
series:

y = tan−1 x = x− x3

3
+

x5

5
− x7

7
+ · · ·+ (−1)n

x2n+1

2n+ 1
+ · · · =

∞∑

k=0

(−1)k
x2k+1

2k + 1
.

(b) From p.708, Example 9, it is seen that the series converges in the interval [−1, 1].

(c) Keeping the first five nonzero terms of Gregory’s series, we get the desired approximation

y = tan−1 x ≈ x− x3

3
+

x5

5
− x7

7
+

x9

9
.

(d) The figure below shows the graph of both the function and its Maclaurin approximation
found in part (c).

tan–1(x)

x –
x3

3
+
x5

5
–
x7

7
+
x9

9

–4 –2 2 4
x

–4

–2

2

4

y
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(e) We see that the approximation matches the function best in the interval of convergence
[−1, 1] of the Maclaurin series, and diverges rapidly from the function outside that range.

18. (a) Using the formula for the sum of geometric series, we see that the Maclaurin series is

y =
1

1− x
=

∞∑

k=0

xk = 1 + x+ x2 + x3 + · · ·+ xn + · · · .

(b) Since the geometric series
∞∑

k=0

rk converges if |r| < 1, the series above converges for |x| < 1,

or in the open interval (−1, 1).

(c) Using the first four nonzero terms of the Maclaurin series found in (a), we get

y =
1

1− x
≈ 1 + x+ x2 + x3.

(d) The figure below shows the graph of both the function and its Maclaurin approximation
found in part (c).

(1 – x}{–1}

1+ x+ x2 + x3

–2 –1 1 2
x

–5

5

10

y

(e) We see from the graph that the approximation matches the function pretty well on the
interval (−0.5, 0.5). In the range (−1,−0.5), which is within the range of convergence, the
deviation is quite small, but in the range (0.5, 1), which is also in the range of convergence, the
deviation is large. Also, beyond x = 1, there is no agreement as to even the correct quadrant of
the approximation and the function, which assumes another branch (as it is a hyperbola with
asymptote x = 1). This is to be expected, because the series does not converge for values of
x > 1.

19. To evaluate
∫ 1

0 sinx2 dx, we first find the Maclaurin series for the integrand. From p.717,
we write the Maclaurin series of sinx

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · · .
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So the Maclaurin series of sinx2 is

sinx2 = x2 − x6

3!
+

x10

5!
− x14

7!
+ · · ·+ (−1)n

x4n+2

(2n+ 1)!
+ · · · .

Approximating to four nonzero terms, we get

sinx2 ≈ x2 − x6

3!
+

x10

5!
− x14

7!
.

Integrating both sides we have

∫ 1

0

sinx2 dx ≈
∫ 1

0

[

x2 − x6

3!
+

x10

5!
− x14

7!

]

dx

=

[
x3

3
− x7

7 · 3! +
x11

11 · 5! −
x15

15 · 7!

]1

0

=
1

3
− 1

42
+

1

1320
− 1

75600

=
258, 019

831, 600

≈ 0.310.

20. To evaluate
∫ 1

0 cosx2 dx, we first find the Maclaurin series for the integrand. The
Maclaurin series of cosx (see p.717) is

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · · .

So the Maclaurin series of cosx2 is

cosx2 = 1− x4

2!
+

x8

4!
− x12

6!
+ · · ·+ (−1)n

x4n

(2n)!
+ · · · .

Approximating to four nonzero terms, we get

cosx2 ≈ 1− x4

2!
+

x8

4!
− x12

6!
.

Integrating both sides, we have

∫ 1

0

cosx2 dx ≈
∫ 1

0

[

1− x4

2!
+

x8

4!
− x12

6!

]

dx

=

[

x− x5

5 · 2! +
x9

9 · 4! −
x13

13 · 6!

]1

0

= 1− 1

10
+

1

216
− 1

9360

=
25, 399

28, 080

≈ 0.905.
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21. Use the first four terms of the MacLaurin expansion for ex to approximate
∫ 0.1

0 ex
2

dx:

Replace x by x2 in the Maclaurin expansion for ex to obtain
∫ 1

0

ex
2

dx =

∫ 1

0

(

1 + x2 +
x4

2!
+

x6

3!

)

dx

=

[

x+
x3

3
+

x5

2!5
+

x7

3!7

]1

0

=

[

1 +
(1)3

3
+

(1)5

2!5
+

(1)7

3!7

]

≈ 1.457

22. Use a MacLaurin expansion to approximate
∫ 0.1

0
e−x2

dx:

Replace x by −x2 in the Maclaurin expansion for ex to obtain
∫ 0.1

0

e−x2

dx =

∫ 0.1

0

(

1− x2 +
x4

2!
− x6

3!

)

dx

=

[

x− x3

3
+

x5

2!5
− x7

3!7

]0.1

0

=

[

0.1− (0.1)3

3
+

(0.1)5

2!5
− (0.1)7

3!7

]

≈ 0.100

23. The integrand in
∫ 0.2

0
3
√
1 + x4 dx can be expanded as a Binomial Series:

3
√

1 + x4 = (1 + x4)1/3 =

∞∑

k=0

(1
3

k

)

(x4)k

= 1 +
1

3
x4 +

1
3

(
1
3 − 1

)

2!
x8 +

1
3

(
1
3 − 1

) (
1
3 − 2

)

3!
x12 + · · ·+

(1
3

n

)

x4n + · · ·

≈ 1 +
1

3
x4 − 1

9
x8 +

5

81
x12

which is the integrand approximated to four nonzero terms. Integrating both sides, we have
∫ 0.2

0

3
√

1 + x4 dx ≈
∫ 0.2

0

[

1 +
1

3
x4 − 1

9
x8 +

5

81
x12

]

dx

=

[

x+
x5

5 · 3 − x9

9 · 9 +
5x13

13 · 81

]0.2

0

= (0.2) +
(0.2)5

15
− (0.2)9

81
+

5(0.2)13

1053

≈ 0.2 + 2.133× 10−5 − 6.321× 10−9 + 3.889× 10−12

≈ 0.2000213

≈ 0.2000

which is correct to three decimal places.

24. The integrand in
∫ 1/2

0
3
√
1 + x dx can be expanded as a Binomial Series:

3
√
1 + x = (1 + x)1/3 =

∞∑

k=0

(1
3

k

)

xk

= 1 +
1

3
x+

1
3

(
1
3 − 1

)

2!
x2 +

1
3

(
1
3 − 1

) (
1
3 − 2

)

3!
x3 + · · ·+

(1
3

n

)

xn + · · ·

≈ 1 +
1

3
x− 1

9
x2 +

5

81
x3



8-266 Chapter 8 Infinite Series

which is the integrand expanded to four nonzero terms. Integrating both sides, we have

∫ 1/2

0

3
√
1 + x dx ≈

∫ 1/2

0

[

1 +
1

3
x− 1

9
x2 +

5

81
x3

]

dx

=

[

x+
x2

2 · 3 − x3

3 · 9 +
5

4 · 81x
4

]1/2

0

=
1

2
+

1

6

(
1

2

)2

− 1

27

(
1

2

)3

+
5

324

(
1

2

)4

=
2789

5184

≈ 0.538.

25. The integrand in
∫ 1/2

0
1

3
√
1+x2

dx can be expanded as a Binomial Series:

1
3
√
1 + x2

= (1 + x2)−1/3 =

∞∑

k=0

(− 1
3

k

)

(x2)k

= 1− 1

3
x2 +

(
− 1

3

) (
− 1

3 − 1
)

2!
x4 +

(
− 1

3

) (
− 1

3 − 1
) (

− 1
3 − 2

)

3!
x6 + · · ·+

(− 1
3

n

)

x2n + · · ·

≈ 1− 1

3
x2 +

2

9
x4 − 14

81
x6

which is the integrand expanded to four nonzero terms. Integrating both sides, we have

∫ 1/2

0

1
3
√
1 + x2

dx ≈
∫ 1/2

0

[

1− 1

3
x2 +

2

9
x4 − 14

81
x6

]

dx

=

[

x− x3

3 · 3 +
2

5 · 9x
5 − 14

7 · 81x
7

]1/2

0

=

(
1

2

)

− 1

9

(
1

2

)3

+
2

45

(
1

2

)5

− 14

567

(
1

2

)7

=
12, 631

25, 920

≈ 0.487.

26. The integrand in
∫ 0.2

0
1√

1+x3
dx can be expanded as a Binomial Series:

1√
1 + x3

= (1 + x3)−1/2 =
∞∑

k=0

(− 1
2

k

)

(x3)k

= 1− 1

2
x3 +

(
− 1

2

) (
− 1

2 − 1
)

2!
x6 +

(
− 1

2

) (
− 1

2 − 1
) (

− 1
2 − 2

)

3!
x9 + · · ·+

(− 1
2

n

)

x3n + · · ·

≈ 1− 1

2
x3 +

3

8
x6 − 5

16
x9
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which is the integrand expanded to four nonzero terms. Integrating both sides, we have

∫ 0.2

0

1√
1 + x3

dx ≈
∫ 0.2

0

[

1− 1

2
x3 +

3

8
x6 − 5

16
x9

]

dx

=

[

x− 1

2 · 4x
4 +

3

8 · 7x
7 − 5

16 · 10x
10

]0.2

0

= 0.2− (0.2)4

8
+

3

56
(0.2)7 − 5

160
(0.2)10

≈ 0.1998.

Applications and Extensions

27. We use the recursion relation

ln(N + 1) = lnN + 2

[

1

2N + 1
+

1

3

(
1

2N + 1

)3

+
1

5

(
1

2N + 1

)5

+ · · ·
]

.

Substituting N = 3, and repeatedly using the recursion relation we get

ln 4 = ln 3 + 2

[

1

2 · 3 + 1
+

1

3

(
1

2 · 3 + 1

)3

+
1

5

(
1

2 · 3 + 1

)5

+ · · ·
]

= ln 2 + 2

[

1

2 · 2 + 1
+

1

3

(
1

2 · 2 + 1

)3

+
1

5

(
1

2 · 2 + 1

)5

+ · · ·
]

+ 2

[

1

7
+

1

3

(
1

7

)3

+
1

5

(
1

7

)5

+ · · ·
]

= ln 1 + 2

[

1

2 · 1 + 1
+

1

3

(
1

2 · 1 + 1

)3

+
1

5

(
1

2 · 1 + 1

)5

+ · · ·
]

+ 2

[

1

5
+

1

3

(
1

5

)3

+
1

5

(
1

5

)5

+ · · ·
]

+ 2

[

1

7
+

1

3

(
1

7

)3

+
1

5

(
1

7

)5

+ · · ·
]

= 0 + 2

[{
1

3
+

1

5
+

1

7

}

+
1

3

{(
1

3

)3

+

(
1

5

)3

+

(
1

7

)3
}

+
1

5

{(
1

3

)5

+

(
1

5

)5

+

(
1

7

)5
}

+ · · ·
]

≈ 1.386147

28. (a) The Maclaurin series of sinx is (see p.716-717, Example 3 )

sinx = x− x3

3!
+

x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · · .

So the Maclaurin series of 3 sin
(
x
2

)
is

3 sin
(x

2

)

= 3

[(x

2

)

− 1

3!

(x

2

)3

+
1

5!

(x

2

)5

− · · ·+ (−1)n
1

(2n+ 1)!

(x

2

)2n+1

+ · · ·
]

=
3x

2
− x3

16
+

x5

1280
− · · ·+ (−1)n

x2n+1

22n+1(2n+ 1)!
+ · · · .
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(b) As shown in Example 3 on p.716-717, the interval of convergence of the Maclaurin series
for sinx is (−∞,∞). So the interval of convergence of the Maclaurin series for 3 sin

(
x
2

)
is also

(−∞,∞).

(c) The error in using the first n nonzero terms of a convergent alternating series is bounded
from above by the absolute value of the n+ 1st term. The error terms are all monomials which
take their maximum values on the interval (−2, 2) at the endpoints (as limits of x → −2+ or
x → 2−) of the interval. We proceed by trial and error:

The error in keeping just the first term is
∣
∣
∣−x3

16

∣
∣
∣, which as x → 2− evaluates to

∣
∣
∣
23

16

∣
∣
∣ = 0.5.

The error in keeping the first two terms is
∣
∣
∣

x5

1280

∣
∣
∣, which as x → 2− evaluates to

∣
∣
∣

25

1280

∣
∣
∣ = 0.025.

The error is already less than the required 0.1, so that only two terms are needed in order to
approximate f on the interval (−2, 2) to an error less than or equal to 0.1. (As a check,

3 sin
(
2
2

)
= 3 sin 1 ≈ 2.524, while 3x

2 − x3

16 evaluated at x = 2 gives 2.5, and
|2.524− 2.5| = 0.024 < 0.1.)

29. (a) To determine the Taylor polynomial, P4(x) centered at x = 0, begin with the

Maclaurin expansion for ex = 1 + x+ x2

2! +
x3

3! +
x4

4! + . . .

Substitute − ln 2
5600x for x to obtain

e[(−ln 2)/5600]x = 1 +

(

− ln 2

5600
x

)

+

(
− ln 2

5600x
)2

2!
+

(
− ln 2

5600x
)3

3!
+

(
− ln 2

5600x
)4

4!
+ . . .

= 1− ln 2

5600
x+

1

2

(
ln 2

5600

)2

x2 − 1

6

(
ln 2

5600

)3

x3 +
1

24

(
ln 2

5600

)4

x4 + . . .

P4(x) = 0.34

[

1− ln 2

5600
x+

1

2

(
ln 2

5600

)2

x2 − 1

6

(
ln 2

5600

)3

x3 +
1

24

(
ln 2

5600

)4

x4

]

= 0.34− 0.34

(
ln 2

5600

)

x+ 0.17

(
ln 2

5600

)2

x2 − 0.17

3

(
ln 2

5600

)3

x3 +
0.17

12

(
ln 2

5600

)4

x4

(b)

30. (a) To determine the Taylor polynomial, P4(x) centered at x = 0, begin with the

Maclaurin expansion for ex = 1 + x+ x2

2! +
x3

3! +
x4

4! + . . . .
Substitute 0.04x for x to obtain

e0.04x = 1 + (0.04x) +
(0.04x)2

2!
+

(0.04x)3

3!
+

(0.04x)4

4!
+ . . .

P4(x) = 5000

[

1 + (0.04x) +
(0.04x)2

2!
+

(0.04x)3

3!
+

(0.04x)4

4!

]

= 5000 + 200x+ 4x2 +
4

75
x3 +

1

1875
x4
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(b)

31. (a) To express f(x) = 100
1+30.2e−0.2x as a Taylor expansion about c = 0, we use technology to

obtain

P3(x) = 3.205 + 0.6205x+ 0.0581x2 + 0.0034x3

(b)

32. (a) To express f(x) = 100e−3e−0.2x

as a Taylor expansion about c = 0, we first consider

f(x) = 100e−3e−0.2x

and its derivatives at c = 0:

f(x) = 100e−3e−0.2x

f(0) = 100e−3

f ′(x) = 60e−3e−0.2x−0.2x f ′(0) = 60e−3

f ′′(x) = 12
(
3− e−0.2x

)
e−3e−0.2x−0.4x f ′′(0) = 24e−3

f ′′′(x) =
12

5

(
9− 9e0.2x + e0.4x

)
e−3e−0.2x−0.6x f ′′′(0) =

12e−3

5

The Taylor Expansion of f(x) centered at c is

f(x) =

∞∑

k=0

fk(c)

k!
(x− c)k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)

2
+

f ′′′(c)

3!
(x− c)

3
+ . . .+

f (n)(c)

n!
(x− c)

n
+ . . .

Here,

P3(x) = 100e−3 + 60e−3(x) +
24e−3

2!
(x)

2
+

12e−3

5 · 3! (x)
3

=
100

e3
+

60x

e3
+

12x2

e3
+

2x3

5e3

= 4.979 + 2.988x+ 0.597x2 + 0.020x3
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(b)

33. (a) From p.716, we write the Maclaurin series of sinx as

F (x) = sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · · .

Since this series is a convergent alternating series, the error in using n terms of the series as an
approximation is bounded from above by the absolute value of the n+ 1st term.
For x = 4◦ = 4◦ · π

180◦ = π
45 , keeping just the first term in the Maclaurin expansion will result

in an error that is less than absolute value of the second term, or
∣
∣
∣−x3

3!

∣
∣
∣. At x = 4◦ = π

45 , the

error bound will be ∣
∣
∣
∣
∣
−
(

π
45

)3

3!

∣
∣
∣
∣
∣
≈ 0.00005 < 0.001.

So we just need the first term to give an answer correct to three decimal places:

sin 4◦ ≈ π

45
≈ 0.0698.

(b) From p.717, we write the Maclaurin series of cosx as

F (x) = cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · · .

Since the series is a convergent alternating series, the error in using n terms of the series as an
approximation is bounded from above by the absolute value of the n+ 1st term.
For x = 15◦ = 15◦ · π

180◦ = π
12 , keeping just the first two terms in the Maclaurin expansion will

result in an error that is less than the absolute value of the third term, or
∣
∣
∣
x4

4!

∣
∣
∣. At

x = 15◦ = π
12 , the error bound will be

∣
∣
∣
∣
∣

(
π
12

)4

4!

∣
∣
∣
∣
∣
≈ 0.0002 < 0.001.

So keeping the first two terms, we have an answer that is correct to three decimal places:

cos 15◦ ≈ 1− 1

2!

( π

12

)2

≈ 0.9659.

(c) From p.708, using Gregory’s series, we write the Maclaurin expansion of tan−1 x as

F (x) = tan−1 x = x− x3

3
+

x5

5
− x7

7
+ · · ·+ (−1)n

x2n+1

(2n+ 1)
+ · · · .

Since the series is a convergent alternating series, the error in using n terms of the series as an
approximation is bounded from above by the absolute value of the n+ 1st term.
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For x = 0.05, the error in keeping just the first two terms in the Maclaurin expansion will

result in an error that is less than the absolute value of the third term, or
∣
∣
∣
x5

5

∣
∣
∣. At x = 0.05,

the error bound will be ∣
∣
∣
∣

(0.05)5

5

∣
∣
∣
∣
= 6.25× 10−8 < 0.001.

So keeping the first two terms, we get an answer correct to three decimal places:

tan−1 0.05 ≈ 0.05− (0.05)3

3
≈ 0.04496.

34. (a) We have, using the standard result (or using the substitution u = tanx, du = sec2 x dx)

∫ 1

0

1

1 + x2
dx =

[
tan−1 x

]1

0
= tan−1 1− tan−1 0 =

π

4
− 0 =

π

4
.

(b) Using the geometric series sum, provided that |x| < 1, we have

1

1 + x2
=

1

1− (−x2)
=

∞∑

k=0

(−1)kx2k = 1− x2 + x4 − x6 + x8 − · · ·+ (−1)nx2n + · · · .

Integrating term by term, we have, also using the result of part (a):

∫ 1

0

1

1 + x2
dx =

π

4
= lim

b→1−

∫ b

0

[
1− x2 + x4 − x6 + x8 − · · ·+ (−1)nx2n + · · ·

]
dx

= lim
b→1−

[

x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · ·+ (−1)n

x2n+1

2n+ 1
+ · · ·

]b

0

or,
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·+ (−1)n

2n+ 1
+ · · ·

which is Leibniz’s result.

(c) Keeping the first ten terms, we have

π

4
≈ 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+

1

13
− 1

15
+

1

17
− 1

19
≈ 0.7604

giving π ≈ 4(0.7604) = 3.0416. The actual value is π ≈ 3.1416, rounded to four decimal places.
So we see that the agreement is pretty poor, accurate to only about

∣
∣
∣
∣

3.1416− 3.0416

3.1416

∣
∣
∣
∣
≈ 3%.

(d) To get an approximation of π accurate to the tenth decimal place, we need the error to be
smaller than 10−10. Since the series for π

4 is a convergent alternating series, the error in using
n terms of the series as an approximation is bounded from above by the absolute value of the
n+ 1st term. So we need, noting that to get the series for π, we need to multiply the series for
π
4 by 4,

4 ·
∣
∣
∣
∣

(−1)n

2n+ 1

∣
∣
∣
∣
≤ 10−10

or 2n+ 1 ≥ 4 · 1010, or n ≥ 2 · 1010 − 1
2 , or n ≈ 2× 1010 terms of the series.
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35. Gregory’s series is (see p. 708)

tan−1 x = x− x3

3
+

x5

5
− x7

7
+ · · ·+ (−1)n

x2n+1

2n+ 1
+ · · · .

At x = 1
2 , we have, approximating with the first four terms of the series,

tan−1

(
1

2

)

≈ 1

2
− 1

3

(
1

2

)3

+
1

5

(
1

2

)5

− 1

7

(
1

2

)7

=
6, 229

13, 440
.

At x = 1
3 , we have, approximating with the first four terms of the series,

tan−1

(
1

3

)

≈ 1

3
− 1

3

(
1

3

)3

+
1

5

(
1

3

)5

− 1

7

(
1

3

)7

=
24, 628

76, 545
.

Since

tan−1 1 =
π

4
= tan−1

(
1

2

)

+ tan−1

(
1

3

)

,

we have

π = 4

[

tan−1

(
1

2

)

+ tan−1

(
1

3

)]

≈ 4

[
6, 229

13, 440
+

24, 628

76, 545

]

=
1, 538, 665

489, 888

≈ 3.14085

an answer that is correct to three decimal places.

36. The general kinetic energy formula may be expanded using the Binomial Series as follows:

Kgen.(v) = mc2




1

√

1− v2

c2

− 1





= mc2

((

1− v2

c2

)−1/2

− 1

)

= mc2

( ∞∑

k=0

(− 1
2

k

)(

−v2

c2

)k

− 1

)

= mc2

[

1− 1

2

(

−v2

c2

)

+

(
− 1

2

) (
− 1

2 − 1
)

2!

(

−v2

c2

)2

+

(
− 1

2

) (
− 1

2 − 1
) (

− 1
2 − 2

)

3!

(

−v2

c2

)3

+ · · · − 1

]

= mc2
[
1

2

v2

c2
+

3

8

v4

c4
+

5

16

v6

c6
+ · · ·

]

=
1

2
mv2 +

3

8
mv2

(
v2

c2

)

+
5

16
mv2

(
v4

c4

)

+ · · ·

=
1

2
mv2

[

1 +
3

4

(v

c

)2

+
5

8

(v

c

)4

+ · · ·
]

≈ 1

2
mv2

if v
c → 0. So we see that the general kinetic energy formula reduces to the classical one

K = 1
2mv2 at speeds v → 0, that is, for low speeds compared to the speed of light.
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Challenge Problems

37. To express f(x) = sinx− λx as a Taylor expansion about c = π, we first consider
f(x) = sinx− λx and its derivatives at c = π:

f(x) = sinx− λx f(π) = −λπ

f ′(x) = cosx− λ f ′(π) = −1− λ

f ′′(x) = −sinx f ′′(π) = 0

The Taylor expansion of f(x) centered at c is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + . . .+

f (n)(c)

n!
(x− c)n + . . .

Here,

P2(x) = −λπ + (−1− λ)(x− π) +
0

2!
(x− π)

2

= −λπ − x+ π − λx+ λπ

= −(1 + λ)x + π

cotx = λx

cotx− λx = 0

f(x) = 0

P2(x) = 0

−(1 + λ)x + π = 0

(−1− λ)x = −π

x =
π

1 + λ

38. To express f(x) = cotx− λx as a Taylor expansion about c = π
2 , we first consider

f(x) = cotx− λx and its derivatives at c = π
2 :

f(x) = cotx− λx f
(π

2

)

=
−πλ

2

f ′(x) = −csc2x− λ f ′
(π

2

)

= −1− λ

f ′′(x) = −2 cscx(−cscx cotx)

=
2 cosx

sin3 x
f ′′
(π

2

)

= 0

The Taylor Expansion of f(x) centered at c is

f(x) =
∞∑

k=0

fk(c)

k!
(x− c)k

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + . . .+

fn(c)

n!
(x− c)n + . . .
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Here,

P2(x) =
−πλ

2
+ (−1− λ)

(

x− π

2

)

+
0

2!

(

x− π

2

)2

=
−πλ

2
− x+

π

2
− λx +

πλ

2

= −x+ π
2 − λx

cotx = λx

cotx− λx = 0

f(x) = 0

P2(x) = 0

−x+
π

2
− λx = 0

(−1− λ)x = −π

2

x =
−π

2

−1− λ

=
π

2(1 + λ)

39. (a) ak = (−1)k+1
∫ π/k

0 sin(kx) dx. Set kx = u. Then x = u
k , and dx = 1

k du.
When x = 0, u = 0; when x = π

k , u = π. So the integral becomes

ak = (−1)k+1 1

k

∫ π

0

sinu du

=
(−1)k+1

k
[− cosu]

∣
∣
∣

π

0

=
(−1)k+1

k
[− cosπ − (− cos 0)]

=
2

k
(−1)k+1.

(b) The series
∞∑

k=1

ak =
∞∑

k=1

2
k (−1)k+1 = 2

∞∑

k=1

(−1)k+1 1
k is a constant multiple of the alternating

harmonic series, which converges, so it converges as well.

(c) On p.707-708, in Example 8 of Section 8.8, it is demonstrated that

∞∑

k=1

(−1)k+1 1

k
= ln 2 ≈ 0.693.

So we have ∞∑

k=1

ak = 2

∞∑

k=1

(−1)k+1 1

k
≈ 2(0.693) = 1.386.

So we conclude that

1 ≤
∞∑

k=1

ak ≤ 3

2
.
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40. The Maclaurin expansion of ex is

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · .

So the Maclaurin expansion of ex
3

is

ex
3

= 1 + x3 +
x6

2!
+

x9

3!
+ · · ·+ x3n

n!
+ · · · .

The Maclaurin series of xex
3

is given by

xex
3

= x+ x4 +
x7

2!
+

x10

3!
+ · · ·+ x3n+1

n!
+ · · · =

∞∑

k=0

x3k+1

k!
.

41. (a) Some terms of the Maclaurin expansion of sin−1 x were obtained in Example 11 of
Section 8.9, p.721. To the ninth order in x, it is

sin−1 x = x+
x3

6
+

3

40
x5 +

5

112
x7 +

35

1152
x9 + · · · .

So we have for x = 1,

sin−1 1 =
π

2
= 1 +

1

6
+

3

40
+

5

112
+

35

1152
+ · · ·

and for x = 1
2 , we have

sin−1

(
1

2

)

=
π

6
=

1

2
+

1

6

(
1

2

)3

+
3

40

(
1

2

)5

+
5

112

(
1

2

)7

+
35

1152

(
1

2

)9

+ · · ·

or,
π

6
=

1

2
+

1

48
+

3

1280
+

5

14, 336
+

35

589, 824
+ · · · .

(b) Evaluating the terms shown in the first expression, we get
π

2
≈ 1.571 correct to three

decimal places.

(c) Evaluating the terms shown in the second expression, we get
π

6
≈ 0.524 correct to three

decimal places.

AP
R©

Practice Problems

1. For y = cosx

P4(x) = 1− x2

2!
+

x4

4!

P4(0.2) = 1− (0.2)
2

2!
+

(0.2)
4

4!
≈ 0.980

CHOICE B
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2. P3(x) = 4 + 2(x− 2) + 3(x− 2)2 +
1

2
(x− 2)

3

f ′(x) = 2 + 6(x− 2) +
3

2
(x− 2)2

f ′′(x) = 6 + 3(x− 2)2

f ′′(2) = 6 + 3(2− 2)2 = 6

CHOICE D

3. Pn(x) =
f(c)

0!
(x− c)0 +

f ′(c)

1!
(x− c)1 +

f ′′(c)

2!
(x− c)2 + . . .+

fn(c)

n!
(x − c)n.

Determine P3(x) centered at −1:

P3(x) =
f(−1)

0!
(x+ 1)0 +

f ′(−1)

1!
(x+ 1)1 +

f ′′(−1)

2!
(x + 1)2 +

f ′′′(−1)

3!
(x+ 1)3

= 4− 3(x+ 1) +
3

2!
(x+ 1)2 +

2

3!
(x + 1)3

= 4− 3(x+ 1) +
3

2
(x + 1)

2
+

1

3
(x+ 1)

3

CHOICE D

4. (a) Utilize the MacLaurin expansion for

ex = 1 + x+
x2

2!
+

x3

3!
+ . . .+

xn

n!
+ . . . =

∞∑

k=0

xk

k!

f(x) = e−x = 1 + (−x) +
(−x)2

2!
+

(−x)3

3!
+ . . .+

(−x)n

n!
+ . . .

= 1− x+
x2

2!
− x3

3!
+ ...+

(−x)n

n!
=

∞∑

k=0

(−1)kxk

k!

(b) e−0.1 ≈ 1− (0.1) +
(0.1)2

2!
= 1− 0.1 + 0.005

= 0.905

(c) Since the series is a convergent series of alternating terms, the absolute value of the
error after the nth term is less than or equal to the absolute value of the n+ 1st
term. By trial-and-error:

4th term (n = 3):

∣
∣
∣
∣
∣

(−1)
3
(0.1)

3

3!

∣
∣
∣
∣
∣
= 0.00016̄ > 0.00001

5th term (n = 4):

∣
∣
∣
∣
∣

(−1)4(0.1)4

4!

∣
∣
∣
∣
∣
= 0.00000416̄< 0.00001

Since the absolute value of the 5th term is less than the desired error, 4 terms are
sufficient.
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5. (a) f(x) =
1√
2π

e−x2/2

Using the first four nonzero terms of the Maclaurin expansion for

ex = 1 + x+
x2

2!
+

x3

3!

we find

e−x2/2 = 1 +
−x2

2
+

(
−x2

2

)2

2!
+

(
−x2

2

)3

3!
= 1− 1

2
x2 +

1

8
x4 − 1

48
x6

1√
2π

e−x2/2 =
1√
2π

(

1− 1

2
x2 +

1

8
x4 − 1

48
x6

)

(b)

∫ 1

0

1√
2π

e−x2/2 dx =

∫ 1

0

1√
2π

(

1− x2

2
+

x4

8
− x6

48

)

dx

=
1√
2π

∫ 1

0

(

1− x2

2
+

x4

8
− x6

48

)

dx

=
1√
2π

[

x− x3

6
+

x5

40
− x7

336

]1

0

=
1√
2π

[

1− 1

6
+

1

40
− 1

336
− 0

]

=
1√
2π

· 479
560

≈ 0.341

(c) A bound on the error in the approximation of a convergent Alternating Series by
using terms a0 through an is given by |En| ≤ an+1.
Here,

|E4| ≤ a5 =

∫ 1

0

1√
2π

·

(
x2

2

)4

4!
dx =

1√
2π

· 1

24
· 1

4!

∫ 1

0

x8 dx

=
1√
2π

· 1

384

[
x9

9

]1

0

=
1√
2π

· 1

3456
≈ 1.154× 10−4

(d) According to the Error Estimate for a Convergent Alternating Series theorem
(p. 682), the error estimate given in Part (c) above is valid if the conditions of the
Alternating Series Test (p. 680) are met, namely, (i) the series is an alternating

series of the form
∞∑

k=1

(−1)
k+1

ak or
∞∑

k=1

(−1)
k
ak; (ii) lim

n→∞
an = 0; and (iii) the ak are

non-decreasing.

(i) The series is

1∫

0






∞∑

k=0

1√
2π

·

(

−x2

2

)k

k!




dx =

1∫

0

[ ∞∑

k=0

(−1)
k x2k

√
2π · 2k · k!

]

dx =

∞∑

k=0





1∫

0

(−1)
k x2k

√
2π·2k · k!

dx



 =

∞∑

k=0



(−1)
k 1

2k · k! ·
1∫

0

x2k dx



 =

∞∑

k=0

{

(−1)k
1√

2π · 2k · k!
·
[
x2k+1

2k + 1

]1

0

}

=
∞∑

k=0

(−1)k
1√

2π · 2k · k!(2k + 1)
,

which can be rewritten =
∞∑

k=1

(−1)
k+1 1√

2π·2k−1·(k−1)![2(k−1)+1]
to show that it is

the first type.
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(ii) lim
n→∞

an = lim
n→∞

1√
2π · 2n · n!(2n+ 1)

= 0.

(iii)
ak+1

ak
=

1√
2π·2k+1·(k+1)![2(k+1)+1]

1√
2π·2k·k!(2k+1)

=

√
2π · 2k · k!(2k + 1)√

2π · 2k+1 · (k + 1)!(2k + 2)

=
2k + 1

2(k + 1)(2k + 2)
=

2k + 1

4k2 + 8k + 4
.

The terms are non-increasing if

ak+1

ak
≤ 1

2k + 1

4k2 + 8k + 4
≤ 1

2k + 1 ≤ 4k2 + 8k + 4

0 ≤ 4k2 + 6k + 3

0 ≤ 4

(

k2 +
3

2
k +

9

16

)

+ 3− 4 · 9

16

0 ≤ 4

(

k +
3

2

)2

+
3

4

which is true for all k.
The conditions are met, so the use of the error bound is valid.

(e) The error, En, of a convergent Alternating Series using n terms is numerically less
than or equal to the (n+ 1)st term of the series. (i.e., |En| ≤ an+1).

Here, |En| < an+1 ≤ a5 = 1√
2π

∫ 1

0
x8

384 dx

If the numbers ak, where ak > 0 of an alternating series satisfy two conditions:
lim
n→∞

(an) = 0 and the ak are nonincreasing, then the alternating series converges.

The series
∫ 1

0
1√
2π

e−x2/2 dx =
∫ 1

0
1√
2π

(

1− x2

2 + x4

8 − x6

48

)

dx =

1√
2π

[

x− x3

6 + x5

40 − x7

336

]1

0
is an alternating series, where

an =
x2n+1

(2n+ 1)(2n)(n!)

For 1√
2π

[
1− 1

6 + 1
40 − 1

336 − 0
]

an =
1

(2n+ 1)(2n)(n!)

We begin by confirming that lim
n→∞

(an) = lim
n→∞

1
(2n+1)(2n)(n!) = 0. Next, using the

Algebraic Ratio test, we verify that the terms ak = 1
(2n+1)(2n)(n!) are nonincreasing.

Since

an+1

an
=

1
(2(n+1)+1)(2n+1)(n+1)!

1
(2n+1)(2n)(n!)

=
(2n+ 1)(2n)(n!)

(2(n+ 1) + 1)(2n+1)(n+ 1)!

=
(2n+ 1)(2n)(n!)

(2n+ 3)(2n)(2)(n+ 1)(n!)
=

(2n+ 1)

(2n+ 3)(2)(n+ 1)
=

1

2

(
2n+ 1

2n+ 3

)(
1

n+ 1

)

=
1

2

(
2 + 1

n

2 + 3
n

)(
1

n+ 1

)

< 1 for all n ≥ 1 the terms ak

are nonincreasing. By the Alternating Series Test, the series converges.
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Chapter 8 Review Exercises

1. The nth term of the sequence is sn = (−1)n+1

n4 . Setting n = 1, 2, 3, 4, 5, we get the first five
terms of the sequence to be

{sn} =

{
(−1)1+1

14
,
(−1)2+1

24
,
(−1)3+1

34
,
(−1)4+1

44
,
(−1)5+1

54
, · · ·

}

=

{

1,− 1

24
,
1

34
,− 1

44
,
1

54
, · · ·

}

.

So the first five terms of the sequence are

1,− 1

16
,
1

81
,− 1

256
,

1

625
.

2. The nth term of the sequence is sn = 2n

3n . Setting n = 1, 2, 3, 4, 5, we get the first five terms
of the sequence to be

{sn} =

{
21

31
,
22

32
,
23

33
,
24

34
,
25

35
, · · ·

}

=

{
2

3
,
4

9
,
8

27
,
16

81
,
32

243
, · · ·

}

.

So the first five terms of the sequence are

2

3
,
4

9
,
8

27
,
16

81
,
32

243
.

3. The terms of the sequence

2,−3

2
,
9

8
,−27

32
,
81

128
, · · ·

can be written as

(−1)1+1 30

20−1
, (−1)2+1 31

22−1
, (−1)3+1 32

24−1
, (−1)4+1 33

26−1
, (−1)5+1 34

28−1
, · · · .

So the nth term of the sequence is

sn = (−1)n+1 3n−1

22n−3

= (−1)n−1 · (−1)2 · 2 · 3n−1

22n−2

= (−1)n−12 · 3
n−1

4n−1

= 2

(

−3

4

)n−1

.

4. The sequence is {sn} =
{

1 + n
n2+1

}

. Using the sum and difference property of sequences,

we have

lim
n→∞

sn = lim
n→∞

(

1 +
n

n2 + 1

)

= lim
n→∞

1 + lim
n→∞

n

n2 + 1
= 1 + 0 = 1.
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5. The sequence is {sn} =
{
ln n+2

n

}
= {ln bn}, where bn = n+2

n . The sequence {bn} converges
to

lim
n→∞

bn = lim
n→∞

n+ 2

n
= lim

n→∞

(

1 +
2

n

)

= 1 + 0 = 1.

So by the theorem on p.636, setting f(x) = lnx, which is continuous at x = 1 (the value of the
limit of bn), we conclude that the limit of the original sequence is

ln(1) = 0.

6. The sequence is {sn} = {tan−1 n}. Let f(x) = tan−1 x be a related function of the
sequence. Since f ′(x) = 1

1+x2 > 0 for all x ≥ 1, the function is monotonically increasing, which
means the sequence is also monotonically increasing for n ≥ 1. Also,

tan−1 n ≤ π

2

for all positive nonzero integers n, so the sequence {sn} is bounded from above. Since the
sequence {sn} is an increasing sequence that is bounded from above, it converges , and the

limit of the sequence is

lim
n→∞

sn = lim
n→∞

tan−1 n =
π

2
.

7. The sequence is {sn} =
{

(−1)n

(n+1)2

}

. Since

− 1

(n+ 1)2
≤ (−1)n

(n+ 1)2
≤ 1

(n+ 1)2
,

and the sequences
{

− 1
(n+1)2

}

and
{

1
(n+1)2

}

are both convergent, and converge to the limit of

0, since lim
n→∞

1
(n+1)2 = 0, we have by the Squeeze Theorem of sequences that

lim
n→∞

sn = 0.

8. The sequence is {sn} =
{

en

(n+2)2

}

. To determine if the sequence is increasing or decreasing,

apply the Algebraic Ratio Test:

sn+1

sn
=

en+1

(n+3)2

en

(n+2)2
= e

(
n+ 2

n+ 3

)2

.

We show that

2

(
n+ 2

n+ 3

)2

> 1.

Then this will mean that e
(

n+2
n+3

)2

> 1 as well, since e > 2. Expanding the desired inequality,

we get
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2

(
n+ 2

n+ 3

)2

> 1

2(n+ 2)2 > (n+ 3)2

2(n2 + 4n+ 4) > n2 + 6n+ 9

2n2 + 8n+ 8 > n2 + 6n+ 9

n2 + 2n− 1 > 0

n2 + 2n+ 1− 2 > 0

(n+ 1)2 − 2 > 0

(n+ 1)2 > 2,

which is true for all n ≥ 1. So this shows that the sequence is increasing since we have shown

that sn+1

sn
> 1. Also the sequence is bounded from below by its first terrm

s1 =
e

(1 + 2)2
=

e

9
.

It is not bounded from above since

lim
n→∞

sn = lim
n→∞

en

(n+ 2)2
= lim

x→∞
ex

(x + 2)2
= lim

x→∞
ex

2(x+ 2)
= lim

x→∞
ex

2
= ∞,

where we used a related function of the nth term of the sequence and applied L’Hôpital’s rule

to it. Since the sequence is increasing, and it is not bounded from above, it diverges.

9. The sequence {sn} = {n!} diverges since lim
n→∞

sn = lim
n→∞

n! = ∞.

10. The sequence {sn} =
{(

5
8

)n}
is of the form {sn} = {rn} where −1 < r = 5

8 < 1. Since
lim
n→∞

rn = 0 for −1 < r < 1, we have lim
n→∞

sn = 0, that is, the sequence converges to the limit

of 0.

11. The sequence {sn} =
{(

− 1
2

)n}
is of the form {sn} = {rn} where −1 < r = − 1

2 < 1. Since
lim
n→∞

rn = 0 for −1 < r < 1, we have lim
n→∞

sn = 0, that is, the sequence converges to the limit

of 0.

12. The sequence is {sn} = {(−1)n + e−n}. As n → ∞, lim
n→∞

e−n = 0 but lim
n→∞

(−1)n does not

exist. Since lim
n→∞

sn does not exist, the sequence diverges.

13. The sequence {sn} =
{
1 + 2

n

}
is decreasing since using the Algebraic Difference Test, we

have

sn+1 − sn = 1+
2

n+ 1
− 1− 2

n
= 2

(
1

n+ 1
− 1

n

)

= − 2

n(n+ 1)
< 0

for n ≥ 1. It’s also bounded from below by 1, since sn = 1 + 2
n > 1 for all n ≥ 1. Since the

sequence is decreasing and bounded from below, it converges.
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14. The series is
∞∑

k=1

ak =
∞∑

k=1

(−1)k

4k−1 . The fifth partial sum of the series is

S5 =

5∑

k=1

(−1)k

4k−1

=
(−1)1

41−1
+

(−1)2

42−1
+

(−1)3

43−1
+

(−1)4

44−1
+

(−1)5

45−1

= − 1

40
+

1

4
− 1

42
+

1

43
− 1

44

= −1 +
1

4
− 1

16
+

1

64
− 1

256

= −205

256
.

15. The telescoping series is
∞∑

k=1

ak =
∞∑

k=1

(
4

k+4 − 4
k+5

)

. The nth partial sum of the series is

Sn =
n∑

k=1

(
4

k + 4
− 4

k + 5

)

=

(
4

1 + 4
− 4

1 + 5

)

+

(
4

2 + 4
− 4

2 + 5

)

+ · · ·+
(

4

n− 1 + 4
− 4

n− 1 + 5

)

+

(
4

n+ 4
− 4

n+ 5

)

=

(
4

5
− 4

6

)

+

(
4

6
− 4

7

)

+ · · ·+
(

4

n+ 3
− 4

n+ 4

)

+

(
4

n+ 4
− 4

n+ 5

)

=
4

5
− 4

n+ 5
.

The limit of the sequence of partial sums is

lim
n→∞

Sn = lim
n→∞

(
4

5
− 4

n+ 5

)

= lim
n→∞

4

5
− lim

n→∞
4

n+ 5
=

4

5
− 0 =

4

5

is the sum of the telescoping series.

16. The series is
∞∑

k=1

ak =
∞∑

k=1

cos2(kπ)
k . Since cos2(nπ) = 1 for any value of n, we may write the

series as
∞∑

k=1

ak =
∞∑

k=1

1
k . But this is the harmonic series which diverges.

17. The series
∞∑

k=1

ak =
∞∑

k=1

−(ln 2)k =
∞∑

k=1

(− ln 2)(ln 2)k−1 is a geometric series of the form

∞∑

k=1

ark−1 where a = (− ln 2) and r = ln 2 ≈ 0.693 < 1. Since |r| < 1, the geometric series

converges to a sum of

a

1− r
=

− ln 2

1− ln 2
=

ln 2

ln 2− 1
.

18. The series can be written
∞∑

k=0

ak =
∞∑

k=0

e
3k

= e+
∞∑

k=1

(
e
3

) (
1
3

)k−1
. The second term is a

geometric series of the form
∞∑

k=1

ark−1 where a = e
3 and r = 1

3 . Since |r| < 1, the geometric

series converges to a sum of
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a

1− r
=

e
3

1− 1
3

=
e/3

2/3
=

e

2
.

The original series then converges to a sum of e+ e
2 =

3e

2
.

19. The series
∞∑

k=1

ak =
∞∑

k=1

(
41/3

)k
=

∞∑

k=1

41/3 ·
(
41/3

)k−1
is of the form of a geometric series

∞∑

k=1

ark−1 where a = 41/3 and r = 41/3 > 1. Since |r| > 1, the series diverges.

20. The number r = 0.123123123 · · · can be written and then summed into a rational number
form, using the properties of convergent geometric series as shown below:

r = 0.123123123123 · · ·
= 0.123 + 0.123× 10−3 + 0.123× 10−6 + 0.123× 10−9 + · · ·
= 0.123

[

1 + 10−3 +
(
10−3

)2
+
(
10−3

)3
+ · · ·

]

= 0.123 ·
∞∑

k=1

(
10−3

)k−1

= 0.123 · 1

1− 10−3

= 0.123 · 103

103 − 1
= 0.123

(
1000

999

)

=
123

999
=

41

333
.

21. The series is
∞∑

k=1

ak =
∞∑

k=1

3k−2
k . Since

lim
n→∞

an = lim
n→∞

3n− 2

n
− lim

n→∞

(

3− 2

n

)

= lim
n→∞

3− lim
n→∞

2

n
= 3− 0 = 3 6= 0,

the series diverges by the Divergence Test.

22. The series is
∞∑

k=1

ak =
∞∑

k=1

ln k
k2 . A related function of the nth term of the series is

f(x) = ln x
x2 , which is continuous and decreasing on [1,∞), and for which f(k) = ak for all

positive nonzero integers k. To see it is decreasing, compute f ′(x):

f ′(x) =
x2 · 1

x − lnx · 2x
x4

=
x− 2x lnx

x4
=

1− 2 lnx

x3
< 0

for x >
√
e. So the series decreases for n > 1. By the Integral Test,

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

f(x) dx = lim
b→∞

∫ b

1

lnx

x2
dx.



8-284 Chapter 8 Infinite Series

Let u = lnx, dv = dx
x2 . Then du = dx

x , v = − 1
x . So

I = lim
b→∞

∫ b

1

lnx

x2
dx = lim

b→∞

[[

lnx · − 1

x

]b

1

+

∫ b

1

dx

x2

]

= lim
b→∞

[(

− ln b

b
+

ln 1

1

)

+

[

− 1

x

]b

1

]

= − lim
b→∞

ln b

b
+ 0 + lim

b→∞

(

−1

b
+ 1

)

= − lim
b→∞

1
b

1
+ (−0 + 1) = −0 + (−0 + 1) = 1,

where L’Hôpital’s rule was used on the first term in the final line. Since the limit is a positive
real number, by the Integral Test, the series converges.

23. The series is
∞∑

k=1

ak =
∞∑

k=1

1
4k2+9 . A related function of the nth term of the series is

f(x) = 1
4x2+9 , which is continuous and decreasing on [1,∞), and for which f(k) = ak for all

positive nonzero integers k. To apply the integral test, we have to evaluate

I =

∫ ∞

1

f(x) dx =

∫ ∞

1

dx

4x2 + 9
.

Let x = 3
2 tan θ. Then dx = 3

2 sec
2 θ dθ. When x = 1, tan θ = 2

3 , or θ = tan−1 2
3 . As n → ∞,

θ → π
2 . So we have

I =

∫ π
2

tan−1 2
3

3
2 sec

2 θ dθ

4
(
9
4 tan

2 θ
)
+ 9

=
3

2 · 9

∫ π
2

tan−1 2
3

sec2 θ dθ

1 + tan2 θ

=
1

6

∫ π
2

tan−1 2
3

sec2 θ dθ

sec2 θ
=

1

6
[θ]
∣
∣
∣

π
2

tan−1 2
3

=
1

6

[
π

2
− tan−1 2

3

]

.

Since tan−1 x < π
2 for any x, the integral is a positive real number, so by the Integral Test, the

series converges.

24. The p-series
∞∑

k=1

ak =
∞∑

k=1

1
k5/2 converges since p = 5

2 > 1. The bounds for the sum for a

general convergent p-series are

1

p− 1
<

∞∑

k=1

1

kp
< 1 +

1

p− 1
,

so for this particular p-series they will be

(
1

5
2 − 1

, 1 +
1

5
2 − 1

)

=

(
2

3
,
5

3

)

.

So the series has a lower bound
2

3
and upper bound

5

3
.
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25. The series is
∞∑

k=5

ak =
∞∑

k=5

[
1
k5 · 1

2k

]
. We have

an =
1

n5
· 1

2n
<

1

n5
= bn

for all n ≥ 5. Since the series
∞∑

k=5

bk =
∞∑

k=5

1
k5 is a convergent p-series (since p = 5 > 1) from the

fifth term forward, and since the omission of a finite number of terms does not affect

convergence or divergence properties of a p-series, the original series
∞∑

k=5

ak also converges by

the Comparison Test.

26. The series
∞∑

k=1

[
3
5k

−
(
2
3

)k−1
]

=
∞∑

k=1

[
3
5 ·
(
1
5

)k−1 −
(
2
3

)k−1
]

can be written as a difference of

two geometric series,
∞∑

k=1

3
5 ·
(
1
5

)k−1 −
∞∑

k=1

(
2
3

)k−1
each of which converges absolutely (since

|r| = 1
5 < 1 and |r| = 2

3 < 1), so the original series also converges.

27. The series
∞∑

k=1

3
k5 is a constant multiple of a convergent p-series (since p = 5 > 1), so it also

converges.

28. The series is
∞∑

k=1

ak =
∞∑

k=1

1√
k+1

. The nth term of the series satisfies

an =
1√
n+ 1

>
1

n+ 1
= bn

for n ≥ 1 since n+ 1 >
√
n+ 1 for n ≥ 1. But the series

∞∑

k=1

bk =
∞∑

k=1

1
k+1 = 1

2 + 1
3 + 1

3 · · ·+ 1
n + · · · is a harmonic series from the second term forward,

and since the convergence or divergence properties of a series is not affected by the omission of

a finite number of terms, the series
∞∑

k=1

bk diverges, and so we see that the original series

diverges as well by the Comparison Test.

29. The series is
∞∑

k=1

ak =
∞∑

k=1

k+1
kk+1 . The nth term of the series behaves like

an =
n+ 1

nn+1
=

n+ 1

n
· 1

nn
=

(

1 +
1

n

)

· 1

nn
≈ 1

nn
= bn

for large values of n. We evaluate

lim
n→∞

an
bn

= lim
n→∞

n+1
nn+1

1
nn

= lim
n→∞

(n+ 1) ·
(

nn

nn+1

)

= lim
n→∞

n+ 1

n
= lim

n→∞

(

1 +
1

n

)

= 1.

Since the limit is a positive real number and the series
∞∑

k=1

bk =
∞∑

k=1

1
kk is the convergent

“k-to-the-k” series, the original series
∞∑

k=1

ak is also convergent by the Limit Comparison Test.
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30. The series is
∞∑

k=1

ak =
∞∑

k=1

4
k 3k

. The nth term of the series satisfies

an =
4

n 3n
≤ 4

3n
= bn

for n ≥ 1. Since the series
∞∑

k=1

bk =
∞∑

k=1

4
3n =

∞∑

k=1

4
3

(
1
3

)k−1
is a convergent geometric series

(since |r| = 1
3 < 1), the original series converges by the Comparison Test.

31. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 k+2
k(k+1) . We have

lim
n→∞

an = lim
n→∞

n+ 2

n(n+ 1)
= lim

n→∞

1 + 2
n

n
(
1 + 1

n

) = 0.

By the Algebraic Ratio Test,

an+1

an
=

n+3
(n+1)(n+2)

n+2
n(n+1)

=
n(n+ 3)

(n+ 2)2
=

n2 + 3n

n2 + 4n+ 4
< 1.

So by the Alternating Series Test, the series converges.

To find the sum of the series to an accuracy of 0.001, we first estimate how many terms we
must keep in the summation of the series. The error in keeping the first n− 1 terms of a
convergent alternating series is bounded from above by the absolute value of the nth term; so
we require n+2

n(n+1) = 0.001. This is equivalent to

n+ 2

n(n+ 1)
=

1

1000

1000n+ 2000 = n2 + n

n2 − 999n− 2000 = 0.

Solving the quadratic equation, we find that the smallest number greater than the positive
solution is n = 1001. Carrying out the sum of the first 1000 terms of the series (since
n− 1 = 1001− 1 = 1000), we get

1000∑

k=1

(−1)k+1 k + 2

k(k + 1)
≈ 1.079

which is correct to three decimal places.

32. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 k2

ek
. We have

lim
n→∞

an = lim
n→∞

n2

en
= lim

x→∞
x2

ex
= lim

x→∞
2x

ex
= lim

x→∞
2

ex
= 0,

using L’Hôpital’s rule repeatedly on a related function of the nth term. By the Algebraic Ratio
Test,

lim
n→∞

an+1

an
=

(n+1)2

en+1

n2

en

=

(
n+ 1

n

)2

· 1
e
< 1,

if n+ 1 <
√
en or (

√
e− 1)n > 1, or n > 1√

e−1
≈ 1.54. So for n ≥ 2, the series decreases. Since

the convergence property does not depend on the behavior of a finite number of terms, we
conclude that by the Algebraic Ratio Test, the series converges, even if its sum begins at n = 1.
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To find the sum of the series to an accuracy of 0.001, we first estimate how many terms we
must keep in the summation of the series. The error in keeping the first n− 1 terms of a
convergent alternating series is bounded from above by the absolute value of the nth term; so

we require n2

en = 0.001, or en = 1000n2. By a process of trial and error, we find that n ≈ 12.
Carrying out the sum of the first 11 terms of the series (since n− 1 = 12− 1 = 11) we get

11∑

k=1

(−1)k+1 k
2

ek
≈ 0.091

which is correct to three decimal places.

33. The series is
∞∑

k=1

(−1)kak =
∞∑

k=1

(−1)k 3
3√
k
. We have

lim
n→∞

an = lim
n→∞

sin
3
3
√
n
= 0.

By the Algebraic Ratio Test,

an+1

an
=

3
3√n+1

3
3
√
n

= 3

√
n

n+ 1
< 1,

for n ≥ 1. So, by the Alternating Series Test, the series converges. This series cannot be
summed by exact methods, so we have to approximate the sum by using the error estimate.
The error in keeping the first n− 1 terms of a convergent alternating series is bounded from
above by the absolute value of the nth term; so we require

an =
3
3
√
n
= 10−3 or 3

√
n = 3× 103 or n = 27× 109.

Using a CAS, we do the computation to these many terms, and obtain the sum of

approximately −1.715 , an answer that is correct to three decimal places. (The exact answer

is 3(22/3 − 1)ζ
(
1
3

)
, where ζ(s) is the Riemann zeta function introduced in Problem 85, Section

8.3, p.670.)

34. The series is
∞∑

k=1

sin
(
π
2k
)
. The sequence of partial sums has the form

{Sn} = {1, 0,−1, 0, 1, · · · }. It does not converge, so the series diverges .

35. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1

√
k

. We have

lim
n→∞

an = lim
n→∞

1√
n
= 0.

By the Algebraic Ratio Test,

an+1

an
=

1√
n+1
1√
n

=

√
n√

n+ 1
< 1

for all n ≥ 1. So, by the Alternating Series Test, the series converges. The series of absolute

values
∞∑

k=1

ak =
∞∑

k=1

1√
k
is a p-series with 0 < p = 1

2 < 1, so it is divergent. Since the original
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series converges, but the series of absolute values diverges, the original series

converges conditionally.

36. The series is
∞∑

k=1

ak =
∞∑

k=1

cos k
k3 . The series of absolute values is

∞∑

k=1

|ak| =
∞∑

k=1

| cos k|
k3 . The

nth term satisfies

|an| =
| cosn|
n3

≤ 1

n3
= bn

for all n ≥ 1. Since the series
∞∑

k=1

bk =
∞∑

k=1

1
k3 is a convergent p-series (since p = 3 > 1), the

series of absolute values converges by the Comparison Test, and so the original series is

absolutely convergent.

37. The nth term of the series

1

2
− 4

23 + 1
+

9

33 + 1
− 16

43 + 1
+ · · ·

is

an = (−1)n+1 n2

n3 + 1
.

It satisfies

lim
n→∞

|an| = lim
n→∞

n2

n3 + 1
= 0.

By the Algebraic Ratio Test,

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

(n+1)2

(n+1)3+1

n2

n3+1

=
(n+ 1)2

n2
· (n3 + 1)

[(n+ 1)3 + 1]

=
(n2 + 2n+ 1)(n3 + 1)

n2[(n3 + 3n2 + 3n+ 1) + 1]
=

n5 + 2n4 + n3 + n2 + 2n+ 1

n5 + 3n4 + 3n3 + 2n2
< 1,

provided we have

n5 + 2n4 + n3 + n2 + 2n+ 1 < n5 + 3n4 + 3n3 + 2n2

or, 2n+ 1 < n4 + 2n3 + n2

or, 2n+ 1 < n2(n2 + 2n+ 1)

which is true for all n ≥ 1. So the series of absolute values decreases as well. By the
Alternating Series Test, the original series converges. The nth term of the series of absolute

values
∞∑

k=1

|ak| =
∞∑

k=1

k2

k3+1 behaves for large values of n like

|an| =
n2

n3 + 1
=

n2

n3
(
1 + 1

n3

) ≈ 1

n
= |bn|.

Comparing with the divergent harmonic series
∞∑

k=1

|bk| =
∞∑

k=1

1
k , we get

lim
n→∞

∣
∣
∣
∣

an
bn

∣
∣
∣
∣
= lim

n→∞

n2

n3+1
1
n

= lim
n→∞

n3

n3 + 1
= 1.
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Since the limit is a positive real number and the series
∞∑

k=1

|bk| is divergent, it means that the

series of absolute values
∞∑

k=1

|ak| is also divergent by the Limit Comparison Test. Since the

original series converges, but the series of absolute values diverges, the original series is

conditionally convergent.

38.
∞∑

k=1

ak =
∞∑

k=1

2k

k! is a series of nonzero terms. By the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

2n+1

(n+1)!

2n

n!

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

2n+1

2n
· n!

(n+ 1)n!

∣
∣
∣
∣
= 2 lim

n→∞
1

n+ 1
= 0 < 1.

Since the limit is less than 1, the series converges by the Ratio Test.

39.
∞∑

k=1

ak =
∞∑

k=1

k!

ek2 is a series of nonzero terms. By the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(n+1)!

e(n+1)2

n!
en2

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

en
2

e(n2+2n+1)
· (n+ 1)n!

n!

∣
∣
∣
∣
∣

= lim
n→∞

n+ 1

e2n+1
= lim

x→∞
x+ 1

e2x+1
= lim

x→∞
1

2e2x+1

= 0,

applying L’Hôpital’s rule to a related function of the ratio. Since the limit is less than 1, by the
Ratio Test, we conclude that the series converges.

40.
∞∑

k=1

ak =
∞∑

k=1

2k

(k+3)k+1 is a series of nonzero terms. By the Root Test,

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

2n

(n+ 3)n+1

∣
∣
∣
∣
= 2 lim

n→∞
1

(n+ 3)(n+1)/n
= 2 lim

n→∞
1

(n+ 3)(n+ 3)1/n

= 2 lim
n→∞

1

n+ 3
· lim
n→∞

1

n1/n
· lim
n→∞

1
(
1 + 3

n

)1/n

= 2 · 0 · 1 · 1

(1 + 0)0

= 0,

where we have used the limit result lim
n→∞

n1/n = 1 (see solutions to Exercise 43 of Section 8.6

for a proof). Since the limit is less than 1, by the Root Test, the series converges.

41. We use the Root Test:

lim
n→∞

n

√
∣
∣
∣
∣

[

ln

(

e4 +
1

n2

)]n∣
∣
∣
∣
= lim

n→∞
ln

(

e4 +
1

n2

)

= ln e4 = 4 > 1

Therefore the series diverges .
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42. The series∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 2k+1

3k
=

∞∑

k=1

(−2)k+1

3k
=

∞∑

k=1

(−2)2

3 ·
(
− 2

3

)k−1
=

∞∑

k=1

4
3

(
− 2

3

)k−1
is a

geometric series of the form
∞∑

k=1

ark−1 with a = 4
3 and r = − 2

3 . Since 0 < |r| < 1, the series

converges.

43. The series can be written
∞∑

k=1

ak =
∞∑

k=1

ln
(
1 + 1

k

)
=

∞∑

k=1

ln
(
k+1
k

)
=

∞∑

k=1

(ln(k + 1)− ln k).

The nth partial sum is

Sn =

n∑

k=1

(ln(k + 1)− ln k)

= (ln 2− ln 1) + (ln 3− ln 2) + · · ·+ (lnn− ln(n− 1)) + (ln(n+ 1)− lnn)

= ln(n+ 1)− ln 1 = ln(n+ 1)− 0

= ln(n+ 1).

Since
lim
n→∞

Sn = lim
n→∞

ln(n+ 1) = ∞,

the sequence of partial sums {Sn} diverges, which means that the series diverges as well.

44. The series is
∞∑

k=5

ak =
∞∑

k=5

3
k
√
k−4

. The nth term satisfies

an =
3

n
√
n− 4

<
3

(n− 4)
√
n− 4

=
3

(n− 4)3/2
= bn,

for all n ≥ 5. Consider the series
∞∑

k=5

bk =
∞∑

k=5

3
(k−4)3/2

. Setting k − 4 = k′, we get
∞∑

k′=1

3
k′3/2 .

This is a constant multiple of a convergent p-series (since p = 3
2 > 1), so the series

∞∑

k=5

bk

converges. By the Comparison Test, this means that the original series
∞∑

k=5

ak converges as

well.

45.
∞∑

k=1

ak =
∞∑

k=1

1
(

1+ k2+1

k2

)k is a series of nonzero terms. Using the Root Test,

lim
n→∞

n
√

|an| = lim
n→∞

n

√
√
√
√

∣
∣
∣
∣
∣

1
(
1 + n2+1

n2

)n

∣
∣
∣
∣
∣
= lim

n→∞
1

(
1 + n2+1

n2

) = lim
n→∞

1

1 +
(
1 + 1

n2

) =
1

1 + (1 + 0)
=

1

2
< 1.

Since the limit is less than 1, the series converges by the Root Test.

46. The series is
∞∑

k=1

ak =
∞∑

k=1

2·4·6···(2k)
1·3·5···(2k−1) . We can write the nth term as

an =
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)
=

(2 · 4 · 6 · · · (2n))2
1 · 2 · 3 · 4 · 5 · · · (2n− 1)(2n)

=
[2n · n!]2
(2n)!

=
22n(n!)2

(2n)!
.
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The Ratio Test can be used since an 6= 0 for all n ≥ 1. We have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

22(n+1)((n+1)!)2

(2(n+1))!

22n(n!)2

(2n)!

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
∣

22n+2

22n
·
(
(n+ 1)n!

n!

)2

· (2n)!

(2n+ 2)(2n+ 1)(2n)!

∣
∣
∣
∣
∣

= 22 lim
n→∞

∣
∣
∣
∣

(n+ 1)2

(2n+ 2)(2n+ 1)

∣
∣
∣
∣

= 4 lim
n→∞

∣
∣
∣
∣
∣

(
1 + 1

n

)2

(
2 + 2

n

) (
2 + 1

n

)

∣
∣
∣
∣
∣

= 4 ·
∣
∣
∣
∣

1 + 0

(2 + 0)(2 + 0)

∣
∣
∣
∣
= 4 · 1

4
= 1.

Since the limit is equal to 1, the Ratio Test is inconclusive. However, observe that using

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= 4

∣
∣
∣
∣

(n+ 1)2

(2n+ 2)(2n+ 1)

∣
∣
∣
∣

we can show that
∣
∣
∣
an+1

an

∣
∣
∣ > 1. This happens when

4

∣
∣
∣
∣

(n+ 1)2

(2n+ 2)(2n+ 1)

∣
∣
∣
∣
> 1

4(n+ 1)2 > (2n+ 2)(2n+ 1)

4(n2 + 2n+ 1) > 4n2 + 4n+ 2n+ 2

4n2 + 8n+ 4 > 4n2 + 6n+ 2

2n+ 4 > 2

or, 2n > −2,

which is true for all n ≥ 1. So the terms of the series are increasing. Since the first term,

a1 = 22(1!)
2! = 2, and the terms of the series are increasing, it would mean that

lim
n→∞

an > a1 = 2 6= 0.

So the series diverges by the Divergence Test.

47. The series is
∞∑

k=1

ak =
∞∑

k=1

k2

(1+k3) ln( 3√1+k3)
. Consider a related function of the nth term of

the series,

f(x) =
x2

(1 + x3) ln( 3
√
1 + x3)

.

This is continuous and defined on [1,∞), decreasing, and such that f(k) = ak for all k ≥ 1. (To

see that it is decreasing for [ 3
√
2,∞) we can use the following argument:

f ′(x) = − [3x4 + (x3 − 2)x ln(1 + x3)]

(1 + x3)2(ln(1 + x3))2
.
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Since denominator is always positive being the product of two squared terms, the sign of f ′(x)
is negative if the numerator is positive. (Note the minus sign outside.) The numerator is

positive at least for x3 − 2 ≥ 0 or x ≥ 3
√
2 ≈ 1.26.) the Using the Integral Test, we compute

I =

∫ ∞

1

f(x) dx = lim
b→∞

∫ b

1

x2 dx

(1 + x3) ln( 3
√
1 + x3)

.

Let u = 1 + x3. Then du = 3x2 dx. When x = 1, u = 2. When x = b, u = 1 + b3. The integral
becomes

I = lim
b→∞

∫ 1+b3

2

1
3 du

1
3u lnu

= lim
b→∞

∫ 1+b3

2

du

u lnu
.

Let v = lnu. Then dv = du
u . When u = 2, v = ln 2. When u = 1 + b3, v = ln(1 + b3). So we

have

I = lim
b→∞

∫ ln(1+b3)

ln 2

dv

v
= lim

b→∞
[ln |v|]

∣
∣
∣

ln(1+b3)

ln 2
= lim

b→∞
[ln(ln(1 + b3))− ln(ln 2))] = ∞.

Since the limit of the improper integral is not finite, by the Integral Test, the series diverges.

48.
∞∑

k=1

ak =
∞∑

k=1

k10

2k
is a series of nonzero terms. By the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

n10+1

2n+1

n10

2n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

2n

2 · 2n · n
10 · n
n10

∣
∣
∣
∣
=

1

2
lim
n→∞

n = ∞.

Since the limit is ∞, by the Ratio Test, the series diverges.

49.
∞∑

k=1

ak =
∞∑

k=1

(1+ 1
k2 )

k2

2k
is a series of nonzero terms. Using the Root Test,

lim
n→∞

n
√

|an| = lim
n→∞

n

√
√
√
√

∣
∣
∣
∣
∣

(
1 + 1

n2

)n2

2n

∣
∣
∣
∣
∣
=

1

2
lim
n→∞

(

1 +
1

n2

)n2/n

=
1

2

[

lim
n2→∞

(

1 +
1

n2

)n2] lim
n→∞

1/n

=
1

2

[

lim
m→∞

(

1 +
1

m

)m]0

=
1

2
[e]0 =

1

2
< 1,

where we used the substitution m = n2 and the standard result that lim
m→∞

(
1 + 1

m

)m
= e. Since

the limit is less than 1, by the Ratio Test, the series converges.

50.
∞∑

k=1

ak =
∞∑

k=1

(
k2+1
k

)k

is a series of nonzero terms. Using the Root Test,

lim
n→∞

n
√

|an| = lim
n→∞

n

√
∣
∣
∣
∣

(
n2 + 1

n

)n∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n2 + 1

n

∣
∣
∣
∣
= ∞.

Since the limit is ∞, by the Root Test, the series diverges.
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51. The series
∞∑

k=1

ak =
∞∑

k=1

k!
3 kk is a series of nonzero terms. Using the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(n+1)!
3 (n+1)n+1

n!
3nn

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

(n+ 1)n!

n!
· nn

(n+ 1)(n+ 1)n

∣
∣
∣
∣
= lim

n→∞

(
n

1 + n

)n

= lim
n→∞

(
1

1 + 1
n

)n

=
1

lim
n→∞

(
1 + 1

n

)n

=
1

e
< 1,

since e > 1, where we have used the standard result that lim
n→∞

(
1 + 1

n

)n
= e. Since the limit is

less than 1, by the Ratio Test, the series converges.

52. The series is
∞∑

k=1

(−1)k+1ak =
∞∑

k=1

(−1)k+1 k+2
3k−2 . The absolute value of the nth term satisfies

lim
n→∞

an = lim
n→∞

n+ 2

3n− 2
= lim

n→∞

1 + 2
n

3− 2
n

=
1

3
6= 0.

Since the limit is nonzero, the series diverges by the Divergence Test.

53.
∞∑

k=2

6
k(ln k)3 is a series whose terms are positive.

To find bounds on the sum we must determine whether f(x) = 6
x(lnx)3 is a continuous, positive,

decreasing function.

First, f(x) = 6
x(ln x)3 is a positive and continuous function for all x > 1.

Next, find f ′(x):

f ′(x) = − 6

x2(lnx)3
− 18

x2(lnx)4
< 0 for all x > 1,

So f(x) = 6
x(ln x)3 is also a decreasing function on that interval.

Next, find
∫∞
2

6
x(ln x)3 dx:

∫ ∞

2

6

x(ln x)3
dx = lim

b→∞

∫ b

2

6

x(ln x)3
dx = lim

b→∞

[ −3

(lnx)2

]b

2

= lim
b→∞

[ −3

(ln b)2
+

3

(ln 2)2

]

=
3

(ln 2)2

Since
∫∞
2

6
x(lnx)3 dx converges and a1 = 3

(ln 2)3 , then

∫ ∞

2

6

x(ln x)3
dx <

∞∑

k=2

6

k(ln k)3
< a1 +

∫ ∞

2

6

x(ln x)3
dx

3

(ln 2)2
<

∞∑

k=2

6

k(ln k)3
<

3

(ln 2)3
+

3

(ln 2)2

Therefore

6.244 <

∞∑

k=2

6

k(ln k)3
< 15.252
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54.
∞∑

k=1

1
k4/3 is a convergent p-series for which the bounds are

1
4
3 − 1

<

∞∑

k=1

1

k4/3
< 1 +

1
4
3 − 1

3 <

∞∑

k=1

1

k4/3
< 4

Therefore

6 <

∞∑

k=1

2

k4/3
< 8

55. (a) The power series
∞∑

k=1

ak =
∞∑

k=1

(x−3)3k−1

k2 is a series of nonzero terms if x 6= 3. (If x = 3,

the series sums to 0.) Applying the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x−3)3(n+1)−1

(n+1)2

(x−3)3n−1

n2

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

(x− 3)3n−1+3

(x− 3)3n−1
· n2

(n+ 1)2

∣
∣
∣
∣
= |x− 3|3

(

lim
n→∞

n

n+ 1

)2

= |x− 3|3
(

lim
n→∞

1

1 + 1
n

)2

= |x− 3|3 ·
(

1

1 + 0

)2

= |x− 3|3 < 1

for convergence of the series by the Ratio Test. So the power series converges in the interval

−1 < x− 3 < 1, or 2 < x < 4. The radius of convergence is R = 1 .

(b) At x = 2, the series becomes

∞∑

k=1

ak =

∞∑

k=1

(2 − 3)3k−1

k2
=

∞∑

k=1

(−1)3k−1

k2
=

∞∑

k=1

(−1)3k+3(−1)−4

k2
=

∞∑

k=1

[(−1)3]k+1

k2
=

∞∑

k=1

(−1)k+1

k2
.

The series of absolute values
∞∑

k=1

|ak| =
∞∑

k=1

1
k2 is a convergent p-series (since p = 2 > 1), so the

original series is absolutely convergent, hence converges. So the power series converges at x = 2.
At x = 4, the series becomes

∞∑

k=1

ak =

∞∑

k=1

(4− 3)3k−1

k2
=

∞∑

k=1

(1)3k−1

k2
=

∞∑

k=1

1

k2

which is a convergent p-series (since p = 2 > 1). So the power series converges at x = 4.

Concluding, the interval of convergence of the power series is 2 ≤ x ≤ 4.
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56. (a) The power series
∞∑

k=1

ak =
∞∑

k=1

xk

3√
k
is a series of nonzero terms if x 6= 0. (If x = 0, the

series sums to 0.) By the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

xn+1

3
√
n+1
xn

3
√
n

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

3

√
n

n+ 1
= |x| 3

√

lim
n→∞

(
1

1 + 1
n

)

= |x| 3

√

1

1 + 0
= |x| < 1

for convergence of the series by the Ratio Test. So the power series converges in the interval

−1 < x < 1, and the radius of convergence is R = 1 .

(b) At x = −1, the series becomes

∞∑

k=1

ak =

∞∑

k=1

(−1)k

3
√
k

.

The absolute value of the nth term satisfies

lim
n→∞

|an| = lim
n→∞

1
3
√
n
= 0.

By the Algebraic Ratio Test, we have

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1
3√n+1

1
3
√
n

∣
∣
∣
∣
∣
= 3

√
n

n+ 1
< 1

for all n ≥ 1. So the absolute value of the terms of the series are decreasing. By the
Alterbating Series Test, the series converges. So the power series converges at x = −1.
At x = 1, the series becomes

∞∑

k=1

ak =

∞∑

k=1

(1)k

3
√
k

=

∞∑

k=1

1

k1/3
.

This is a p-series with 0 < p = 1
3 < 1, so it diverges. So the power series diverges at x = 1.

Concluding, the interval of convergence of the power series is −1 ≤ x < 1.

57. (a) The power series
∞∑

k=0

(−1)kak =
∞∑

k=0

(−1)k 1
k! (k+1)

(
x
2

)2k+1
is a series of nonzero terms

for x 6= 0. (At x = 0, the series converges to 0.) Using the Ratio Test,

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

1
(n+1)! (n+2)

(
x
2

)2(n+1)+1

1
n! (n+1)

(
x
2

)2n+1

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
x

2

∣
∣
∣

2

lim
n→∞

∣
∣
∣
∣

n+ 1

n+ 2
· n!

(n+ 1)n!

∣
∣
∣
∣
=
∣
∣
∣
x

2

∣
∣
∣

2

· lim
n→∞

1

n+ 2

= 0

for any value of x. So the radius of convergence of the power series is R = ∞ .

(b) Since the series converges for any value of x, the interval of convergence of the series is

−∞ < x < ∞.
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58. (a) The power series
∞∑

k=1

ak =
∞∑

k=1

kk

(k!)2 x
k is a series of nonzero terms for x 6= 0. (At x = 0,

the series converges to 0.) Using the Ratio Test, we have

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(n+1)n+1xn+1

((n+1)!)2

nnxn

(n!)2

∣
∣
∣
∣
∣
∣

= |x| lim
n→∞

∣
∣
∣
∣
∣

(n+ 1)(n+ 1)n

nn
·
(

n!

(n+ 1)n!

)2
∣
∣
∣
∣
∣

= |x| lim
n→∞

∣
∣
∣
∣

(
n+ 1

n

)n

· 1

n+ 1

∣
∣
∣
∣

= |x| · lim
n→∞

(

1 +
1

n

)n

· lim
n→∞

1

n+ 1

= |x| · e · 0 = 0,

where the standard limit result lim
n→∞

(
1 + 1

n

)n
= e has been used. Since the limit is less than 1

for any value of x, the radius of convergence of the power series is R = ∞.

(b) Since the series converges for any value of x, the interval of convergence of the series is

−∞ < x < ∞.

59. (a) The power series
∞∑

k=1

ak =
∞∑

k=1

(x−1)k

k is a series of nonzero terms for x 6= 1. (At x = 1,

the series converges to 0.) Using the Ratio Test, we get

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x−1)n+1

n+1

(x−1)n

n

∣
∣
∣
∣
∣
∣

= |x−1| lim
n→∞

(
n

n+ 1

)

= |x−1| lim
n→∞

(
1

1 + 1
n

)

= |x−1|· 1

1 + 0
= |x−1| < 1

for convergence of the series by the Ratio Test. So the power series converges in the interval

−1 < x− 1 < 1, or 0 < x < 2, and the radius of convergence is R = 1.

(b) At x = 0, the series becomes

∞∑

k=1

ak =

∞∑

k=1

(0− 1)k

k
=

∞∑

k=1

(−1)k

k
= −1 +

1

2
− 1

3
+

1

4
− · · ·

which, being a constant multiple of the alternating harmonic series (namely the alternating
harmonic series multiplied by −1), converges. So the power series converges for x = 0.
At x = 2, the series becomes

∞∑

k=1

ak =

∞∑

k=1

(2− 1)k

k
=

∞∑

k=1

(1)k

k
=

∞∑

k=1

1

k

which is the divergent harmonic series. So the power series diverges for x = 2.

Concluding, the interval of convergence of the power series is 0 ≤ x < 2.

60. (a) The power series
∞∑

k=0

ak =
∞∑

k=0

3kxk

5k
is a series of nonzero terms for x 6= 0. (At x = 0,

the series converges to 1.) By the Ratio Test, we get

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

3n+1xn+1

5n+1

3nxn

5n

∣
∣
∣
∣
∣
=

3

5
|x| < 1
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for convergence of the series by the Ratio Test. So |x| < 5
3 , which means the power series

converges in the interval − 5
3 < x < 5

3 , and its radius of convergence is R =
5

3
.

(b) At x = − 5
3 , the series becomes

∞∑

k=0

ak =

∞∑

k=0

3k

5k
·
(

−5

3

)k

=

∞∑

k=0

(−1)k.

The sequence of partial sums of this series is {Sn} = {1, 0, 1, 0, · · · } which does not converge,
and this means the series does not converge either. So the power series diverges for x = − 5

3 .

At x = 5
3 , the series becomes

∞∑

k=0

ak =
∞∑

k=0

3k

5k
·
(
5

3

)k

=
∞∑

k=0

1

which diverges. So the power series diverges for x = 5
3 .

Concluding, the interval of convergence of the power series is −5

3
< x <

5

3
.

61. To express the function f(x) = 2
x+3 as a power series centered at 0, we use the following

function respresented as a geometric series: g(x) = 1
1−x =

∞∑

k=0

xk for −1 < x < 1. So,

f(x) =
2

3 + x
=

2

3

(
1

1 + x
3

)

=
2

3

[

1

1−
(
−x

3

)

]

=
2

3

∞∑

k=0

(

−x

3

)k

=
2

3

∞∑

k=0

(−1)k
(x

3

)k

,

which converges for
∣
∣x
3

∣
∣ < 1 or −1 < x

3 < 1, or −3 < x < 3.

62. To express the function f(x) = 1
1−3x as a power series centered at 0, we use the following

function represented as a geometric series: g(x) = 1
1−x =

∞∑

k=0

xk for −1 < x < 1. So we have

f(x) =
1

1− 3x
= g(3x) =

∞∑

k=1

(3x)k =

∞∑

k=0

3kxk ,

which converges for |3x| < 1 or −1 < 3x < 1 or − 1
3 < x < 1

3 .

63. (a) From Problem 60 above, the series centered about 0 for

1

1− 3x2
= f(x2) =

∞∑

k=0

3k(x2)k = 1 + 3x2 + 9x4 + 27x6 + · · ·+ 3nx2n + · · · .

Integrating both sides we get
∫ x

0

1

1− 3t2
dt =

∫ x

0

[
1 + 3t2 + 9t4 + 27t6 + · · ·+ 3nt2n + · · ·

]
dt

= x+ x3 +
9

5
x5 +

27

7
x7 + · · ·+ 3n

2n+ 1
x2n+1 + · · · .
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(b) To ascertain the correct number of terms to keep, we calculate the n for which the
contribution to the sum becomes less than 0.001, for x = 1

2 . So, setting x = 1
2 in the nth term,

we get

3n

2n+ 1

(
1

2

)2n+1

≤ 0.001.

Proceeding by trial and error, we find that n = 11. So we have

∫ 1/2

0

1

1− 3x2
dx ≈

11∑

k=0

3k

2k + 1

(
1

2

)2k+1

≈ 0.758

an answer that is correct to three decimal places.

64. To find the Taylor expansion of f(x) = 1
1−2x about c = 1, we begin by evaluating the

function and its derivatives at x = 1.

f(x) =
1

1− 2x
f(1) =

1

1− 2 · 1 = −1

f ′(x) =
2 · 1

(1 − 2x)2
f ′(1) =

2 · 1
(1− 2 · 1)2 = 2 · 1!

f ′′(x) =
22 · 2 · 1
(1 − 2x)3

f ′′(1) =
22 · 2!

(1− 2 · 1)3 = −22 · 2!

f ′′′(x) =
23 · 3 · 2 · 1
(1− 2x)4

f ′′′(1) =
23 · 3!

(1− 2 · 1)4 = 23 · 3!

...
...

The Taylor expansion of the function about c = 1 is

f(x) =
∞∑

k=0

f (k)(c)

k!
(x− c)k

=
−1

0!
(x− 1)0 +

2 · 1!
1!

(x− 1)1 − 22 · 2!
2!

(x− 1)2 +
23 · 3!
3!

(x− 1)3 − · · ·+ (−1)n+1 2
n · n!
n!

(x− 1)n + · · ·

= −1 + 2(x− 1)− 22(x − 1)2 + 23(x− 1)3 − · · ·+ (−1)n+12n(x− 1)n + · · ·

=

∞∑

k=0

(−1)k+12k(x− 1)k.

65. To find the Taylor expansion of f(x) = ex/2 about c = 1, we begin by evaluating the
function and its derivatives at x = 1.

f(x) = ex/2 f(1) = e1/2

f ′(x) =
1

2
ex/2 f ′(1) =

1

2
e1/2

f ′′(x) =
1

22
ex/2 f ′′(1) =

1

22
e1/2

f ′′′(x) =
1

23
ex/2 f ′′′(1) =

1

23
e1/2

...
...
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The Taylor expansion of the function about c = 1 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

=
1

0!
e1/2(x− 1)0 +

1

1! 2
e1/2(x− 1)1 +

1

2! 22
e1/2(x− 1)2 +

1

3! 23
e1/2(x − 1)3 + · · ·

+
1

n! 2n
e1/2(x− 1)n + · · ·

=

∞∑

k=0

1

k! 2k
e1/2(x− 1)k.

66. To find the Maclaurin expansion of f(x) = 2x3 − 3x2 + x+ 5, we begin by evaluating the
function and its derivatives at x = 0.

f(x) = 2x3 − 3x2 + x+ 5 f(0) = 2(0)3 − 3(0)2 + 0 + 5 = 5

f ′(x) = 6x2 − 6x+ 1 f ′(0) = 6(0)2 − 6(0) + 1 = 1

f ′′(x) = 12x− 6 f ′′(0) = −6

f ′′′(x) = 12 f ′′′(0) = 12

f (4)(x) = 0 f (4)(0) = 0.

The higher derivatives and their evaluations at x = 0 are all 0 as well. So the Maclaurin series is

f(x) =

∞∑

k=0

f (k)(0)

k!
xk

=
5

0!
x0 +

1

1!
x1 +

−6

2!
x2 +

12

3!
x3

= 5 + x− 3x2 + 2x3

= 2x3 − 3x2 + x− 5.

We see that the Maclaurin expansion of the function is equivalent to the function itself.

67. To find the Taylor series for f(x) = tanx about c = π
4 , we begin by evaluating the function

and its derivatives at x = π
4 . Let y = f(x), y1 = f

(
π
4

)
, y′ = f ′(x), y′1 = f ′ (π

4

)
, etc.

y = tanx y1 = tan
(π

4

)

= 1

y′ = sec2 x = 1 + tan2 x = 1 + y2 y′1 = 1 + y21 = 1 + (1)2 = 2

y′′ = 2yy′ y′′1 = 2y1y
′
1 = 2(1)(2) = 4

y′′′ = 2y′2 + 2yy′′ y′′′1 = 2y′21 + 2y1y
′′
1

= 2(2)2 + 2(1)(4) = 16

y(4) = 4y′y′′ + 2y′y′′ + 2yy′′′

= 6y′y′′ + 2yy′′′ y
(4)
1 = 6y′1y

′′
1 + 2y1y

′′′
1

= 6(2)(4) + 2(1)(16) = 80

y(5) = 6y′′2 + 6y′y′′′ + 2y′y′′′ + 2yy(4)

= 6y′′2 + 8y′y′′′ + 2yy(4) y
(5)
1 = 6y′′21 + 8y′1y

′′′
1 + 2y1y

(4)
1

= 6(4)2 + 8(2)(16) + 2(1)(80) = 512

...
...
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The Taylor expansion of the function about c = π
4 is

f(x) =

∞∑

k=0

f (k)(c)

k!
(x− c)k

= 1 +
2

1!

(

x− π

4

)1

+
4

2!

(

x− π

4

)2

+
16

3!

(

x− π

4

)3

+
80

4!

(

x− π

4

)4

+
512

5!

(

x− π

4

)5

+ · · ·

= 1 + 2
(

x− π

4

)

+ 2
(

x− π

4

)2

+
8

3

(

x− π

4

)3

+
10

3

(

x− π

4

)4

+
64

15

(

x− π

4

)5

+ · · ·

68. The Maclaurin expansion of f(x) = e−x sinx is obtained by multiplying the Maclaurin
expansions of e−x and sinx together. From Example 2, p.716 of Section 8.9, we get the
Maclaurin expansion

g(x) = ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!
+ · · · .

So we have

g(−x) = e−x = 1− x+
x2

2!
− x3

3!
+

x4

4!
− · · ·+ (−1)n

xn

n!
+ · · · .

From p.717 of Section 8.9 the book, we have

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · · .

So the first five terms of the Maclaurin series of f(x) are

f(x) = e−x sinx

=

(

1− x+
x2

2!
− x3

3!
+

x4

4!
− x5

5!
+ · · ·+ (−1)n

xn

n!
+ · · ·

)

·
(

x− x3

3!
+

x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · ·

)

=

(

1− x+
x2

2
− x3

6
+

x4

24
− x5

120
+ · · ·

)

·
(

x− x3

6
+

x5

120
− · · ·

)

= 1 ·
(

x− x3

6
+

x5

120
− · · ·

)

− x ·
(

x− x3

6
+

x5

120
− · · ·

)

+
x2

2
·
(

x− x3

6
+

x5

120
− · · ·

)

− x3

6
·
(

x− x3

6
+

x5

120
− · · ·

)

+
x4

24
·
(

x− x3

6
+

x5

120
− · · ·

)

− x5

120

(

x− x3

6
+

x5

120
− · · ·

)

+ · · ·

=

(

x− x3

6
+

x5

120
− · · ·

)

+

(

−x2 +
x4

6
− x6

120
+ · · ·

)

+

(
x3

2
− x5

12
+

x7

240
− · · ·

)

+

(

−x4

6
+

x6

36
− x8

720
+ · · ·

)

+

(
x5

24
− x7

144
+

x9

2880
− · · ·

)

+

(

− x6

120
+ · · ·

)

+ · · ·

= x− x2 + x3

(
1

2
− 1

6

)

+ x4

(
1

6
− 1

6

)

+ x5

(
1

120
+

1

24
− 1

12

)

+ x6

(

− 1

120
+

1

36
− 1

120

)

− · · ·

= x− x2 +
1

3
x3 − 1

30
x5 +

1

90
x6 − · · · .
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69. Since (1 + x)m =
∞∑

k=0

(
m
k

)
xk, the binomial series of f(x) = 1

(x+1)4 = (1 + x)−4 is given by

f(x) =

∞∑

k=0

(−4

k

)

xk

=

(−4

0

)

x0 +

(−4

1

)

x1 +

(−4

2

)

x2 +

(−4

3

)

x3 + · · ·+
(−4

n

)

xn + · · ·

= 1− 4x+
(−4)(−4− 1)

2!
x2 +

(−4)(−4− 1)(−4− 2)

3!
x3 + · · ·

= 1− 4x+ 10x2 − 20x3 + · · · .

Since m = −4 satisfies m ≤ −1, by the conditions of the theorem on p.620, the binomial series

of 1
(x+1)4 converges on the open interval (−1, 1).

70. Since (1 + x)m =
∞∑

k=0

(
m
k

)
xk, the binomial series of

f(x) = 3
√
x2 − 1 = (−1)1/3(1− x2)1/3 = −1(1− x2)1/3 is given by

f(x) = −
∞∑

k=0

(1
3

k

)

(−x2)k

= −
[(1

3

0

)

(−x2)0 +

(1
3

1

)

(−x2)1 +

(1
3

2

)

(−x2)2 +

( 1
3

3

)

(−x2)3 + · · ·+
(1

3

n

)

(−x2)n + · · ·
]

= −
[

1− 1

3
x2 +

1
3

(
1
3 − 1

)

2!
x4 −

1
3

(
1
3 − 1

) (
1
3 − 2

)

3!
x6 + · · ·

]

= −1 +
1

3
x2 +

1

9
x4 +

5

81
x6 + · · · .

Since m = 1
3 satisfies m > 0 but m is not an integer, by the conditions of the theorem on p.620,

the series converges on the closed interval [−1, 1].

71. Since (1 + x)m =
∞∑

k=0

(
m
k

)
xk, the binomial expansion of f(x) = 1√

1−x
= (1− x)−1/2 is given

by

f(x) =

∞∑

k=0

(− 1
2

k

)

(−1)kxk

=

(− 1
2

0

)

(−1)0x0 +

(− 1
2

1

)

(−1)1x1 +

(− 1
2

2

)

(−1)2x2 +

(− 1
2

3

)

(−1)3x3 + · · ·

= 1−
(

−1

2

)

x+

(
− 1

2

) (
− 3

2

)

2!
x2 −

(
− 1

2

) (
− 3

2

) (
− 5

2

)

3!
x3 + · · ·

= 1 +
1

2
x+

3

8
x2 +

5

16
x3 + · · · .

Since m = − 1
2 satisfies −1 < m < 0, by the conditions of the theorem on p.620, the series

converges on the half open interval (−1, 1].
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72. (a) To find the Taylor expansion to four nonzero terms of y = cosx about x = π
2 , we

compute the function and its derivatives at x = π
2 until four nonzero values result.

y = cosx y
(π

2

)

= cos
(π

2

)

= 0

y′(x) = − sinx y′
(π

2

)

= − sin
(π

2

)

= −1

y′′(x) = − cosx y′′
(π

2

)

= − cos
(π

2

)

= 0

y′′′(x) = sinx y′′′
(π

2

)

= sin
(π

2

)

= 1

y(4)(x) = cosx y(4)
(π

2

)

= cos
(π

2

)

= 0

y(5) = − sinx y(5)
(π

2

)

= − sin
(π

2

)

= −1

y(6)(x) = − cosx y(6)
(π

2

)

= − cos
(π

2

)

= 0

y(7)(x) = sinx y(7)
(π

2

)

= sin
(π

2

)

= 1

...
...

So the Taylor expansion to four nonzero terms of y = cosx about c = π
2 is given by

y = f(x) = cosx =

∞∑

k=0

f (k)(c)

k!
(x − c)k

=
1

1!

(

x− π

2

)1

+
1

3!

(

x− π

2

)3

− 1

5!

(

x− π

2

)5

+
1

7!

(

x− π

2

)7

− · · ·

= −
(

x− π

2

)

+
1

6

(

x− π

2

)3

− 1

120

(

x− π

2

)5

+
1

5040

(

x− π

2

)7

− · · ·

(b) The figure below shows the graph of both the function and its Maclaurin approximation
found above in part (a).

cos(x)

– x –
π

2
+
1

6
x –

π

2

3

–
1

120
x –

π

2

5

+

(x –
π

2
)
7

5040

–4 –2 2 4
x

–3

–2

–1

1

y
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(c) Set x = 88◦ = 22
45π. Then

(
x− π

2

)
=
(
22
45π − π

2

)
= − π

90 . So

cos(88◦) ≈ −
(

− π

90

)

+
1

6

(

− π

90

)3

− 1

120

(

− π

90

)5

+
1

5040

(

− π

90

)7

≈ 0.0349.

(d) Since the series is a converging alternating one, the error in using this approximation is
bounded from above by the absolute value of the next nonzero term, which is

∣
∣
∣
∣

1

9!

(

x− π

2

)9
∣
∣
∣
∣
.

Evaluating this error bound for x = 88◦, we have

error ≤
∣
∣
∣
∣

1

9!

(

− π

90

)9
∣
∣
∣
∣
≈ 2.12× 10−19.

(e) We need to determine the x values for which the error term would be less than or equal to
0.0001, that is, we need

∣
∣
∣
∣

1

9!

(

x− π

2

)9
∣
∣
∣
∣
≤ 0.0001

−36.288 ≤
(

x− π

2

)9

≤ 36.288

−1.490414 / x− π

2
/ 1.490414

−1.490414+
π

2
/ x / 1.490414+

π

2
0.08038 / x / 3.061210

4.6◦ / x / 175.4◦.

So the x values for which the error in the approximation would be less than or equal to 0.0001

are approximately 4.6◦ ≤ x ≤ 175.4◦.

73. The Maclaurin series for f(x) = ex is given by (see p.714) by

f(x) = ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

To ensure the accuracy of the approximation of e0.3 to three decimal places, let us find the
number of terms we need to keep:

xn

n!
= 0.001

gives, by trial and error, n = 4. Keeping the first five nonzero terms of the expansion, we have

e0.3 ≈ 1 + 0.3 +
(0.3)2

2!
+

(0.3)3

3!
+

(0.3)4

4!
≈ 1 + 0.3 + 0.045 + 0.0045 + 0.00033

≈ 1.34983

The exact value is e0.3 ≈ 1.34986 so the value found using the first five terms is accurate to at
least three decimal places.
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74. The integrand in
∫ 1/2

0
1√

1−x3
dx can be expressed as a binomial series:

1√
1− x3

= (1− x3)−1/2 =
∞∑

k=0

(− 1
2

k

)

(−x3)k

= 1− 1

2
(−x3) +

(
− 1

2

) (
− 1

2 − 1
)

2!
(−x3)2 +

(
− 1

2

) (
− 1

2 − 1
) (

− 1
2 − 2

)

3!
(−x3)3 + · · ·

+

(− 1
2

n

)

(−x3)n + · · ·

≈ 1 +
1

2
x3 +

3

8
x6 +

5

16
x9

which is the integrand expanded to four nonzero terms. Integrating both sides between the
limits, we have

∫ 1/2

0

1√
1− x3

dx ≈
∫ 1/2

0

[

1 +
1

2
x3 +

3

8
x6 +

5

16
x9

]

dx

=

[

x+
1

2 · 4x
4 +

3

8 · 7x
7 +

5

16 · 10x
10

]1/2

0

= (0.5) +
1

8
(0.5)4 +

3

56
(0.5)7 +

1

32
(0.5)10

≈ 0.5083.

75. The Maclaurin expansion of ex is (see p.714)

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · .

So the Maclaurin expansion of ex
2

is

ex
2

= 1 + x2 +
x4

2!
+

x6

3!
+ · · ·+ x2n

n!
+ · · · .

The integrand is expanded to four nonzero terms for the approximation:

∫ 1/2

0

ex
2

dx ≈
∫ 1/2

0

[

1 + x2 +
x4

2!
+

x6

3!

]

dx

=

[

x+
x3

3
+

x5

2! 5
+

x7

3! 7

]1/2

0

= 0.5 +
(0.5)3

3
+

(0.5)5

10
+

(0.5)7

42

≈ 0.545.

AP
R©

Review Problems

1. Pn(x) =
f(c)(x− c)0

0!
+

f ′(c)(x− c)1

1!
+

f ′′(c)(x − c)2

2!
+

f ′′′(c)(x − c)3

3!
· · ·+ fn(c)(x − c)n

n!
+ · · ·
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Determine P4(x) centered at 2:

P4(x) =
f(2)(x− 2)0

0!
+

f ′(2)(x− 2)1

1!
+

f ′′(2)(x − 2)2

2!
+

f ′′′(2)(x− 2)3

3!
+

f iv(2)(x − 2)4

4!

= 3 +
0(x− 2)1

1!
+

5(x− 2)2

2!
+

−4(x− 2)3

3!
+

−2(x− 2)4

4!

= 3 +
5

2
(x− 2)2 − 2

3
(x− 2)3 − 1

12
(x− 2)4

CHOICE B

2. Since 0 < ak ≤ bk and
∞∑

k=1

ak diverges,
∞∑

k=1

bk must also diverge, and therefore

∞∑

k=1

bk 6= 1 .

CHOICE C

3. I.
∞∑

K=1

k−3/2 is a p-series with p = 3
2 > 1 and therefore it converges .

II.
∞∑

k=1

k−1 is a harmonic series and therefore it diverges .

III.

∞∑

k=1

21−k =

∞∑

k=1

21(2)
−k

=

∞∑

k=1

2

2k
= 2

∞∑

k=1

1

2k

is a Geometric Series with 0 < R = 1
2 < 1, so therefore it converges .

CHOICE C

4.

∞∑

k=1

(

−5

6

)k−1

=

∞∑

k=1

[(

−5

6

)k(

−5

6

)−1
]

=

∞∑

k−1

[(

−5

6

)k(

−6

5

)]

= −6

5

∞∑

k=1

(

−5

6

)k

,

which is an Alternating Geometric Series for which r = − 5
6 , and since

∣
∣− 5

6

∣
∣ < 1, the

series converges .

−6

5

∞∑

k=1

(

−5

6

)k

= −6

5
· − 5

6

1−
(
− 5

6

) = −6

5
· −

5
6

11
5

=
6

5
· 5
6
· 5

11
=

6

11

CHOICE B

5.
∞∑

k=0

(x−2)k

k2 is a power series centered at 2. We use the Ratio Test with an = (x−2)n

n2 and

an+1 = (x−2)n+1

(n+1)2 . Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣

(x−2)n+1

(n+1)2

(x−2)n

n2

∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣
∣

(x− 2)
n+1

n2

(x− 2)
n
(n+ 1)2

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(x− 2)
n
(x− 2)n2

(x− 2)
n
(n+ 1)2

∣
∣
∣
∣

lim
n→∞

∣
∣
∣
∣

(x− 2)n2

(n+ 1)2

∣
∣
∣
∣
= |x− 2| lim

n→∞

∣
∣
∣
∣
∣

(
n

n+ 1

)2
∣
∣
∣
∣
∣
= |x− 2| lim

n→∞

∣
∣
∣
∣
∣

(
1

1 + 1
n

)2
∣
∣
∣
∣
∣
= |x− 2|

The series converges absolutely if |x− 2| < 1, or equivalently if 1 < x < 3.
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The radius of convergence is r = 1. To find the interval of convergence, test the endpoints.

If x = 1,

∞∑

k=0

(x− 2)
k

k2
=

∞∑

k=0

(1− 2)
k

k2
=

∞∑

k=0

(−1)
k

k2

which is a convergent alternating series. The endpoint x = 1 is included in the interval of
convergence.

If x = 3,

∞∑

k=0

(x− 2)
k

k2
=

∞∑

k=0

(3− 2)
k

k2
=

∞∑

k=0

(1)
k

k2

which is a p-series which converges since p = 2 > 1. x = 3 is included in the interval of
convergence.

The interval of convergence is 1 ≤ x ≤ 3 .

CHOICE D

6.
∞∑

k=1

k−n/3 =
∞∑

k=1

1
kn/3 , which is a p-series which converges if n

3 > 1, that is, if n > 3.

∞∑

k=1

(−1)nk

k will converge only if it is alternating. Therefore n must be odd.

∞∑

k=1

(
n
6

)k
is a Geometric Series that will converge provided that n

6 < 1, that is, provided

that n < 6.

The conditions required by the three series are summarized as requiring that n be an odd
integer for which 3 < n < 6.

The only choice which satisfies these requirements is n = 5 .

CHOICE D

7. The language as stated in the problem is that of the Integral Test, for which the

conclusion is that
∞∑

k=1

ak converges if
∫∞
1 f(x) dx converges.

CHOICE D

8.
∞∑

k=1

3k+1 + 4k!

3k · k! =

∞∑

k=1

(
3k+1

3k · k! +
4k!

3k · k!

)

=

∞∑

k=1

(
3

k!
+

4

3k

)

= 3

∞∑

k=1

1

k!
+ 4

∞∑

k=1

1

3k
= 3e+ 4

( 1
3

1− 1
3

)

= 3e+ 4

(
1

2

)

= 3e+ 2

CHOICE D
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9.
∞∑

k=1

3

(2k)
4 =

∞∑

k=1

3

16k4
=

3

16

∞∑

k=1

1

k4

∞∑

k=1

1
k4 is a convergent p-series for which the bounds are

1

4− 1
<

∞∑

k=1

1

k4
< 1 +

1

4− 1

1

3
<

∞∑

k=1

1

k4
<

4

3
,

3

16
· 1
3
<

3

16

∞∑

k=1

1

k4
<

3

16
· 4
3

1

16
<

3

16

∞∑

k=1

1

k4
<

1

4

1

16
<

∞∑

k=1

3

(2k)4
<

1

4

10. Evaluate each series separately.

I. 2− 1 +
1

2
− 1

4
+

1

8
+ . . . =

(
1

2

)−1

−
(
1

2

)0

+

(
1

2

)1

−
(
1

2

)2

+

(
1

2

)3

=

∞∑

k=1

(−1)
k+1

(
1

2

)k−2

= 4

∞∑

k=1

(−1)
k+1

(
1

2

)k

.

4
∞∑

k=1

(−1)
k+1( 1

2

)k
is an alternating Geometric series which converges absolutely ,

since r = 1
2 < 1.

II. 2 +
4

23/2
+

6

33/2
+

8

43/2
+ . . . =

∞∑

k=1

2k

k3/2
= 2

∞∑

k=1

1

k3/2

which is a divergent p-series, since p = 3
2 > 1.

III. 6− 4− 8

3
− 16

9
− 32

27
− · · · = 6− 4− 23

3
− 24

32
− 25

33
− · · ·

= 6− 22

30
− 23

31
− 24

32
− 25

33
− · · · = 6−

∞∑

k=2

2k

3k−2

= 6−
∞∑

k=2

2k

3k · 3−2
= 6− 9

∞∑

k=2

(
2

3

)k

,

and
∞∑

k=1

(
2
3

)k
is a convergent Geometric Series, since r = 2

3 < 1, so the original series

converges .

CHOICE B
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11.
∞∑

k=0

(
x−1
4

)k
is a power series centered at 1. We use the Ratio Test with an =

(
x−1
4

)n
and

an+1 =
(
x−1
4

)n+1
. Then

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

(
x−1
4

)n+1

(
x−1
4

)n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

(
x− 1

4

)∣
∣
∣
∣
=

∣
∣
∣
∣

x− 1

4

∣
∣
∣
∣

The series converges absolutely if
∣
∣x−1

4

∣
∣ < 1, or equivalently if −3 < x < 5.

The radius of convergence is R = 1. To find the interval of convergence, test the
endpoints.

If x = −3,

∞∑

k=0

(
x− 1

4

)k

=

∞∑

k=0

(−3− 1

4

)k

=

∞∑

k=0

(−1)
k
,

which is a divergent alternating series. The endpoint x = 1 is not included in the interval
of convergence.

If x = 5,

∞∑

k=0

(
x− 1

4

)k

=

∞∑

k=0

(
5− 1

4

)k

=

∞∑

k=0

(1)
k
,

which diverges, so x = 5 is not included in the interval of convergence.

The interval of convergence is −3 < x < 5 .

CHOICE D

12. sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

x2 sinx = x2

(

x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

)

= x3 − x5

3!
+

x7

5!
− x9

7!
+ · · ·

CHOICE C

13.

∞∑

k=1

4k+2

5k
=

∞∑

k=1

4k · 42
5k

= 16

∞∑

k=1

(
4

5

)k

,

which is a convergent Geometric Series since r = 4
5 < 1.

16
∞∑

k=1

(
4

5

)k

= 16 ·
4
5

1− 4
5

= 16 · 4 = 64

CHOICE B
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14.
∞∑

k=1

6
(k+1)(k+2) can be rewritten using Partial Fraction Decomposition as follows:

6

(k + 1)(k + 2)
=

A

k + 1
+

B

k + 2

6 = A(k + 2) +B(k + 1)

Let k = −2 Let k = −1

6 = −B A = 6

B = −6

Rewrite 6
(k+1)(k+2) =

6
k+1 + −6

k+2 , so

∞∑

k=1

6

(k + 1)(k + 2)
=

∞∑

k=1

(
6

k + 1
− 6

k + 2

)

= lim
n→∞

n∑

k=1

(
6

k + 1
− 6

k + 2

)

= lim
n→∞

[(
6

2
− 6

3

)

+

(
6

3
− 6

4

)

+

(
6

4
− 6

5

)

+ . . .+

(
6

n
− 6

n+ 1

)

+

(
6

n+ 1
− 6

n+ 2

)]

= lim
n→∞

[
6

2
+

(

−6

3
+

6

3

)

+

(

−6

4
+

6

3

)

+ · · ·+
(

− 6

n+ 1
+

6

n+ 1

)

− 6

n+ 2

]

= lim
n→∞

(
6

2
− 6

n− 2

)

=
6

2
= 3 .

(This is a telescoping series, which converges .)

CHOICE B

15. The convergence or divergence of
∞∑

k=1

(ln k)2

k can be evaluated using the Integral Test as

follows:

Let f(x) = (ln x)2

x .

The Integral Test is applicable provided that f(x) = (ln x)2

x is continuous, positive, and
nonincreasing on the interval [1,∞).

Observe that on the interval [1,∞), f(x) is always positive.

Determine f ′(x) to evaluate if f(x) is continuous and nonincreasing.

f ′(x) =
2 lnx · 1

x · x− 1 · (lnx)2

x2
=

2 lnx− (lnx)
2

x2

f ′(x) < 0 for values of x > 7.389, so for large values of x, f(x) is nonincreasing.

f ′(x) is defined on [1,∞) which implies that f(x) is continuous on [1,∞).

With the preconditions to the Integral Test satisfied we proceed to evaluate the

convergence or divergence of
∫∞
1

(ln x)2

x dx.

∫ ∞

1

(lnx)
2

x
dx = lim

x→b

∫ b

1

(lnx)
2

x
dx = lim

x→b

[
ln3 x

3

]b

1

=
1

3
lim
x→b

[
ln3 b− ln3 1

]
= ∞.

∫∞
1

(lnx)2

x dx diverges, so by the Integral Test
∞∑

k=1

(ln k)2

k also diverges .
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16. We begin by testing the series for absolute convergence.

The series of absolute values is

∞∑

k=1

∣
∣
∣
∣
∣
(−1)k+1

( √
k

k + 2

)∣
∣
∣
∣
∣
=

∞∑

k=1

√
k

k + 2
.

Since for large n,
√
n

n+2 ≈ 1√
n
= 1

n1/2 we compare the series
∞∑

k=1

√
k

k+2 to the p-series
∞∑

k=1

1
k1/2 ,

which we know diverges.

With an =
√
n

n+2 and bn = 1
n1/2 ,

lim
n→∞

an
bn

= lim
n→∞

√
n

n+2
1

n1/2

= lim
n→∞

n

n+ 2
= lim

n→∞
1

1 + 2
n

= 1.

Since the limit is a positive number and the p-series diverges, so by the Limit Comparison

Test the series
∞∑

k=1

√
k

k+2 diverges and
∞∑

k=1

(−1)k+1
( √

k
k+2

)

is not absolutely convergent.

We must proceed to determine if
∞∑

k=1

(−1)k+1
( √

k
k+2

)

is conditionally convergent.

We begin by confirming that lim
n→∞

(an) = lim
n→∞

√
n

n+2 = 0.

Next, using the Algebraic Ratio test, we verify that the terms ak =
√
k

k+2 are nonincreasing.

Since

an+1

an
=

√
n+1

n+1+2√
n

n+2

=
(n+ 2)

√
n+ 1

(n+ 3)
√
n

=
n+ 2

n+ 3
· n+ 1

n
=

(
1 + 2

n

1 + 3
n

)(

1 +
1

n

)

= 1

for all n ≥ 1, the terms ak are nonincreasing.

By the Alternating Series Test, the series
∞∑

k=1

(−1)k+1
( √

k
k+2

)

converges.

Therefore
∞∑

k=1

(−1)k+1
( √

k
k+2

)

is conditionally convergent .
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17. (a) f(x) = tan−1 x.

To express a function f as a MacLaurin series, we begin by evaluating f and its
derivatives at 0.

f(x) = tan−1 x f(0) = 0

f ′(x) =
1

1 + x2
f ′(0) = 1

f ′′(x) =
−2x

(1 + x2)
2 f ′′(0) = 0

f ′′′(x) =
2(3x2 − 1)

(1 + x2)
3 f ′′′(0) = −2

f (4)(x) =
24x− 24x3

(1 + x2)4
f (4)(0) = 0

f (5)(x) =
120x4 − 240x2 + 24

(1 + x2)
5 f (5)(0) = 24

f (6)(x) =
−240x(3x4 − 10x2 + 3)

(1 + x2)
6 f (6)(0) = 0

Then use the definition of a Maclaurin series,

f(x) =
∞∑

k=0

f (k)(0)

k!
xk = 0 + 1 · x+

0x2

2!
− 2x3

3!
+

0x4

4!
+

24x5

5!
+ · · ·+ (−1)

k
x2k+1

2k + 1
+ · · ·

The first five terms are P9(x) = x− x3

3
+

x5

5
− x7

7
+

x9

9
.

(b) g(x) =

∫ x

0

tan−1 t dt =

∫ x

0

(
9∑

t=0

f (k)(0)

k!
tk

)

dt

=

∫ x

0

(

t− t3

3
+

t5

5
− t7

7
+ · · ·

)

dt =

[
t2

2
− t4

3 · 4 +
t6

5 · 6 − t8

7 · 8 + · · ·
]x

0

=
x2

2
− x4

12
+

x6

30
− x8

56
+ · · · =

∞∑

k=1

(−1)
k−1 x2k

2k(2k − 1)

(c) The radius of convergence is R = 1, centered at 0, so the series converges absolutely
if −1 < x < 1.

To find the interval of convergence, we test the endpoints, x = −1 and x = 1.

When x = −1 or x = 1,
∞∑

k=1

(−1)
k−1 x2k

2k(2k−1) reduces to

∞∑

k=1

(−1)
k−1 (±1)2k

2k(2k − 1)
=

∞∑

k=1

(−1)
k−1 1

2k(2k − 1)
,

which is convergent by the Alternating Series test.

So x = −1 and x = 1 are both included in the interval of convergence.

Consquently the interval of convergence is −1 ≤ x ≤ 1 .
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(d) Let Pn(x) be the approximation of
∫ x

0 tan−1 x dx using the sum of terms a1 through
an of the series expansion found above.

Then
∫ 1/4

0
tan−1 x dx ≈ Pn

(
1
4

)
.

The bound on the error in using this approximation is

|En| ≤ an+1 =

(
1
4

)2(n+1)

2(n+ 1)[2(n+ 1)− 1]
=

(
1
4

)2n+2

(2n+ 2)(2n− 1)
for Pn

(
1

4

)

.

By trial and error,

n = 1: an+1 = a2 = 0.000977 > 0.0001

n = 2: an+1 = a3 = 0.0000136 < 0.0001

So we want

P2

(
1

4

)

= (−1)
1−1

a1 + (−1)
2−1

a2

=

(
1
4

)2

2
−
(
1
4

)3

12

=
95

3072

≈ 0.031




